FRENSHAM

YEAR 12 TRIAL HSC EXAMINATION 2011 MATHEMATICS EXTENSION 2

Time Allowed 3 hours +5 minutes reading time

INSTRUCTIONS:

- All questions may be attempted
- All questions are of equal value
- Show all necessary working. Marks may be deducted for careless or badly arranged work
- Start each question on a new page
- Board of Studies approved calculators may be used

Student name / number Marks **Ouestion 1** Begin a new booklet (a) Find $\int \frac{x^2+1}{\sqrt{x}} dx$. 2 (b) Find $\int \frac{\cos^3 x}{\sin^2 x} dx$ using the substitution $u = \sin x$. 3 Evaluate $\int_{0}^{\frac{1}{2}\log_{e}3} \frac{1}{e^{x} + e^{-x}} dx$ using the substitution $u = e^{x}$. 3 Evaluate in simplest exact form $\int_{-\infty}^{e} x^{3} \log_{e} x \ dx$. (d) 3 (e)(i) Using the substitution $t = \tan \frac{x}{2}$, show that 2 $\int_0^{\frac{\pi}{2}} \frac{1}{5 + 5\sin x - 3\cos x} \ dx = \int_0^1 \frac{1}{4t^2 + 5t + 1} \ dt \ .$

2

(ii) Hence evaluate in simplest exact form $\int_0^{\frac{\pi}{2}} \frac{1}{5+5\sin x - 3\cos x} dx$.

Question 2

Begin a new booklet

Marks

(a) If $z_1 = 2i$ and $z_2 = 1 + 3i$, express in the form a + ib (where a and b are real)

(i) $z_1 + \overline{z}_2$.

1

(ii) $z_1 z_2$.

1

(iii) $\frac{1}{z_2}$.

1

(b)(i) Express $z = 1 + i\sqrt{3}$ in modulus/argument form.

2

(ii) Hence show that $z^{10} + 512 z = 0$.

2

(c)(i) On an Argand diagram sketch the locus of the point P representing z such that $\left|z - (\sqrt{3} + i)\right| = 1$.

2

(ii) Find the set of possible values of |z| and the set of possible principal values of $\arg z$.

2

(d)

.

In the Argand diagram above, vectors \overrightarrow{OA} , \overrightarrow{OB} and \overrightarrow{OC} represent the complex numbers z_1 , z_2 and z_1+z_2 respectively, where $z_1=\cos\theta+i\sin\theta$ and $z_1+z_2=(1+i)\,z_1$.

(i) Express z_2 in terms of z_1 and show that OACB is a square.

2

(ii) Show that $\left(z_1 + z_2\right) \overline{\left(z_1 - z_2\right)} = 2i$.

2

Marks

2

Question 3

Begin a new booklet

(a) The diagram shows the graph of the curve y = f(x). On separate diagrams, sketch the graphs of the curves listed below, showing clearly intercepts on the coordinate axes and the equations of any asymptotes:

- (i) y = |f(x)|. 1
- (ii) y = f(|x|).
- (iii) $y = f(x^2)$.
- (iv) $y = \frac{1}{f(x)}$.
- (b) P(x) is an even polynomial. Show that when P(x) is divided by $\left(x^2 a^2\right)$, where $a \neq 0$, the remainder is independent of x.
- (c) The zeroes of $x^3 + px^2 + qx + r$ are α , β and γ (where p, q and r are real numbers).

(i) Find
$$\alpha\beta + \alpha\gamma + \beta\gamma$$
.

(ii) Find
$$\alpha^2 + \beta^2 + \gamma^2$$
.

- (iii) Find a cubic polynomial with integer coefficients whose zeroes are 2α , 2β and 2γ .
- (d) If p > 0, and q > 0, and p + q = 1, show that $\frac{1}{p} + \frac{1}{q} \ge 4$.

Marks

Question 4

Begin a new booklet

(a)

The region bounded by the curve $y = \frac{x}{x^2 + 1}$ and the x-axis between x = 0 and x = 1 is rotated through one complete revolution about the y-axis.

- (i) Use the method of cylindrical shells to show that the volume V of the solid formed is given by $V = 2\pi \int_0^1 \frac{x^2}{x^2 + 1} dx$
- (ii) Hence find the value of V in simplest exact form.

(b)

The line y = x is tangent to the curve $y = e^{kx}$ (where k > 0) at the point $P(x_1, y_1)$ on the curve. By considering the gradient of OP show that $k = \frac{1}{e}$.

Question 4 continued

(c) The Hyperbola H has the equation $\frac{x^2}{25} - \frac{y^2}{9} = 1$.

(i) Find the eccentricity of H. 1 (ii) Find the co-ordinates of the foci of H. 1 Draw a neat one third of a page sketch of H. (iii) 2 (iv) The line x = 6 cuts H at A and B. Find the coordinates of A and B if A is in the first quadrant. 2 (v) Derive the equation of the tangent to H at A. 2

Student name / number	
	Marks

Question 5

Begin a new booklet

- (a) A lifebelt mould is made by rotating the circle $x^2 + y^2 = 64$ Through one complete revolution about the line x = 28, where All the measurements are in centimetres.
 - (i) Use the method of slicing to show that the volume, $V cm^3$ of the lifebelt is given by $V = 112\pi \int_{-8}^{8} \sqrt{64 y^2 dy}.$
 - (ii) Find the exact volume of the lifebelt. 2
- (b) (i) Show that the tangent to the ellipse $\frac{x^2}{12} + \frac{y^2}{4} = 1$ at the point **8** P(3, 1) has equation x + y = 4.
 - ii) If this tangent cuts the directrix in the fourth quadrant at the point T, and S is the corresponding focus, show that SP and ST are perpendicular.

Student name / number Marks Begin a new booklet Question 6 Show that $tan(A + \frac{\pi}{2}) = -\cot A$. (a) 2 Use the method of Mathematical Induction, and the result in (i), to show that 4 $\tan \left\{ (2n+1) \frac{\pi}{4} \right\} = (-1)^n$ for all integers $n \ge 1$. Given the equation $y^2 + xy + x^2 = 1$ (b) i) Make *y* the subject. 2 Hence, or otherwise, find $\frac{dy}{dx}$ ii) 2 Given that $z = \cos \theta + i \sin \theta$ and $z^n + z^{-n} = 2 \cos n \theta$, show that (c) 4 $\cos^4 \theta = \frac{1}{8} \cos 4\theta + \frac{1}{2} \cos 2\theta + \frac{3}{8}$ Show that $\cos\left(x + \frac{\pi}{2}\right) = -\sin x$. 1

Marks

Question 7

Begin a new booklet

(a)(i) Show that
$$\int_{0}^{a} f(x) dx = \int_{0}^{a} f(a-x) dx$$
.

(ii) Hence evaluate
$$\int_0^{\frac{\pi}{2}} \frac{\sin^2 x}{\sqrt{1 + (x - \frac{\pi}{4})^2}} dx$$
.

(b) Let
$$I_n = \int_0^1 (1 - x^r)^n dx$$
, where $r > 0$, for $n = 0, 1, 2, ...$

(i) Show that
$$I_n = \frac{nr}{nr+1} I_{n-1}$$
 for $n = 1, 2, 3, ...$

(ii) Hence evaluate
$$\int_0^1 (1-x^{\frac{1}{2}})^3 dx$$
.

(c)

ABCD is a quadrilateral in which $\angle ABC = \angle ADC = \frac{\pi}{2}$, $\angle CAB = \alpha$, $\angle CAD = \beta$ and AC = 1.

(i) Show that
$$\angle BDC = \alpha$$
.

2

(ii) Hence show that
$$BD = \sin(\alpha + \beta)$$
.

3

Student name / number Marks Begin a new booklet **Question 8** Write the general solution to $\tan 4\theta = 1$ a) i) 1 ii) Use De Moivre's Theorem and the binomial theorem to 3 show that $\tan 4\theta = \frac{4 \tan \theta - 4 \tan^3 \theta}{1 - 6 \tan^2 \theta + \tan^4 \theta}$ Hence find the roots of $x^4 + 4x^3 - 6x^2 - 4x + 1 = 0$ in iii) 3 the form $x = \tan \theta$. iv) Hence prove that: 2 $\tan^2\frac{\pi}{16} + \tan^2\frac{3\pi}{16} + \tan^2\frac{5\pi}{16} + \tan^2\frac{7\pi}{16} = 28$ (Hint: Let the roots be α, β, γ and δ). 1 (b) (i) Use a diagram to explain why $\int_{0}^{b} \sin x \, dx = \lim_{n \to \infty} \left(\sin \frac{b}{n} + \sin \frac{2b}{n} + \dots + \sin \frac{nb}{n} \right) \cdot \frac{b}{n}$ for $b = \frac{\pi}{2}$. Given that $2\sin\theta\sin\alpha = \cos(\theta - \alpha) - \cos(\theta + \alpha)$, show that (ii)2

$$\sum_{k=1}^{n} \sin\left(\frac{kb}{n}\right) = \frac{\cos\left(\frac{b}{2n}\right) - \cos\left(b + \frac{b}{2n}\right)}{2\sin\left(\frac{b}{2n}\right)}$$

(iii) Hence show that $\int_{0}^{b} \sin x dx = 1 - \cos b.$ 3

END OF EXAM

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln(x + \sqrt{x^2 + a^2}), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln(x + \sqrt{x^2 + a^2})$$

NOTE: $\ln x = \log_e x$, x > 0