BAULKHAM HILLS HIGH SCHOOL YEAR 12 HALF YEARLY EXAMINATION

2000

MATHEMATICS 4 UNIT

Time allowed – three hours (Plus 5 minutes reading time)

DIRECTIONS TO CANDIDATES

- * Begin each Question on a fresh page.
- * Show all working.
- * Silent calculators may be used.

QUESTION 1:

(a) Simplify
$$\frac{6-4i}{2i}$$

- (b) If z = -1 + i find
 - (i) |z|
- (ii) $\arg z$
- (iii) z^6 in the form of x + iy
- (c) If z = 3 + 2i, w = -1 + i, find
 - (i) $\frac{2}{i\nu}$
- (ii) $Im(\bar{z}w)$
- (d) Sketch the region satisfied by

$$|z-3+i| \le 5$$
 and $|z+1| \le |z-1|$

OP QR is a rhombus.

R represents $1 + \sqrt{3i}$.

Find the complex number represented by Q.

QUESTION 2:

- (a) Find the two square roots of -2iHence solve the equation $z^2 + (1-3i)z - (2+i) = 0$.
- (b) Solve the equation $3z\bar{z} + 2(z \bar{z}) = 39 + 12i$
- (c) If w is a complex cube root of unity, show that $1 + w + w^2 = 0$ and find the value of $(1 + 2w + 3w^2)(1 + 2w^2 + 3w)$.
- (d) If z = a + ib is a complex number such that b is non-zero, and $z + \frac{1}{z}$ is purely real, find |z|.

QUESTION 3:

- (a)
- Find the coordinates of the point on the curve $x^2y + xy^2 = 16$ at which the tangent is parallel to the x axis.
- (b) Prove by mathematical induction that for $n \ge 1$ $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$
- (c) The complex number z satisfies the equation $(z \bar{z})^2 + 8(z + \bar{z}) = 16$. Show that the locus of z is a parabola and state the vertex and focus.
- (d) Sketch the locus of z if $arg(z+2) = \frac{\pi}{4} + arg(z-2i)$.

QUESTION 4:

- (a) (i) P is any point on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and S and S^1 are the foci. Prove that $PS + PS^1 = 2a$
 - (ii) Hence find the equation of the locus of the complex number z which satisfies |z-3i|+|z+3i|=12.
 - (b) Derive the equation of the tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at the $(a\cos\theta, b\sin\theta)$.
 - (ii) Show that this tangent cuts the x axis at $\left(\frac{a}{\cos\theta},0\right)$.
 - (iii) Hence find the coordinates of the point (s) on $\frac{x^2}{3} + \frac{y^2}{4} = 1$ whose tangent passes through (2, 0).
 - (iv) Find the eccentricity of the ellipse $\frac{x^2}{3} + \frac{y^2}{4} = 1$ and the coordinates of the foci.

- (a) Draw a large neat sketch of the hyperbola $\frac{x^2}{25} \frac{y^2}{16} = 1$ labelling clearly the asymptotes, the foci, the directrices.
- (b) Find the possible values of k if $\frac{x^2}{12-k} + \frac{y^2}{k+4} = 1$ represents a hyperbola
- (c) $P(a \sec \theta, b \tan \theta)$ is any point on the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$. Assume the equation of the normal at P is given by $a x \tan \theta + b y \sec \theta = (a^2 + b^2) \sec \theta \tan \theta$.

 A line through P parallel to the y axis meets an asymptote at Q and the x axis at N. The normal at P meets the x axis at R.
 - (i) Find the coordinates of Q, N, R.
 - (ii) Show that QR is perpendicular to the asymptote.
 - (iii) Show that $OR = e^2 ON$ where e is the eccentricity.

- (a) The point $T\left(4t, \frac{4}{t}\right)$ lies on the hyperbola x y = 16. The tangent at T meets the x axis at P and y axis at Q. The normal at T meets the line y = x at R.
 - (i) Show that the tangent at T has equation $x + t^2y = 8t$.
 - (ii) Find the coordinates of P and Q.
 - (iii) Write down the equation of the normal at T (there is no need to simplify).
 - (iv) Show that the x coordinates of R is $x = \frac{4}{t}(t^2 + 1)$.
 - (v) Show that TQ = TP = TR = OT.
 - (vi) What can you deduce about the points O, P, R, Q?

QUESTION 7:

(a) If
$$y = \log_e \left(x + \sqrt{x^2 + 9} \right)$$
, Show that $\frac{dy}{dx} = \frac{1}{\sqrt{x^2 + 9}}$

Hence find $\int \frac{1}{\sqrt{x^2 + 9}} dx$

3

3x + 6x = 180x = 20

Find the value of x giving reasons.

(c) Given the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$

Show that the area enclosed by the ellipse is given by $A = \frac{8}{3} \int_{0}^{3} \sqrt{9 - x^2} dx$. Use the substitution $x = 3\sin\theta$ to evaluate this area.

QUESTION 8:

(a) Prove that $\cos ec\theta - \cot\theta = \tan\frac{\theta}{2}$.

Hence solve the equation for $0 \le x \le 2\pi$.

$$\sqrt{3}\cos ec 2x = \sqrt{3}\cot 2x - 1$$

- (b) (i) Show that $\sin(A+B) \sin(A-B) = 2\cos A \sin B$.
 - (ii) Show that $2\sin x(\cos 2x + \cos 4x + \cos 6x) = \sin 7x \sin x$.
 - (iii) Deduce that $\cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7} = -\frac{1}{2}$.
- (c) If $p = \log_q r$, $q = \log_r p$, $r = \log_p q$ show that p q r = 1.

(i) Use the sine rule to show that

$$\frac{AB}{BC} = \frac{AP}{PC}$$

(ii)

(iii)

- Express the area of $\triangle BPA$ in terms of α .
- By considering area of triangles or otherwise, show that if $\alpha = 60^{\circ}$

then
$$\frac{1}{PA} + \frac{1}{PC} = \frac{1}{PB}$$