

2010 TRIAL HIGHER SCHOOL CERTIFICATE

GIRRAWEEN HIGH SCHOOL

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen
- Board approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total marks - 120

Attempt Questions 1 - 8All questions are of equal value Total marks-120

Attempt Questions 1-8

All questions are of equal value

Answer each question in a SEPARATE piece of paper clearly marked Question 1, Question 2, etc. Each piece of paper must show your name.

Question 1 (15 Marks)

a)
$$\int \frac{dx}{\sqrt{4x^2-9}}$$

b)
$$\int \frac{xdx}{\sqrt{4x^2-9}}$$

c) (i) Find real numbers **a**, **b** and **c** such that
$$\frac{4x^2 + 7x + 11}{(x+3)(x^2+4)} = \frac{a}{x+3} + \frac{bx+c}{x^2+4}$$

(ii) Hence show
$$\int_{0}^{2} \frac{4x^2 + 7x + 11}{(x+3)(x^2+4)} = \ln \frac{50}{9} + \frac{\pi}{8}$$

d) Use
$$t = \tan \frac{x}{2}$$
 to evaluate $\int_{0}^{\frac{\pi}{2}} \frac{dx}{1 + \sin x}$

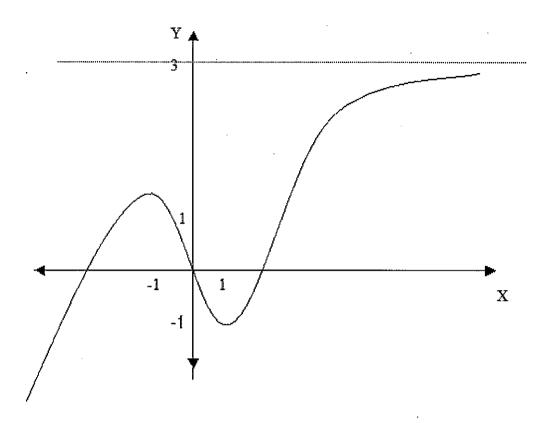
e) Find
$$\int \sqrt{x} \ln x dx$$

f) Evaluate
$$\int_{2}^{6} \frac{dx}{x\sqrt{2x-3}}$$

Question 2 (15 marks)

- a) (i) Find real numbers a and b such that $\sqrt{9-40i} = a+ib$
 - (ii) Hence find the solutions to $z^2 3z + 10i = 0$
- b) (i) Sketch the graph of |z-4i|=2
 - (ii) Hence find the greatest and least values of arg z 2
- c) If $\omega = \cos \frac{2k\pi}{5} + i \sin \frac{2k\pi}{5}$ where k is an integer and $\omega \neq 1$
 - (i) Show that $\omega^n + \omega^{-n} = 2\cos\frac{2nk\pi}{5}$
 - (ii) Show that $\omega^5 = 1$
 - (iii) Show that $1 + \omega + \omega^2 + \omega^3 + \omega^4 = 0$
 - (iv) Hence or otherwise show that $(\omega + \omega^{-1})^2 + (\omega^2 + \omega^{-2})^2 = 3$
 - (v) Deduce that $(\cos \frac{2k\pi}{5})^2 + (\cos \frac{4k\pi}{5})^2 = \frac{3}{4}$

Question 3 (15 Marks)



a) The graph of y = f(x) is shown above. It has a local maximum at x = -1 and a local minimum at x = 1 the curve asymptotes to y = 3. Draw neat sketches of the following.

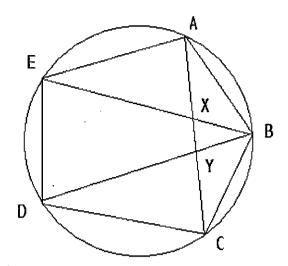
(i)
$$y = ln f(x)$$

(ii)
$$y = e^{f(x)}$$

(iii)
$$y = f'(x)$$

(iv)
$$y = f(\frac{1}{x})$$

Question 3 (continued)



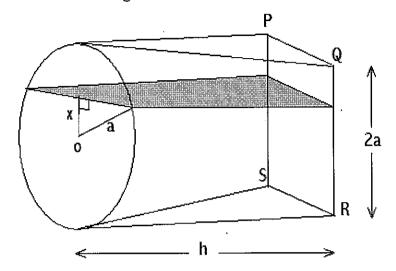
b) The pentagon ABCDE is inscribed inside the circle, with BA = BC. The diagonal AC meets the diagonals BE and BD at X and Y respectively.

(i) Show that
$$\angle BCA = \angle BEC$$

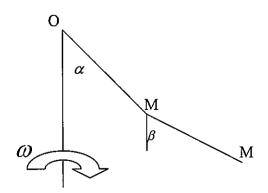
- c) The ellipse E has equation $\frac{x^2}{16} + \frac{y^2}{9} = 1$ The point $P(x_1, y_1)$ lies on the ellipse
 - (i) Find the equation of the tangent at P to E.
 - (ii) The chord of contact to the ellipse has equation $\frac{x_0x}{16} + \frac{y_0y}{9} = 1$ (there is no need to derive this). Show that if the chord passes through the focus, (x_0, y_0) lies on the directrix.

Question 4 (15 Marks)

a) The diagram below shows a solid of length h. It has a circular end of radius a units and the other end is the square PQRS of side 2a. Horizontal cross-sections parallel to the base of the solid are taken at x as marked on the diagram.



- (i) Find the area of the slice at x.
- (ii) Express the volume of the solid as an integral 1
- (iii) Find the volume of the solid in (ii) 3
- b) A particle hangs by a light inextensible string of length a from a fixed point O and a second particle of equal mass hangs from the first by an equal string. The whole system moves with with constant angular speed ω about the vertical through O, the upper and lower strings making constant angles α and β respectively with the vertical.



- (i) Resolve forces vertically and horizontally for both masses m
- (ii) Show that $\tan \beta = p(\sin \alpha + \sin \beta)$
- (iii) Show that $\tan \alpha = p(\sin \alpha + 0.5 \sin \beta)$ 2

Where
$$p = \frac{a\omega^2}{g}$$

Question 5 (15 Marks)

- a) Given the locus $\frac{x^2}{9-k} + \frac{y^2}{4-k} = 1$, with k < 4 Find:
 - (i) The eccentricity. 2
 - (ii) The coordinates of the foci.
 - (iii) The equation of the directrices.
- b) Given the locus $\frac{x^2}{9-k} + \frac{y^2}{4-k} = 1$, with 4 < k < 9 Find:
 - (i) The eccentricity. 2
 - (ii) The coordinates of the foci.
 - (iii) The equation of the directrices.
- c) A vehicle rounds a banked track of radius 600m, inclined at an angle of θ to the horizontal. When the car travels at a speed of 10m/s the friction force up the track is equal to the friction force down the track when the vehicle travels at 20m/s. Gravity g = 9.8m/s.
 - (i) Resolve the forces in mutually perpendicular directions at 10m/s.
 - (ii) Resolve the forces in mutually perpendicular directions at 20m/s.
 - (iii) Find the angle θ at which the track is banked.
 - (iv) Find the speed the car travels to experience no friction force.

Hint the mutually perpendicular directions may be parallel and perpendicular to the track or perpendicular and horizontal.

Question 6. (15 Marks)

a) If α , β and γ are the roots of the cubic equation $x^3 - px^2 + qx - r = 0$. Find in terms of p, q and r

(i)
$$\alpha + \beta + \gamma$$

(ii)
$$\alpha^2 + \beta^2 + \gamma^2$$

(iii)
$$\alpha^3 + \beta^3 + \gamma^3$$

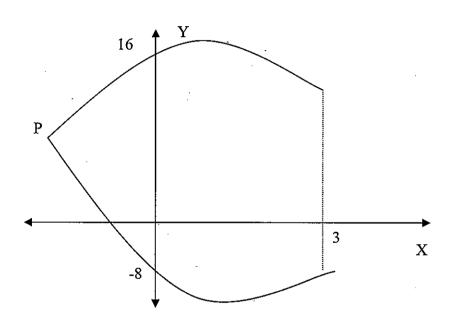
(iv) Hence find a solution to the set of equations

$$X + Y + Z = -1$$

$$X^2 + Y^2 + Z^2 = 5$$

$$X^3 + Y^3 + Z^3 = -7$$

b)



The region bounded by the curves $y=16-x^2$ and $y=x^2-2x-8$ and the line x=3 is rotated about the line x=3. The point P is the point of intersection of the curves $y=16-x^2$ and $y=x^2-2x-8$ in the second quadrant.

(i) Find the coordinates of P.

1

(ii) Use the method of cylindrical shells to express the volume of the resulting solid of revolution as an integral

3

(iii) Evaluate the integral in (ii)

2

4

1

Question 7 (15 Marks)

a) The sequence of numbers $u_1, u_2, u_3, u_4, \dots u_n$ is defined as follows

$$u_1 = 1$$
, $u_2 = 1$ and $u_n = u_{n-1} + u_{n-2}$ for $n > 3$

Prove that for every positive integer n, $u_n = \frac{1}{\sqrt{5}}(\alpha^n - \beta^n)$

Where α and β ($\alpha > \beta$) are the roots of $x^2 - x - 1 = 0$

(Hint in step 1. prove true for n = 1 and n = 2)

- b) (i) Show that $\int_{0}^{a} f(x)dx = \int_{0}^{a} f(a-x)dx$ 2
 - (ii) Hence find the value of $\int_{0}^{\frac{\pi}{2}} \frac{\sin^{3} x}{\sin x + \cos x} dx$
- c) If n is a positive integer prove $\left(\frac{1+i\tan\theta}{1-i\tan\theta}\right)^n = \frac{1+i\tan n\theta}{1-i\tan n\theta}$
- d) The ellipse E has equation $2y^2 3xy + 2x^2 = 14$
 - (i) Using implicit differentiation or otherwise find an expression for the first derivative.
 - (ii) Find the coordinates of any turning points of E 2
 - (iii) Find the coordinates of any vertical tangents to E 2

Question 8 (15 Marks)

a) (i) Prove that
$$\frac{1+\sin\theta+i\cos\theta}{1+\sin\theta-i\cos\theta} = \sin\theta+i\cos\theta$$
 2

(ii) Hence find the smallest value of θ such that

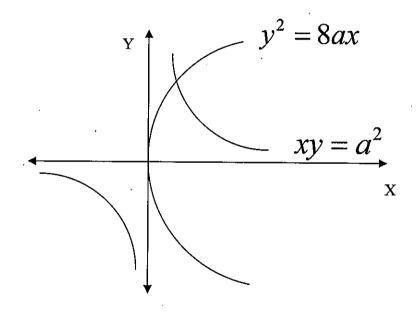
$$(1+\sin\theta+i\cos\theta)^5+i(1+\sin\theta-i\cos\theta)^5=0$$

b) Let
$$I_n = \int_0^1 x(1-x)^n dx$$
 $n = 0,1,2,3...$

(i) Show that
$$I_n = \frac{n}{n+2}I_{n-1}$$

(ii) Show that
$$I_n = \frac{1}{2(^{n+2}C_2)}$$

c)



Given the hyperbola $xy = a^2$

(H)

and the parabola

$$y^2 = 8ax$$

(P)

(i) Find the coordinates of A the point of intersection of H and P

1

(ii) If x + y + k = 0 is the common tangent to H and P, find k

2

(iii) Find the points of contact B on P and C on H

2

(iv) Show that AB is a tangent to H at A

1