Total marks - 120

Attempt Question 1-8

All questions are of equal value

Answer each question in the appropriate writing booklet. Extra writing booklets are available.

Question 1 (15 marks)

Marks

(a) Find

(i)
$$\int \frac{\cos \theta}{\sin^5 \theta} d\theta$$

(ii)
$$\int \frac{dx}{x^2 + 2x + 2}$$

(b) Use the substitution
$$t = \tan \frac{\theta}{2}$$
 to find $\int \frac{dx}{5 + 4\cos x + 3\sin x}$

(c) Use the substitution
$$u = -x$$
 to evaluate
$$\int_{-1}^{1} \frac{dx}{e^x + 1}$$

(d) Evaluate the following definite integrals:

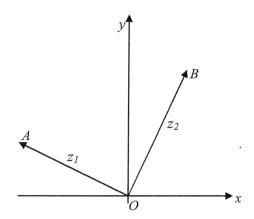
$$\int_0^1 \cos^{-1} x \, dx$$

(ii)
$$\int_{1}^{2} x(\ln x)^{2} dx$$
 3

Question 2 (15 marks) Start a new booklet

- (a) If z = 3 2i mark clearly on an Argand diagram the points represented by,
 - (i) 2z
 - (ii) -2*iz*
- (b) z is a complex number such that $\arg z = \frac{\pi}{3}$ and $|z| \le 2$.
 - (i) Sketch the locus of the point P representing z in the Argand diagram.
 - (ii) Find the possible values of the principal argument of z-1 for z on this locus.

(c)

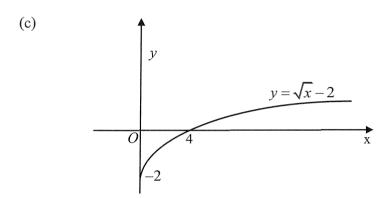


In the Argand diagram, vectors \overrightarrow{OA} and \overrightarrow{OB} represent the complex numbers $z_1 = 2\left(\cos\frac{4\pi}{5} + i\sin\frac{4\pi}{5}\right)$ and $z_2 = 2\left(\cos\frac{7\pi}{15} + i\sin\frac{7\pi}{15}\right)$ respectively.

- (i) Show that $\triangle OAB$ is equilateral 3
- (ii) Explain why $z_2 z_1$ is equal to z_2 rotated by $\frac{\pi}{3}$ radians in a clockwise direction
- (iii) Express $z_2 z_1$ in modulus-argument form.

Question 3 (15 marks) Start a new booklet

- (a) The polynomial $p(x) = x^4 2x^3 + 2x 1$ has a root of multiplicity 3. Find this root and hence factorise p(x)
- (b) Sketch the curve $y^2 = x^2 (1-x^2)$ clearly showing all relevant details. 6



The diagram shows the graph of the function $f(x) = \sqrt{x} - 2$. On separate diagrams (each of half a page) sketch the following graphs, showing clearly any intercepts on the coordinate axes and the equations of any asymptotes:

(i)
$$y = |f(x)|$$

(ii)
$$y = [f(x)]^2$$

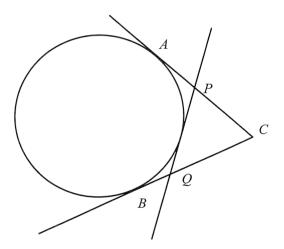
(iii)
$$y = \frac{1}{f(x)}$$

(iv)
$$y = \ln f(x)$$

3

Question 4 (15 marks) Start a new booklet

(a) A and B are two points on a circle. Tangents at A and B meet at C. A third tangent cuts CA and CB in P and Q respectively, as shown in the diagram. Show that the perimeter of ΔCPQ is independent of PQ.



- (b) The polynomial P(x) leaves a remainder of 9 when divided by (x-2) and a remainder of 4 when divided by (x-3). Find the remainder when P(x) is divided by (x-2)(x-3).
- (c) The polynomial $P(x) = x^4 + 3x^3 + 6x^2 + 12x + 8$ has one root 2i.

 4 Find all the roots of P(x).
- (d) If α , β are the roots of the equation $x^2 px + q = 0$ and $S_n = \alpha^n + \beta^n$ where n is a positive integer, show that $S_{n+2} pS_{n+1} + qS_n = 0$ Hence, or otherwise find S_3 , S_4 in terms of p, q.

4

4

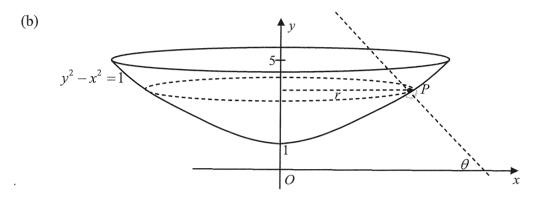
Question 5 (15 marks) Start a new booklet

- (a) $P\left(3p, \frac{3}{p}\right)$ and $Q\left(3q, \frac{3}{q}\right)$ are points on different branches of the hyperbola xy = 9.
 - (i) Find the equation of the tangent at P. 2
 - (ii) Find the point of intersection, T, of the tangents at P and Q.
 - (iii) If the chord PQ passes through the point (0,2), find the locus of T.
- (b) The region bounded by the graphs of $y = x^2$ and y = x + 2 is revolved around the line x = 3. Derive the volume of the resulting solid as a definite integral. **Do not calculate the value of this integral**.
- (c) A solid has, as its base, the circular region in the *xy*-plane bounded by the graph of $x^2 + y^2 = a^2$, where a > 0. If every cross-section by a plane perpendicular to the *x*-axis is an equilateral triangle, with one side in the base, show that the volume of the solid is $\frac{4\sqrt{3}}{3}a^3$ units³.

1

Question 6 (15 marks) Start a new booklet

(a) A particle of mass m moves in a straight line away from a fixed point O in the line, such that at time t its displacement from O is x and its velocity is v. At time t = 0, x = 1 and v = 0. Subsequently, the only force acting on the particle is one of magnitude $m \frac{k}{x^2}$, where k is a positive constant in a direction away from O. Show that v cannot exceed $\sqrt{(2k)}$.



A bowl is formed by rotating the hyperbola $y^2 - x^2 = 1$ for $1 \le y \le 5$ about the *y* axis. A particle *P* of mass *m* moves around the inner surface of the bowl in a horizontal circle with constant angular velocity ω .

- (i) Show that if the radius of the circle in which P moves is r, then the normal to the surface at P makes an angle θ with the horizontal as shown, where $\tan \theta = \frac{\sqrt{1+r^2}}{r}$.
- (ii) Draw a diagram showing the forces acting on P.
- (iii) By resolving these forces in the horizontal and vertical directions 3 show that $r = \frac{\sqrt{g^2 \omega^4}}{\omega^2}$ and the normal reaction $N = m\sqrt{2g^2 \omega^4}$
- (iv) Since *P* must be in contact with the surface of the bowl and the radius must be positive, prove $\sqrt{\frac{g}{5}} \le \omega \le \sqrt{g}$.

Question 7 (15 marks) Start a new booklet

- a) i) Expand (2+i)(3+i)
 - ii) By considering the arguments of each side, or otherwise show that $\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right) = \frac{\pi}{4}$
 - iii) By first expanding $(p+q+i)(p^2+pq+1+iq)$ derive $\tan^{-1}\left(\frac{1}{p+q}\right) + \tan^{-1}\left(\frac{q}{p^2+pq+1}\right) = \tan^{-1}\left(\frac{1}{p}\right)$
- b) i) Prove, by Mathematical Induction, that $\sin \theta = 2^n \cos \frac{\theta}{2} \cos \frac{\theta}{4} \cos \frac{\theta}{2^n} \sin \frac{\theta}{2^n} \text{ for any positive integer } n$
 - ii) Hence show that $\frac{\sin \theta}{\theta} = \cos \frac{\theta}{2} \cos \frac{\theta}{4} \cos \left(\frac{\theta}{2^n}\right) \frac{\sin \left(\frac{\theta}{2^n}\right)}{\left(\frac{\theta}{2^n}\right)}$
 - iii) Hence find $\lim_{n\to\infty} \left(\frac{\sin\theta}{\theta}\right)$
 - iv) Using \prod as the product of terms, show that when $\theta = \frac{\pi}{2}$ $\prod_{k=2}^{\infty} \cos\left(\frac{\pi}{2^k}\right) = \frac{2}{\pi}$
 - v) Hence show, by applying the half angle formula for $\cos\left(\frac{\theta}{2}\right)$ $\frac{2}{\pi} = \frac{\sqrt{2}}{2} \times \frac{\sqrt{2 + \sqrt{2}}}{2} \times \frac{\sqrt{2 + \sqrt{2 + \sqrt{2}}}}{2} \times \dots$

Question 8 (15 marks) Start a new booklet

(a) The ellipse
$$\mathcal{Z}$$
: $\left(\frac{x}{5}\right)^2 + \left(\frac{y}{3}\right)^2 = 1$ has foci $S(4,0)$ and $S'(-4,0)$.

- (i) Sketch the ellipse \mathcal{E} indicating its foci S, S' and its directrices.
- (ii) Find the tangent at $P(x_1, y_1)$ on the ellipse \mathcal{Z} .
- (iii) The line joining $P(x_1, y_1)$ to $Q(x_2, y_2)$ passes through S. Show that $4(y_2 y_1) = x_1 y_2 x_2 y_1.$
- (iv) If it is also known that $Q(x_2, y_2)$ lies on \mathcal{Z} find the point of intersection of the tangents at P and Q
- (v) By using the result in (iii) show the tangents at *P* and *Q* intersect on the directrix corresponding to *S*.

(b)
$$I_n = \int_{1}^{e} (1 - \ln x)^n dx$$
, $n = 1, 2, 3, ...$

- (i) Show $I_n = -1 + nI_{n-1}$, n = 1, 2, 3, ...
- (ii) Hence evaluate $\int_{1}^{e} (1 \ln x)^{3} dx$.
- (iii) Show that $\frac{I_n}{n!} = e \sum_{r=0}^{n} \frac{1}{r!}$, n = 1, 2, 3, ...

End of Examination

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1; \ x \neq 0, \ if \ n < 0$$

$$\int \frac{1}{x} dx = \ln x, \ x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \ a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \ a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \ a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \ a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \ a \neq 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln(x + \sqrt{x^2 - a^2}), \ x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln(x + \sqrt{x^2 + a^2})$$

NOTE: $ln x = log_e x, x > 0$

