

		\bigcap
Name:	Jason	Chiem

Teacher: Mr Hayls

Class:

FORT STREET HIGH SCHOOL

2008

HIGHER SCHOOL CERTIFICATE COURSE

ASSESSMENT TASK 4: TRIAL HSC

Mathematics Extension 2

TIME ALLOWED: 3 HOURS

(PLUS 5 MINUTES READING TIME)

Outcomes Assessed	Questions	Marks
Determines the important features of graphs of a wide variety of	4, 5	
functions, including conic sections		
Applies appropriate algebraic techniques to complex numbers and	1, 6	
polynomials		
Applies further techniques of integration, such as slicing and	2, 7	
cylindrical shells, integration by parts and recurrence formulae, to		
problems .		
Synthesises mathematical solutions to harder problems and	3, 8	
communicates them in an appropriate form		

Question	1	2	3	4	5	6	7	8	Total	%
Marks	14/15	3/15	14/15	15715	13/15	N/15	17/15	îl/15	/120	

Directions to candidates:

- Attempt all questions
- The marks allocated for each question are indicated
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Board approved calculators may be used
- Each new question is to be started on a new page

- a) Find the modulus and argument of the complex numbers w and z 4

 Where $z = \frac{1+i}{1-i}$ and $w = \frac{\sqrt{2}}{1-i}$
- b) Plot the points z, w, z+w from part a) on an accurate Argand diagram and hence find the exact value of $\tan(\frac{3\pi}{8})$.
- c) The vertices of a square taken anticlockwise are P, Q, R and S. If the points P and Q are represented by the complex numbers $z_P=-1+4i$ and $z_Q=-3$ Find the other corners of the square R and S and its centre in the form a+ib .
- d) Determine the greatest and least values of arg z, when |z-8i-5|=6, answer to the nearest minute.
- e) In the Argand plane
 - (i) shade: $|z+3|+|z-3| \le 10$ and $3 \le |z-3+2i| \le 4$
 - (ii) sketch: $arg(z-5) arg(z+3) = \frac{\pi}{4}$

Question 2 (15 Marks)

Marks

a) Show $\int_{1}^{2} \frac{1}{x^{2}} \ln(x+1) dx = \frac{1}{2} \ln \frac{4}{3} + \int_{1}^{2} \frac{1}{x(x+1)} dx$

4

and hence evaluate

 $\int_{1}^{2} \frac{1}{x^{2}} \ln(x+1) dx$ leaving answer in simplest exact form.

b) Simplify $\frac{1}{1-\sin x} - \frac{1}{1+\sin x}$ and

3

hence find

$$\int \frac{1}{1-\sin x} - \frac{1}{1+\sin x} dx$$

- c) Find $\int \frac{1}{\sqrt{16-25x^2}} dx$
- d) Evaluate $\int_{0}^{\frac{\pi}{4}} \sqrt{1 + \cos 4x} \ dx$ leave answer in exact form.
- e) Find $\int \frac{-2x+4}{(x^2+1)(x-1)^2} dx$

Question 3 (15 Marks)

Marks

a) Let $t = \tan \frac{\theta}{2}$

(i) Find expressions for $\sin \frac{\theta}{2}$ and $\cos \frac{\theta}{2}$ in terms of t

2

(ii) Hence show $\sin \theta = \frac{2t}{1+t^2}$ and $\cos \theta = \frac{1-t^2}{1+t^2}$

2

(iii) Show that $\frac{dt}{d\theta} = \frac{1}{2}(1+t^2)$

1 .

(iv) Hence evaluate $\int_{0}^{\frac{\pi}{2}} \frac{d\theta}{5 + 3\sin\theta + 4\cos\theta}$

4

b) If $I_n = \int x^n (2x+c)^{-\frac{1}{2}} dx$, show that

(i) $I_n = \frac{x^n (2x+c)^{1/2}}{2n+1} - \frac{ncI_{n-1}}{2n+1}$

3

(ii) Hence evaluate $\int_{0}^{1} x^{3} (2x+1)^{-1/2} dx$

3

Question 4 (15 Marks)

Marks

a) The point $P(a\cos\theta,b\sin\theta)$ lies on the ellipse with equation

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 with a>b and eccentricity e.

The foci of the ellipse are S and S' and M, M' are the feet of the perpendiculars from P onto the directrices corresponding to S and S'.

The Normal to the ellipse at \it{P} meets the major axis of the ellipse At \it{H} .

- (i) Draw a sketch to illustrate the above information.
- 2

(ii) Prove SP + S'P = 2a.

1

(iii) Show that the coordinates of H are $\left(\frac{\left(a^2-b^2\right)\cos\theta}{a}, 0\right)$.

3

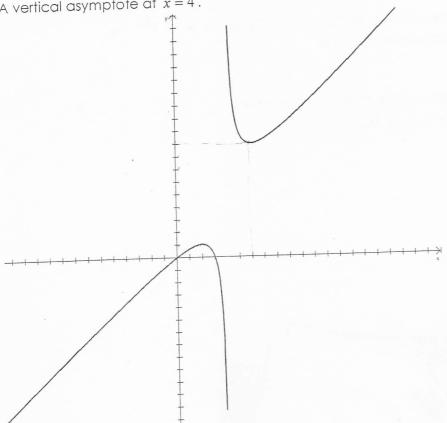
(iv) Show that $\frac{HS}{HS'} = \frac{1 - e \cos \theta}{1 + e \cos \theta} = \frac{PS}{PS'}$

2

3

- b) Show that the locus of the point $Q\left\{\frac{a}{2}(t+\frac{1}{t}), \frac{b}{2}(t-\frac{1}{t})\right\}$ for varying values of t is the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$.
 - (I) Show the gradient of the tangent at Q is $\frac{b}{a} \left(\frac{t^2 + 1}{t^2 1} \right)$
 - (II) Derive the equation of the tangent at Q

a) The diagram shows the graph of y = f(x). The graph has A vertical asymptote at x = 4.



Draw separate one third page sketches of the graphs of the following

(i)
$$y = \sqrt{f(x)}$$

(ii)
$$y = \frac{1}{f(x)}$$

(iii)
$$y^2 = f(x)$$

(iv)
$$y = \cos(f(x))$$

This question continues on the next page

Question 5 continued

Marks

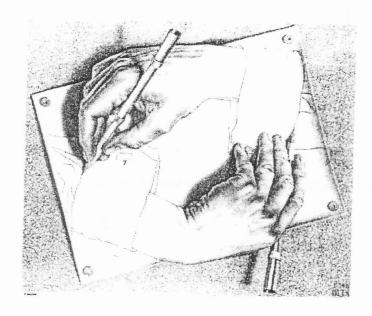
b) Sketch the graph of $y = x + \frac{x}{x^2 - 25}$ clearly indicating any asymptotes and any points where the graph meets the axes

4

c) Find the equation of the normal to the curve $x^3y - 3xy^2 + 2y^3 = 6$ at (1,2)

3

End of Question 5



2

a) If $\frac{p}{q}$ is a zero of the polynomial (p and q are relatively prime)

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 , a_n \neq 0$$

and $a_0, a_1, a_2, a_3, ...a_n$ are integers,

- (i) Show q/a_n (q divides a_n) and p/a_0 (p divides a_0)
- (ii) Given $P(x) = x^3 4x^2 3x 10$ has a rational root, factor P(x) over the complex field.
- b) Show that if the polynomial P(x) has a root of α multiplicity m, then P'(x) has a root of multiplicity m-1.

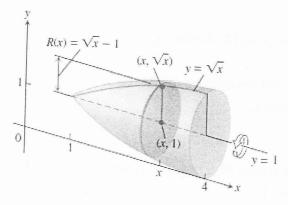
Given that $P(x) = x^4 + x^3 - 3x^2 - 5x - 2$ has a three fold root, Find all the roots of P(x).

- c) If α, β, δ are the roots of $p(x) = 2x^3 4x^2 3x 1$ Find the values of $\alpha^3 + \beta^3 + \delta^3$.
- d) Let $f(t) = t^3 + ct + d$ where c and d are constants Suppose that the equation f(t) = 0 has three distinct real roots t_1, t_2 , and t_3 .
 - (i) Show that $t_1^2 + t_2^2 + t_3^2 = -2c$
 - (ii) If the function y = f(t) has two turning points at t = u and t = v and $f(u) \times f(v) < 0$ Show that $27d^2 + 4c^3 < 0$.

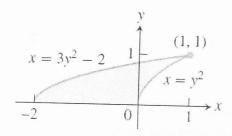
Question 7 (15 Marks)

Marks

a) Find the volume of the solid generated by revolving the region bounded By $y=\sqrt{x}$ and the lines $x=1,\ x=4$ about the line y=1. Use the slicing method.



b) The region shown here is revolved about the x-axis to generate a solid.



Use the method of cylindrical shells to find the volume

c) The circle $(x-6)^2 + (y-4)^2 = 4$ is rotated around the line x=2.

Calculate the exact volume generated.

This question is continued on the next page

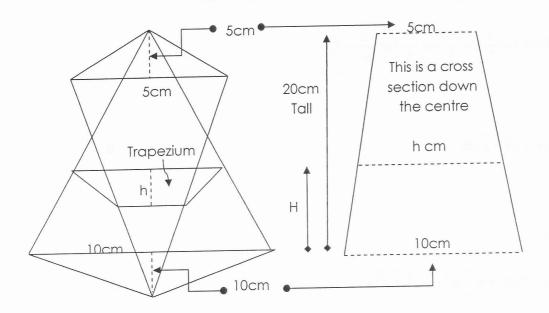
Question 7 continued

Marks

d) A Saltshaker 20 cm tall is made with isosceles triangular ends and a cross section which is an isosceles trapezium.

Note top and bottom triangles have bases and perpendicular heights equal.

_



The Trapezium is located H cm above the base, show using similarity

that the trapezium has an area of $A = 50 - \frac{10H}{4} + \frac{H^2}{32}$ cm²

Hence find the volume of the saltshaker to the nearest millilitre.

arest millilitre.

(0

20-H = 3 b = 20-H a) Use De Moivre's theorem to express $\cos 5\theta$, $\sin 5\theta$ in terms of $\sin \theta$ and $\cos \theta$.

5

Hence express $\tan 5\theta$ as a rational function of t where $t = \tan \theta$.

Deduce that $\tan \frac{\pi}{5} \tan \frac{2\pi}{5} \tan \frac{3\pi}{5} \tan \frac{4\pi}{5} = 5$.

b) Find $\int \ln(\sqrt{x} + \sqrt{1+x}) dx$

3

- c) If $y = \frac{1}{2}(e^{ax} e^{-ax})$
 - (i) Show that $x = \frac{1}{a} \ln(y + \sqrt{1 + y^2})$

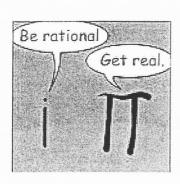
2

(ii) Show that $\left(\frac{dy}{dx}\right)^2 - a^2y^2 = a^2$

2

(iii) Hence deduce that $\int \frac{dy}{\sqrt{1+y^2}} = \log_e(y + \sqrt{1+y^2}) + c$

3



End of Examination