QUESTION 1. [15 Marks]

(a) (i) Find $\int \frac{\sqrt{1-x^2}}{\sqrt{1-x}} dx$

2

(ii) Find $\int x \cos x \, dx$

2

(b) Evaluate in simplest exact form $\int_0^4 \frac{8 - 2x}{(1 + x)(4 + x^2)} dx$

- 3
- (c) Use the substitution $t = \tan \frac{x}{2}$ to evaluate $\int_0^{\frac{x}{2}} \frac{2}{5 + 3\cos x} dx$, giving the answer correct to 2 significant figures.
- 3

(d) (i) Use the substitution $u = \frac{\pi}{4} - x$ to show that

3

- $\int_{0}^{\frac{\pi}{4}} \ln\left(1 + \tan x\right) dx = \int_{0}^{\frac{\pi}{4}} \ln\left(\frac{2}{1 + \tan x}\right) dx$
- (ii) Hence find the exact value of $\int_0^{\frac{\pi}{4}} \ln(1 + \tan x) dx$

2

QUESTION 2. [15 Marks] [START A NEW PAGE]

- Solve the equation $z^2 + 2\overline{z} + 6 = 0$, giving the solutions in the form z = a + ibwhere a and b are real.

- $z_1 = 2\left(\cos\frac{\pi}{12} + i\sin\frac{\pi}{12}\right)$ and $z_2 = 2i$ are two complex numbers.
 - On an Argand diagram draw the vectors \overrightarrow{OP} and \overrightarrow{OQ} to represent z_1 and z_2 2 (i) respectively. Also draw the vectors $z_1 + z_2$ and $z_2 - z_1$.
 - 2 Find the exact values of $\arg\left(z_1+z_2\right)$ and $\arg\left(z_2-z_1\right)$. (ii)
 - 2 Express $z = 2\sqrt{3} - 2i$ in modulus-argument form. (i) (c)
 - Hence find the values of $z^{\frac{1}{2}}$ in modulus-argument form. 2 (ii)
 - The point P representing the complex number z moves in an Argand diagram so that (d) |z| = |z - 4 + 2i|.
 - 2 Show that the locus of P has equation 2x - y - 5 = 0. (i)
 - Hence find the minimum value of |z|. (ii) 1

QUESTION 3. [15 Marks] [START A NEW PAGE]

(a)

The diagram below shows the graph of the function $f(x) = xe^{-\frac{1}{2}x^2}$.

- Find the coordinates of the stationary points A and B. (i)
- 2

2

- Find the gradient of the tangent to the curve at the origin O. Hence find the set of (ii) values of the real number k such that the equation f(x) = kx has three real roots.
- On separate diagrams sketch the following graphs, showing the coordinates of any (iii) stationary points:

$$(\alpha) y = |f(x)|$$

$$(\beta) y = \{f(x)\}^2$$

$$(\gamma)y^2 = f(x)$$

(b) (i) Show that
$$\frac{d}{dx} \left\{ \tan^{-1} e^x + \tan^{-1} e^{-x} \right\} = 0$$
.

(ii) Hence show that
$$\tan^{-1} e^x + \tan^{-1} e^{-x} = \frac{\pi}{2}$$
.

(iii) Hence deduce that
$$f(x) = \tan^{-1} e^x - \frac{\pi}{4}$$
 is an odd function.

(iv) Sketch the graph of
$$y = \tan^{-1} e^x - \frac{\pi}{4}$$
 showing any asymptotes.

QUESTION 4. [15 Marks] [START A NEW PAGE]

The parabola $x^2 = 4ay$ (a > 0) touches the hyperbola $x^2 - \frac{y^2}{3} = 1$ at the points P and Q.

- (i) Copy the diagram showing clearly for the hyperbola the intercepts made on the x-axis, 4 the coordinates of the foci, the directrices with their equations and the equations of the asymptotes.
- (ii) Find the value of a and the coordinates of P and Q.

3

- (b) $P\left(cp,\frac{c}{p}\right)$ and $Q\left(cq,\frac{c}{q}\right)$ are two variable points on the rectangular hyperbola $xy=c^2$ which move so that the points P, Q and $S\left(c\sqrt{2},c\sqrt{2}\right)$ are always collinear. The tangents to the hyperbola at P and Q intersect at the point R.
 - (i) Show that the tangent to the hyperbola $xy = c^2$ at the point $T\left(ct, \frac{c}{t}\right)$ has equation 2 $x + t^2y = 2ct$.
 - (ii) Hence show that R has coordinates $\left(\frac{2cpq}{p+q}, \frac{2c}{p+q}\right)$.
 - (iii) Show that $p+q=\sqrt{2}(1+pq)$.

(iv) Hence find the equation of the locus of R.

QUESTION 5. [15 Marks] [START A NEW PAGE]

(a)

The curves y = x(k-x) and $y = \frac{k^2}{x}$, where k > 0, touch at the point P and intersect at the point Q.

4

- (i) Deduce that the equation $x^3 kx^2 + k^2 = 0$ has real roots α , α , β for some $\alpha \neq \beta$. 2
- (ii) Find the exact values of k, α and β .

(b) (i) Show that
$$1 - (\cos n\theta + i \sin n\theta) = -2i \sin \frac{n\theta}{2} \left(\cos \frac{n\theta}{2} + i \sin \frac{n\theta}{2} \right)$$
.

(ii) Find the sum of the series $z + z^2 + z^3 + ... + z^n$ for $z \ne 1$.

(iii) If
$$z = \cos \theta + i \sin \theta$$
, show that for $\sin \frac{\theta}{2} \neq 0$,
$$\cos \theta + \cos 2\theta + \cos 3\theta + ... + \cos n\theta = \frac{\sin \frac{n\theta}{2} \cos \frac{(n+1)\theta}{2}}{\sin \frac{\theta}{2}}.$$

(iv) Hence solve the equation $\cos \theta + \cos 2\theta + \cos 3\theta = 0$, $0 \le \theta \le 2\pi$.

QUESTION 6. [15 Marks] [START A NEW PAGE]

On the same axes draw the curves y = x + 1 and $y = (x - 1)^2$ (i) (a)

- 2
- The region enclosed by the curves is rotated about the y axis. Use the method of cylindrical shells to find the volume of the solid formed. (ii)
- 3

5

- Consider the region bounded by the curve $y = \sqrt{x}$ the x axis and the line x = 1(b)
 - Use cylindrical shells with strips parallel to the y axis to find the volume of the solid formed when this region is rotated about the y axis.
 - A solid is formed when the area bounded by the curve, $y = \frac{1}{2}\sqrt{x-2}$, the x axis and the line (c) x = 6 is rotated around the line x = 6.
 - By taking slices perpendicular to the line x = 6, find the volume of the solid formed. 5

QUESTION 7. [15 Marks] [START A NEW PAGE]

(a)

Triangles ABC and ADE are each right angled at A, and $ABC ||| \Delta ADE$. BD produced meets CE at F.

- (i) Copy the diagram.
- (ii) Show that $\triangle BDA ||| \triangle CEA$.

3

(iii) Hence show that show that ADFE is a cyclic quadrilateral.

2

(iv) Deduce that BF is perpendicular to CE.

2

- (b) A sequence T_n is given by $T_1 = 1$ and $T_n = \sqrt{3 + 2T_{n-1}}$ for $n = 2, 3, 4, \ldots$
 - (i) Use Mathematical Induction to show that $T_n < 3$ for all positive integers $n \ge 1$.

3

(ii) Hence show that $T_{n+1} > T_n$ for all positive integers $n \ge 1$.

2

(iii) Show that $T_{n+2} - T_{n+1} = \frac{T_{n+2}^2 - T_{n+1}^2}{T_{n+2} + T_{n+1}}$. Hence show that $T_{n+2} - T_{n+1} < T_{n+1} - T_n$ for all positive integers $n \ge 1$.

QUESTION 8. [15 Marks] [START A NEW PAGE]

- (a) Consider the function $f(x) = \frac{(n+1+x)^{n+1}}{(n+x)^n}$, $x \ge 0$ where $n \ge 1$ is a fixed positive integer.
 - (i) Show that for x > 0, f(x) is an increasing function of x.
 - (ii) Hence show that $\left(1 + \frac{x}{n+1}\right)^{n+1} > \left(1 + \frac{x}{n}\right)^n$.
 - (iii) Deduce that $(n+2)^{n+1} n^n > (n+1)^{2n+1}$.
 - (b) 6 envelopes are arranged in a straight line and numbered 1 to 6. Find the number of ways in which 6 different letters can be arranged one in each envelope
 - (i) if a given letter A is to be envelope 2.
 - (ii) if letter A is in neither envelope 1 nor envelope 2, and letter B is not in envelope 2.
 - (iii) if letter A is in neither envelope 1 and letter B is not in envelope 2.
 - (c) (i) For positive real numbers a, b show that $a^2 + b^2 \ge 2ab$.
 - (ii) Hence show for positive real numbers a, b, c, d $3(a^2 + b^2 + c^2 + d^2) \ge 2(ab + ac + ad + bc + bd + cd)$
 - (iii) Hence show that if a, b, c, d are positive real numbers such that a+b+c+d=1 then $ab+ac+ad+bc+bd+cd \le \frac{3}{8}$.