zaillara \square

2023 YEAR 12

Mathematics Extension 2

Trial HSC Examination

Date: Monday $7^{\text {th }}$ August, 2023

\mathbf{Q}	Marks
MC	$/ 10$
11	$/ 14$
12	$/ 14$
13	$/ 14$
14	$/ 16$
15	$/ 18$
16	$/ 14$
Total	$/ 100$

General	- Reading time -10 minutes
Instructions:	- Working time -3 hours
	- Write using blue or black pen
	- NESA approved calculators may be used
	- Show relevant mathematical reasoning
	and/or calculations
	- No white-out may be used

Total Marks: Section I-10 marks
100

- Allow about 15 minutes for this section

Section II - 90 marks

- Allow about 2 hours and 45 minutes for this section

This question paper must not be removed from the examination room.

This assessment task constitutes 40% of the course.

Section I

10 marks

Allow about 15 minutes for this section

Use the multiple-choice sheet for Questions 1-10

1 During an election, politician A declares that creating more jobs will reduce crime. Politican B declares instead that reducing crime will create jobs. Politician B's statement is the
\qquad of politician A's statement.
(A) Negation
(B) Inverse
(C) Converse
(D) Contrapositive
$2 \quad$ The contrapositive of the statemement "If $x y$ and $x-y$ are even, then both x and y are even" is best given by:
(A) If either x or y are odd, then either $x y$ or $x-y$ are odd
(B) If both x and y are odd, then both $x y$ and $x-y$ are odd
(C) If either $x y$ or $x-y$ are odd, then either x or y are odd
(D) If both $x y$ and $x-y$ are odd, then both x and y are odd

3 The angle between the diagonals of a cube is:
(A)

$$
\cos ^{-1} \frac{1}{9}
$$

(B)

$$
\cos ^{-1} \frac{1}{3}
$$

(C)

$$
\cos ^{-1} \frac{1}{\sqrt{3}}
$$

(D)

$$
\cos ^{-1} \frac{\sqrt{3}}{2}
$$

4 A metal sphere is hung by a string fixed to a wall. The sphere is pushed away from the wall by a stick. The forces acting on the sphere are shown in the second diagram.

Which of the following statements is incorrect?

(A) $\quad P=W \tan \theta$
(B) $\vec{T}+\vec{P}+\vec{W}=0$
(C) $\quad T^{2}=P^{2}+W^{2}$
(D) $\quad \vec{T}=\vec{P}+\vec{W}$

5 The complex numbers $z=x+i y$ which satisfy the equation $\left|\frac{z-3 i}{z+3 i}\right|=1$ lie on
(A) circle with centre $(0,0)$ and radius 3
(B) a circle passing through the origin
(C) the straight line $y=3$
(D) the x-axis
$6 \quad$ The roots of the equation $z^{n}=(z+1)^{n}$
(A) are collinear
(B) are vertices of a regular polygon
(C) lie on a circle
(D) lie on a parabola with vertex $\left(-\frac{1}{2}, 0\right)$
$7 \quad$ If $\underset{\sim}{a}, \underset{\sim}{b}, \underset{\sim}{c}$ are three vectors of which every pair is non-collinear. If $\underset{\sim}{a}+\underset{\sim}{b}$ and $\underset{\sim}{b}+\underset{\sim}{c}$ are collinear with vectors $\underset{\sim}{c}$ and $\underset{\sim}{a}$ respectively, then
(A) $\underset{\sim}{a}+\underset{\sim}{b}+\underset{\sim}{c}$ is a null vector
(B) $\quad \underset{\sim}{a}+\underset{\sim}{b}+\underset{\sim}{c}$ is a unit vector
(C) $\quad \underset{\sim}{a}+\underset{\sim}{b}+\underset{\sim}{c}$ is a vector of magnitude 2 unitsx
(D) $\quad \underset{\sim}{a}+\underset{\sim}{b}+\underset{\sim}{c}$ is a vector of magnitude 3 units

8 If $\int f(x) d x=F(x)$, then $\int x^{3} f\left(x^{2}\right) d x$ is equal to
(A) $\quad \frac{1}{2}\left[x^{2} F(x)-\frac{1}{2} \int(F(x))^{2} d x\right]$
(B) $\quad \frac{1}{2}\left[x^{3} F\left(x^{2}\right)-3 \int x^{2} F\left(x^{2}\right) d x\right]$
(C) $\frac{1}{2}\left[x^{2}(F(x))^{2}-\int(F(x))^{2} d x\right]$
(D) $\frac{1}{2}\left[x^{2} F\left(x^{2}\right)-\int F\left(x^{2}\right) d\left(x^{2}\right)\right]$

9 The diagram below represents a setup for demonstrating motion.

When the lever is released, the support rod withdraws from ball B, allowing it to fall. At the same instant the rod contacts ball A , propelling it horizontally to the left.

Which statement describes the motion that is observed after the lever is released and the balls fall? [Neglect friction.]
(A) Ball A travels at constant velocity.
(B) Ball A hits the tabletop at the same time as ball B
(C) Ball B hits the tabletop before ball A
(D) Ball B travels with an increasing acceleration

10 Unit vectors \vec{a} and \vec{b} are inclined at and angle 2θ such that $|\vec{a}-\vec{b}|<1$ and $0 \leq \theta \leq \pi$, then θ lies in the interval:
(A) $\left[\frac{\pi}{6}, \frac{\pi}{2}\right]$
(B) $\left[\frac{\pi}{6}, \pi\right]$
(C) $\left[\frac{\pi}{2}, \frac{5 \pi}{6}\right]$
(D) $\left[\frac{5 \pi}{6}, \pi\right]$

End of Section I

Section II

90 marks

Allow about 2 hours and 45 minutes for this section

Answer each question in the appropriate writing booklet. Extra writing booklets are available.
In Questions 11-16, your response should include relevant mathematical reasoning and/or calculations.

Question 11 (14 Marks) Use the Question 11 Writing Booklet.
(a) The complex numbers z_{1}, z_{2} and z_{3} are such that $z_{1}=3-i \sqrt{3}, z_{2}=\frac{1}{2} e^{i \frac{2 \pi}{5}}$ and $z_{3}=z_{1} z_{2}$.
(i) Find exactly the modulus and argument of z_{3}.
(ii) Sketch an Argand diagram showing z_{1}, z_{2} and z_{3}.

You may use the polar axes on the sheet provided.
(iii) Find the smallest positive integer value of n for which $z_{3}{ }^{n}$ is purely imaginary. State the modulus of $\mathrm{z}_{3}{ }^{\mathrm{n}}$ in this case, giving answer in surd form.
(b) Use partial fractions to find

$$
\int \frac{\left(2 x^{2}+5 x+9\right)}{(x-1)\left(x^{2}+2 x+5\right)} d x
$$

Question 11 continues on the next page

(c) Find:

$$
\int_{0}^{\frac{\pi}{3}} \frac{d \theta}{1+\sin \theta}
$$

End of Question 11

Question 12 (14 Marks) Use the Question 12 Writing Booklet.
(a) Prove that if a, b are integers such that 7 divides $a+b$ and $a^{2}+b^{2}$, then 7 divides both a and b.
(b) Show that $x \geq \ln (1+x)$ for all $x>-1$, stating clearly when the equality holds.
(c) Find

$$
\int \frac{\sqrt{1+x^{2}}}{x^{4}} d x
$$

(d) Prove that for $\forall a, b, c \in \mathbb{Z}^{+}$, where a, b and c form a Pythagorean triple (that is, $a^{2}+b^{2}=c^{2}$), that a, b, and c cannot all be odd numbers.
(e) In an engine, the piston undergoes vertical simple harmonic motion with amplitude 7 cm . A washer of mass $m \mathrm{~kg}$ rests on top of the piston and moves with it. At optimal speeds the washer stays in contact with the piston. The motor speed is slowly increased.

Find the frequency of the piston at which the washer no longer stays in contact with the piston.

End of question 12

Question 13 (14 Marks) Use the Question 13 Writing Booklet.
(a) (i) It is given that $-1+2 i$ is a root of the equation,

$$
z^{3}+2(1+i) z^{2}+(5+4 i) z+10 i=0
$$

Explain why $-1-2 i$ may not be a root.
(ii) Solve the equation $z^{3}+2(1+i) z^{2}+(5+4 i) z+10 i=0$, giving your answers in the form $a+i b$, where a and b are exact values.
(iii) Hence solve $i z^{3}+2(1+i) z^{2}+(4-5 i) z-10 i=0$.
(b) In the diagram below C, D, E and F are points in a plane. $\overrightarrow{C D}=\boldsymbol{a}, \overrightarrow{D E}=\boldsymbol{b}$ and $\overrightarrow{F C}=\underset{\sim}{a}-\underset{\sim}{b} . M$ is the midpoint of $D E . X$ is the point on $F M$ such that $F X: X M=n: 1$.

(i) Express $\overrightarrow{F E}$ in terms of $\underset{\sim}{a}$ and $\underset{\sim}{b}$.
(ii) Given that $C X E$ is a straight line, find the value of n.
(iii) Find the point P where $\overrightarrow{C D}$ and $\overrightarrow{F M}$ intersect.

End of question 13

Question 14 (16 Marks) Use the Question 14 Writing Booklet.
(a) Consider the sequence of real numbers $x_{1} \geq x_{2} \geq x_{3} \geq \cdots \geq x_{n}$ and $y_{1} \geq y_{2} \geq y_{3} \geq \cdots \geq y_{n}$.

Prove that, if $z_{1}, z_{2}, z_{3}, \ldots, z_{n}$ be any permutation of the numbers $y_{1}, y_{2}, y_{3}, \ldots, y_{n}$, then

$$
\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2} \leq \sum_{i=1}^{n}\left(x_{i}-z_{i}\right)^{2}
$$

(b) (i) For $a, b>0$, prove that

$$
\frac{a}{b}+\frac{b}{a} \geq 2
$$

(ii) Let $a_{1}, a_{2}, a_{3}, \ldots a_{n}$ be positive real numbers such that $a_{1} a_{2} a_{3} \ldots a_{n}=1$.

Prove that,

$$
\left(1+a_{1}\right)\left(1+a_{2}\right)\left(1+a_{3}\right) \ldots .\left(1+a_{n}\right) \geq 2^{n}
$$

(iii) Prove that for $a, b, c, d>0$,

$$
\frac{a^{2}}{b}+\frac{b^{2}}{c}+\frac{c^{2}}{d}+\frac{d^{2}}{a} \geq a+b+c+d
$$

(c) Let:

$$
I_{n}=\int \operatorname{cosec}^{n} x \quad n \in \mathbb{Z}
$$

(i) Prove that, for $n \geq 2$

$$
I_{n}=\frac{n-2}{n-1} I_{n-2}-\frac{\operatorname{cosec}^{n-2} x \cot x}{n-1}
$$

(ii) Hence, show that

$$
\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \operatorname{cosec}^{6} x d x=\frac{56}{135} \sqrt{3}
$$

End of question 14

Question 15 (18 Marks) Use the Question 15 Writing Booklet.
(a) A gas company has plans to install a pipeline from a gas field to a storage facility. One part of the route for the pipeline must pass under a river. This part of the pipeline is in a straight line between two points, P and Q.

Points are defined relative to an origin $(0,0,0)$ at the gas field. The x-, y - and z-axes are in the directions east, north and vertically upwards respectively, with units in metres. P and Q has position vectors,

$$
\overrightarrow{O P}=\left(\begin{array}{c}
1136 \\
92 \\
p
\end{array}\right) \text { and } \overrightarrow{O Q}=\left(\begin{array}{c}
200 \\
20 \\
-15
\end{array}\right)
$$

(i) The length of the pipeline $P Q$ is 939 metres. Given that the level of P is below that of Q, find the value of p.
(ii) A thin layer of rock lies below the ground. This layer is modelled as a plane. Three points in this plane are $A(400,600,-20), B(500,200,-70)$ and $C(600,-340,-50)$.

Find the normal vector n, perpendicular to $\overrightarrow{A B}$ and $\overrightarrow{B C}$.
(iii) Hence, find the point at which the pipeline meets the rock.
(iv) Find the angle that the pipeline between the points P and Q makes with the horizontal.
(b) Consider the function $f(x)=\sin x \log _{e}(x+n)$.
(i) Using integration by parts, show that

$$
\int_{0}^{2 \pi} \sin x \log _{e}(x+n) d x=-\log _{e}\left(1+\frac{2 \pi}{n}\right)+\int_{0}^{2 \pi} \frac{\sin x}{(x+n)^{2}} d x
$$

(ii)

$$
\text { Prove that }\left|\int_{0}^{2 \pi} \frac{\sin x}{(x+n)^{2}} d x\right|<\frac{2 \pi}{n^{2}}
$$

(iii) Deduce that as $\mathrm{n} \rightarrow \infty$,

$$
\int_{0}^{2 \pi} \frac{\sin x \log _{e}(1+x) d x}{-\frac{2 \pi}{n}} \rightarrow 1
$$

End of question 15

Question 16 (14 Marks) Use the Question 16 Writing Booklet.
(a)

At a racecourse, a model car weighing $2 m$ kilograms is held in place on a ramp by a hanging mass of m kilograms. The two bodies A and B of masses $2 m$ and m kilograms respectively are attached to the ends of a light inextensible string. The string passes over a smooth pulley P. The car rests in equilibrium on a rough ramp $L M$.

The rough ramp $L M$ makes an angle α to the horizontal and, the rope attached to the car A makes an equal angle of α to the ramp. The body B hangs vertically below P.

Find the range of values of α for which the car A will not slip down the ramp or lose contact with the ramp.

Question 16 continues on the next page
(b) The diagram below shows a smooth platform inclined at an angle of 50° to the horizontal, partially immersed in a medium. A smooth ball falls freely from O and strikes the platform at the point $P, 20$ metres vertically below it as shown in the diagram (air resistance is negligible).

The ball then bounces off the platform with velocity of $V \mathrm{~ms}^{-1}$ and strikes it again at the point Q. As it bounces and enters the medium, the ball experiences the effect of gravity and a resistance of 0.4 V per unit mass in both horizontal and vertical directions.

(The acceleration due to gravity is $9.8 \mathrm{~ms}^{-2}$).
(i) Show that the ball has a speed of $2 \sqrt{10 g}$ as it strikes the platform just above the medium.
(ii) Verify that the ball will strike the platform again at Q after 3.32 seconds.
(iii) Calculate the velocity and angle of impact at Q.

End of Examination

Question 1

Converse (C)

Question 2

(C)

Question 3

Direction cosines of $O B=\left(\frac{a-0}{\sqrt{a^{2}+a^{2}+a^{2}}}, \frac{a-0}{\sqrt{a^{2}+a^{2}+a^{2}}}, \frac{a-0}{\sqrt{a^{2}+a^{2}+a^{2}}}\right)$
$=\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$
Direction cosines of $A C=\left(\frac{0-a}{\sqrt{a^{2}+a^{2}+a^{2}}}, \frac{a-0}{\sqrt{a^{2}+a^{2}+a^{2}}}, \frac{a-0}{\sqrt{a^{2}+a^{2}+a^{2}}}\right)$
$=\left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$
$\overrightarrow{O B} \cdot \overrightarrow{A C}=|\overrightarrow{O B}||\overrightarrow{A C}| \cos \theta$
$-\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1 \times 1 \cos \theta$
$\cos \theta=\frac{1}{3}$
$\theta=\cos ^{-1} \frac{1}{3}$

Question 4

As the metal sphere is in equilibrium under the effect of the three forces, $\vec{T}+\vec{P}+\vec{W}=0$.
From the figure, $T \cos \theta=W$ (1) and $T \sin \theta=P$. (2)
From (1) and (2) Then $P=W \tan \theta$ and $T^{2}=P^{2}+W^{2}$

Hence, Option D is incorrect.

Question 5

A
$\left|\frac{z-3 i}{z+3 i}\right|=1$
Then, $\quad|z-3 i|=|z+3 i|$
Interpreting the meaning we get the $|P A|=|P B|$
Then P is on the perpendicular bisector of the line joining $A(3 i)$ and $B(-3 i)$
Hence, P lies on the x-axis.

Question 6

Multiple choice work
$\left|\frac{z+1}{z}\right|^{n}=1$
For multiple choice, let $n=1$
$|z+1|=|z|$
Using symmetry, $z=-\frac{1}{2}$
That is $x=-\frac{1}{2}$
Equation of the locus is $2 x+1=0$
Which is linear.
Therefore the roots are collinear. (A)
Or
Let $z=x+i y$ and solve algebraically.

Question 7

$\underset{\sim}{a}+\underset{\sim}{b}$ is collinear with $\underset{\sim}{c}$, then $\underset{\sim}{a}+\underset{\sim}{b}=\lambda c$
$\Rightarrow \underset{\sim}{a}+\underset{\sim}{b}+\underset{\sim}{c}=\lambda \underset{\sim}{c}+\underset{\sim}{c}=\underset{\sim}{c}(1+\lambda)$
Given $\underset{\sim}{b}+\underset{\sim}{c}$ is collinear with $\underset{\sim}{a}$, then $\underset{\sim}{b}+\underset{\sim}{c}=\mu \underset{\sim}{a}$
$\Longrightarrow \underset{\sim}{a}+\underset{\sim}{b}+\underset{\sim}{c}=\underset{\sim}{a}+\mu \underset{\sim}{a}=\underset{\sim}{a}(1+\mu)$
Then, by equating,
$\underset{\sim}{c}(1+\lambda)=\underset{\sim}{a}(1+\mu)$

But $\underset{\sim}{a}$ and $\underset{\sim}{c}$ are not collinear.
So, $1+\lambda=1+\mu=0 \Rightarrow \lambda=\mu=-1$
Then $\underset{\sim}{a}+\underset{\sim}{b}+\underset{\sim}{c}=\underset{\sim}{0}$
$\underset{\sim}{a}+\underset{\sim}{b}+\underset{\sim}{c}$ is a null vector (A)

Question 8

$\int f(x) d x=F(x)$, then $\int x^{3} f\left(x^{2}\right) d x$ is equal to
$\int x^{3} f\left(x^{2}\right) d x=\int x^{2} \cdot \frac{1}{2}\left(2 x f\left(x^{2}\right)\right) d x$
$=\frac{1}{2}\left[x^{2} F\left(x^{2}\right)-\int 2 x F\left(x^{2}\right) d x\right]$
$=\frac{1}{2}\left[x^{2} F\left(x^{2}\right)-\int F\left(x^{2}\right) d\left(x^{2}\right)\right](\mathrm{D}$

Question 9
(A) V_{x} is constant, but not $V_{y}(\operatorname{Not} A)$
(B) $y=-\frac{g t^{2}}{2}+h$ in both cases, hence both A nd B takes the same time
(C) Not C (using B)
(D) y - acceleration is constant which is the only force acting on the body, so, not D

Answer B

Question 10
(D)

Question 11 (12 marks)

11	$\left\|z_{3}\right\|=\left\|z_{1}\right\|\left\|z_{2}\right\|$	1 mark: correctly
a(i)$\frac{1}{2} \times \sqrt{12}=\sqrt{3}$ $\arg z_{3}=\arg z_{2}+\arg z_{1}$ $\arg z_{1}=-\frac{\pi}{6}$ $=\frac{2 \pi}{5}-\frac{\pi}{6}=\frac{7 \pi}{30}$ 1 mark: calculates $\arg z_{1}$ $\operatorname{and} \arg z_{2}$ 1 mark: correctly calculates $\arg z_{3}$		

a(ii)			
a(iii)	$\begin{aligned} z_{3}^{n} & =\left(\sqrt{3} e^{\frac{7 \pi}{30} i}\right)^{n} \\ & =\sqrt{3}^{n} e^{\frac{7 n \pi}{30} i} \end{aligned}$ $z_{3}{ }^{n}$ is purely imaginary, hence real part equals zero. Hence, $\cos \frac{7 n \pi}{30}=0=\cos \frac{(2 k+1) \pi}{2}, k \in R$ $\begin{aligned} & \frac{7 n \pi}{30}=\frac{(2 k+1) \pi}{2} \\ & n=\frac{15(2 k+1)}{7} \end{aligned}$ When $k=3, n=15$ \therefore modulus: $\begin{aligned}(\sqrt{3})^{15} & =3^{7} \sqrt{3} \\ m & =2187\end{aligned}$ $m=2187$	*correctly writes $z_{3}{ }^{n}$ * equates the real parts and solves for n * substitutes the least value ($k=3$) to give the least integer value of n ($n=15$) and gives the correct value of m 3 marks: All three parts correct 2 marks: dot points 1 and 2 correct and attempts to find the least value of k to make n an integer. 1 mark: correctly writes $z_{3}{ }^{n}$ Or Attempts to solve for n from their $z_{3}{ }^{n}$ in terms of k, and makes significant way.	

$\begin{array}{\|l} \hline 11 \\ \text { (b) } \end{array}$	$\begin{gathered} \int \frac{\left(2 x^{2}+5 x+9\right)}{(x-1)\left(x^{2}+2 x+5\right)} d x \\ \frac{\left(2 x^{2}+5 x+9\right)}{(x-1)\left(x^{2}+2 x+5\right)}=\frac{A}{x-1}+\frac{B x+C}{x^{2}+2 x+5} \end{gathered}$ Let $x=1$ $A=2$ $\begin{aligned} 2 x^{2}+5 x+9= & A\left(x^{2}+2 x+5\right) \\ + & (B x+C)(x-1) \end{aligned}$ Comparing x^{2} term, $A+B=2 \rightarrow B=0$ Comparing constants, $\begin{aligned} & 9=5 A-C \rightarrow \quad C=1 \\ & \int \frac{\left(2 x^{2}+5 x+9\right)}{(x-1)\left(x^{2}+2 x+5\right)} d x \\ = & \int \frac{2}{x-1}+\frac{1}{x^{2}+2 x+5} d x \\ = & \int \frac{2}{x-1}+\frac{1}{(x+1)^{2}+4} d x \\ = & 2 \ln \|x-1\|+\frac{1}{2} \tan ^{-1} \frac{x+1}{2}+C \end{aligned}$	1 mark: Separates the integrand into appropriate general forms of partial fractions and evaluates at least one of the pronumerals 1 mark: evaluates the pronumerals correctly. 2 marks: correctly integrates. 1 mark: correctly integrates $\frac{2}{x-1}$ and attempts to integrate the quadratic denominator	
$\begin{array}{\|l} \hline 11 \\ \text { (c) } \end{array}$	$\int_{0}^{\frac{\pi}{3}} \frac{d \theta}{1+\sin \theta}$ Let $t=\tan \frac{\theta}{2}$, then $d \theta=\frac{2 d t}{1+t^{2}}$ When $\theta=0, t=0 ; \theta=\frac{\pi}{3}, y=\tan \frac{\pi}{6}=\frac{1}{\sqrt{3}}$ $\begin{aligned} & \int_{0}^{\frac{1}{\sqrt{3}}} \frac{\frac{2 d t}{1+t^{2}}}{1+\frac{2 t}{1+t^{2}}}=\int_{0}^{\frac{1}{\sqrt{3}}} \frac{2 d t}{1+t^{2}+2 t} \\ & \int_{0}^{\frac{1}{\sqrt{3}}} \frac{2 d t}{(1+t)^{2}}=\left[-\frac{2}{1+t}\right]_{0}^{\frac{1}{\sqrt{3}}} \\ & =-\frac{2}{1+\frac{1}{\sqrt{3}}}+2 \\ & =2-\frac{2 \sqrt{3}}{\sqrt{3}+1} \times \frac{\sqrt{3}-1}{\sqrt{3}-1} \\ & =2-3+\sqrt{3} \\ & =\sqrt{3}-1 \end{aligned}$	1 mark: correctly converts the integrand and the limits in terms of t 1 mark: correctly integrates and evaluates	

12(a)	Since 7 divides $a+b$, it divides, $(a+b)^{2}=a^{2}+2 a b+b^{2}$ Hence 7 also divides the difference of this and $a^{2}+b^{2}$, which is $2 a b$ But 7 does not divide 2, so it must divide $a b$ Since 7 is a prime, it must divide either a or b. But if it divides a, it divides b as well (since it divides $a+b$); similarly, it 7 divides b, it also divides a. So it divides both a and b	1 mark for substantive progress towards solution by finding $2 a b$ is divisible by 7 . 2 marks complete and logical solution	
12(b)	We need to prove that $x \geq \ln (1+x)$ for $\forall x>-1$ Consider the function $f(x)=x-\ln (1+x)$ $\begin{aligned} & f^{\prime}(x)=1-\frac{1}{1+x} \\ & f^{\prime}(x)=0 \Leftrightarrow x=0 \end{aligned}$ Thus, $f(x)$ has an absolute minimum of 0 at $x=0$ for $x>-1$, with equality iff $x=0$.	1 mark: correctly proves $f(x)$ has a minimum value at $x=0$! mark: explains that $\mathrm{f}(\mathrm{x})$ has the minimum value 0 and also equality holds iff $x=0$ (must give clear working and explanation)	
12(c)	$\int \frac{\sqrt{1+x^{2}}}{x^{4}} d x$ Let $x=\tan \theta$ Then, $\begin{aligned} & d x=\sec ^{2} \theta d \theta \\ & \sqrt{1+x^{2}}=\sec \theta \end{aligned}$ $\begin{aligned} & \int \frac{\sqrt{1+x^{2}}}{x^{4}} d x=\int \frac{\sec \theta \sec ^{2} \theta d \theta}{\tan ^{4} \theta} \\ & =\int \frac{\cos \theta}{\sin ^{4} \theta} d \theta \\ & =-\frac{1}{3 \sin ^{3} \theta}+C \end{aligned}$	Uses the correct substitution and transforms the integrand. 1 mark: correctly integrates. 1 mark: gives the solution in terms of x	

Question 13

$\begin{aligned} & \text { 13(a) } \\ & \text { (i) } \end{aligned}$	Since the equation does not have all real coefficients, the conjugate root theorem does not apply. Hence, $-1-2 i$ may not be a root.	1 mark: correct explanation
$13 a$ (ii)	Let $\begin{array}{r} z^{3}+2(1+i) z^{2}+(5+4 i) z+10 i \cong \\ (z+1-2 i)\left(z^{2}+A z+B\right) \end{array}$ Comparing constants, $10 i=(1-2 i) B$ Then, $B=\frac{10 i}{1-2 i}=\frac{10 i(1+2 i)}{5}=-4+2 i$ Comparing z^{2} term, $2(1+i)=A+1-2 i$ Then $A=1+4 i$ Thus, the polynomial equation is $\begin{aligned} & (z+1-2 i)\left(z^{2}+(1+4 i) z+(-4+2 i)\right)=0 \\ & \quad 2 \text { marks } \end{aligned}$ Solving the quadratic, $\begin{gathered} z=\frac{-1-4 i \pm \sqrt{(1+4 i)^{2}-4(-4+2 i)}}{2} \\ z=\frac{-1-4 i \pm \sqrt{1}}{2} \end{gathered}$	2 marks: factorises the polynomial into linear and quadratic factors 2 marks: correctly solves the quadratic equation and gives all the three roots. (Award 1 mark: if minor error in calculations) Students may choose to use the sum of roots, product of roots methos. This would leave you having to find the square root.

	$z=-2 i, \quad \frac{-2-4 i}{2}=-1-2 i$ Roots are $z=-2 i, \quad-1+2 i, \quad-1-2 i$		
$\begin{aligned} & \hline 13 \mathrm{a} \\ & \text { (iii) } \end{aligned}$	$z^{3}+2(1+i) z^{2}+(5+4 i) z+10 i=0$ If we replace, z with $i z$, $\begin{gathered} (i z)^{3}+2(1+i)(i z)^{2}+(5+4 i)(i z)+10 i \\ =0 \\ -i z^{3}-2(1+i) z^{2}+(-4+5 i) z+10 i=0 \\ i z^{3}+2(1+i) z^{2}+(4-5 i) z-10 i=0 \end{gathered}$ Then, the roots are $\begin{gathered} i z=-2 i, \quad-1+2 i, \quad-1-2 i \\ z=-2, \frac{-1+2 i}{i}, \frac{-1-2 i}{i} \\ z=-2, \quad 2+i,-2+i \end{gathered}$	1 mark: substitutes z with $i z$ to get the necessary equation 1 mark: converts the solutions using the transformation	
13 (b)	 Method 1 $\begin{aligned} \overrightarrow{F E} & =\overrightarrow{F C}+\overrightarrow{C D}+\overrightarrow{D E} \\ & =\underset{\sim}{a}-\underset{\sim}{b}+\underset{\sim}{a}+\underset{\sim}{b}=2 \underset{\sim}{a} \quad 1 \text { mark } \end{aligned}$ Without losing laws of generality, let us keep F as the origin. Position vector of C is $\underset{\sim}{a}-\underset{\sim}{b}$ $\overrightarrow{C E}=\underset{\sim}{a}+\underset{\sim}{b}$ Thus vector equation of the line $C X$ is $\overrightarrow{F C}+s \overrightarrow{C E}$, where $s \in R$ Thus $\overrightarrow{C X}=\underset{\sim}{a}-\underset{\sim}{b}+s(\underset{\sim}{a}+\underset{\sim}{b}) \quad 1$ mark $\begin{gathered} \overrightarrow{F M}=\overrightarrow{F C}+\overrightarrow{C M}=\underset{\sim}{a}-\underset{\sim}{b}+\underset{\sim}{a}+\frac{1}{2} \underset{\sim}{b} \\ =2 \underset{\sim}{a}-\frac{1}{2} \underset{\sim}{b} \end{gathered}$ Thus vector equation of the line $\overrightarrow{F X}=t \overrightarrow{F M}$, $t \in R$	1 mark: correct expression for $\overrightarrow{F E}$ in terms of $\underset{\sim}{a}$ and $\underset{\sim}{b}$ (ii) 1 mark: finds the correct equation of the line $C X$ 1 mark: correct equation FX 2 marks: gets the correct simultaneous equations and solves for s and t	

$$
=t\left(2 \underset{\sim}{a}-\frac{1}{2} \underset{\sim}{b}\right) \quad 1 \text { mark }
$$

Finding point of intersection of the lines,

$$
\begin{gathered}
\underset{\sim}{a}-\underset{\sim}{b}+s(\underset{\sim}{a}+\underset{\sim}{b})=t\left(2 \underset{\sim}{a}-\frac{1}{2} \underset{\sim}{b}\right) \\
(1+s) \underset{\sim}{b}+(s-1) \underset{\sim}{b}=2 t \underset{\sim}{a}-\frac{1}{2} t \underset{\sim}{b}
\end{gathered}
$$

Compare $\underset{\sim}{a}$ and $\underset{\sim}{b}$ coefficients,

$$
\begin{gathered}
1+s=2 t \\
s-1=-\frac{1}{2} t
\end{gathered}
$$

Solving simultaneously,

$$
\begin{gathered}
s=2 t-1 \\
2 t-2=-\frac{1}{2} t \\
\frac{5}{2} t=2 \\
t=\frac{4}{5}
\end{gathered}
$$

Then, $s=\frac{3}{5} \quad 2$ marks

$$
\overrightarrow{F X}=t\left(2 \underset{\sim}{a}-\frac{1}{2} \underset{\sim}{\underset{\sim}{b}}\right)
$$

$\left.|\overrightarrow{F X \mid}=t|\left(2 \underset{\sim}{a}-\frac{1}{2} \underset{\sim}{b}\right) \right\rvert\,$ from F and $(1-t)$ multiples from M .
Hence,

$$
\begin{aligned}
& \frac{n}{1}=\frac{t}{1-t} \\
n=4 & \text { mark }
\end{aligned}
$$

Method 2

$$
\begin{align*}
& \overrightarrow{F M}=\underset{\sim}{2 a}-\underset{\sim}{a} \underset{\sim}{x} \underset{\sim}{b} \\
& \overrightarrow{E X}=\overrightarrow{E M}+\overrightarrow{M K} \\
& \overrightarrow{E X} \quad=\quad \frac{-1}{2} \underset{\sim}{b}+\frac{1}{n+1} \overrightarrow{M F} \\
& =-\frac{1}{2} \underset{\sim}{b}-\frac{1}{n+1}\left(2 \underset{\sim}{a}-\frac{1}{2} \underset{\sim}{\underset{\sim}{b}}\right) \\
& =-\frac{1}{2} \underset{\sim}{\underset{\sim}{p}}-\frac{2}{n+1} \underset{\sim}{\underset{\sim}{a}}+\frac{1}{2(n+1)} \underset{\sim}{b} \\
& =-\frac{2}{n+1} \underset{\sim}{a}+\frac{-n-1+1}{2(n+1)} \underset{\sim}{b} \\
& =-\frac{2}{n+1} \underset{\sim}{a}+\frac{-n}{2(n+1)} \underset{\sim}{b} \\
& \overrightarrow{E X}=-\frac{1}{n+1}\left(2 \underset{\sim}{a}+\frac{n}{2} \underset{\sim}{b}\right) \tag{1}
\end{align*}
$$

$C X E$ is a straight line.

$$
\begin{gather*}
\overrightarrow{E X}=\lambda \overrightarrow{E C} \\
\overrightarrow{E X}=-\lambda(\underset{\sim}{a}+\underset{\sim}{b}) \tag{2}
\end{gather*}
$$

Equating (1) and (2),

$$
\left.-\frac{1}{n+1}\left(2 \underset{\sim}{a}+\frac{n}{2} \underset{\sim}{b}\right)=-\lambda(\underset{\sim}{a})+\underset{\sim}{b}\right)
$$

Comparing coefficients of a and b,

$$
\begin{gathered}
\frac{2}{n+1}=\frac{n}{2(n+1)} \\
n^{2}+n=4 n+4 \\
n^{2}-3 n-4=0 \\
(n-1)(n+1)=0 \\
n=4, \quad n \neq-1
\end{gathered}
$$

Hence, $n=4$

Question 14

14b(i)	For $a, b>0$, $\begin{gathered} (\sqrt{a}-\sqrt{b})^{2} \geq 0 \\ a+b-2 \sqrt{a b} \geq 0 \end{gathered}$ Then, $a+b \geq 2 a b$ Replace, $a \rightarrow \frac{a}{b} \text { and } \mathrm{b} \rightarrow \frac{\mathrm{~b}}{\mathrm{a}}$ Thus, $\frac{a}{b}+\frac{b}{a} \geq 2 \sqrt{\frac{a}{b} \cdot \frac{b}{a}}=2$	2 marks: proves the AM - GM inequality and then applies to prove the result. 1 mark: Applies AM-GM inequality to get the result.	
$\begin{array}{\|l\|} \hline 14 \mathrm{~b} \\ \text { (ii) } \end{array}$	$a_{1}, a_{2}, a_{3}, \ldots a_{n}>0$ Using AM-GM inequality $\begin{gathered} 1+a_{1} \geq 2 \sqrt{a_{1}} \\ 1+a_{2} \geq 2 \sqrt{a_{2}} \\ \cdot \\ \cdot \\ \cdot \\ 1+a_{n} \geq 2 \sqrt{a_{n}} \end{gathered}$ Multiplying the inequalities, $\begin{gathered} \left(1+a_{1}\right)\left(1+a_{2}\right)\left(1+a_{3}\right) \ldots . \\ 2^{n} \sqrt{a_{1} a_{2} a_{3} \ldots a_{n}} \\ a_{1} a_{2} a_{3} \ldots a_{n}=1 \end{gathered}$ Thus, $\left(1+a_{1}\right)\left(1+a_{2}\right)\left(1+a_{3}\right) \ldots .\left(1+a_{n}\right) \geq 2$	2 marks: correct proof 1 mark: Minor error in the proof	

(iii)	$\begin{aligned} \frac{a^{2}}{b}+\frac{b^{2}}{c}+\frac{c^{2}}{d}+\frac{d^{2}}{a} & \geq \frac{a^{2}}{b}+\frac{b^{2}}{c}+\frac{c^{2}}{a}+\frac{d^{2}}{d} \\ & \geq \frac{a^{2}}{b}+\frac{b^{2}}{a}+\frac{c^{2}}{c}+\frac{d^{2}}{d} \\ & \geq \frac{a^{2}}{a}+\frac{b^{2}}{b}+\frac{c^{2}}{c}+\frac{d^{2}}{d} \\ & \geq a+b+c+d \end{aligned}$	2 marks: correct proof with all logical steps 1 mark: makes reasonable rearrangements at least once.	
$\begin{array}{\|l\|} \hline 14 \\ \text { (c)(i) } \end{array}$	Hence, $I_{n}=\frac{n-2}{n-1} I_{n-2}-\frac{\operatorname{cosec}^{n-2} x \cot x}{n-1}$	1 mark: Splits the integral and begins the process of integration by parts. 1 mark: converts $\cot ^{2} x$ into $\operatorname{cosec}^{2} x$ 1 mark: expresses the integrals as I_{n} and I_{n-2} and completes the proof	
$14 c$ (ii)	$\begin{gathered} I_{2}=\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \operatorname{cosec}^{2} x d x=-[\cot x]_{\frac{\pi}{3}}^{\frac{\pi}{2}}=\frac{\sqrt{3}}{3} \\ I_{4}==\frac{2}{3} I_{2}-\left[\frac{\operatorname{cosec}^{2} x \cot x}{3}\right]_{\frac{\pi}{3}}^{\frac{\pi}{2}} \\ =\frac{2}{9} \sqrt{3}-\frac{1}{3}\left(0-\frac{4}{3} \times \frac{\sqrt{3}}{3}\right) \\ \quad=\frac{2}{9} \sqrt{3}+\frac{4 \sqrt{3}}{27}=\frac{10}{27} \sqrt{3} \end{gathered}$	3 marks: A fully correct method using the reduction formula correctly to reach the value for I_{6} (Substitutions must be shown for the non-zero terms)	

$I_{6}==\frac{4}{5} I_{4}-\left[\frac{\operatorname{cosec}^{4} x \cot x}{5}\right]_{\frac{\pi}{3}}^{\frac{\pi}{2}}$	2 marks: Uses the reductio formula correctly to find I_{4} in terms of I_{2} (need not evaluate yet) $=\frac{4}{5}\left(\frac{4}{27} \sqrt{3}+\frac{2}{9} \sqrt{3}\right)+\frac{16}{135} \sqrt{3}$ $=\frac{56}{135} \sqrt{3}$
1 mark: Begins the process of application of reduction to find I_{6} in terms of I_{4}	

Question 15

15a(i)	$\begin{gathered} \overrightarrow{P Q}=\overrightarrow{O Q}-\overrightarrow{O P} \\ =\left(\begin{array}{c} 200 \\ 20 \\ -15 \end{array}\right)-\left(\begin{array}{c} 1136 \\ 92 \\ p \end{array}\right)=\left(\begin{array}{c} -936 \\ -72 \\ p+15 \end{array}\right) \\ 936^{2}+72^{2}+(p+15)^{2}=939^{2} \\ 936^{2}+72^{2}+p^{2}+30 p+225=939^{2} \\ 441=225+30 p+p^{2} \\ p^{2}+30 p-216=0 \\ p=6, p=-36 \end{gathered}$ Point P is below R. Then, $P=-36$	1 mark: Finds $\overrightarrow{P Q}$ and uses $\|\overrightarrow{P Q}\|=939$ 1 mark: correctly solves for p and chooses the correct value, citing reason.
15a (ii)	$\begin{array}{r} \text { Let } \overrightarrow{O A}=\left(\begin{array}{l} 400 \\ 600 \\ -20 \end{array}\right), \overrightarrow{O B}=\left(\begin{array}{c} 500 \\ 200 \\ -70 \end{array}\right) \\ \overrightarrow{O C}=\left(\begin{array}{c} 600 \\ -340 \\ -50 \end{array}\right) \end{array}$ Find the vectors $A B$ and $B C$ parallel to the plane. $\begin{aligned} & \overrightarrow{A B}=\left(\begin{array}{c} 100 \\ -400 \\ -50 \end{array}\right)=-50\left(\begin{array}{c} -2 \\ 8 \\ 1 \end{array}\right), \\ & \overrightarrow{B C}=\left(\begin{array}{c} 100 \\ -540 \\ 20 \end{array}\right)=20\left(\begin{array}{c} 5 \\ -27 \\ 1 \end{array}\right), \end{aligned}$	1 mark: Finds $\overrightarrow{A B}$ and $\overrightarrow{B C}$, and states that the normal to the plane is the perpendicular to the two vectors in the plane. 1 mark: States $\overrightarrow{A B} \cdot \underset{\sim}{n}=$ 0 and $\overrightarrow{B C} . \underset{\sim}{n}=0$ and attempts to find n 1 mark: correct calculations and gives

	$\begin{aligned} & \sin \theta=\frac{\left\|\left(\begin{array}{c} 312 \\ 24 \\ -7 \end{array}\right) \cdot\left(\begin{array}{l} 0 \\ 0 \\ 1 \end{array}\right)\right\|}{\left\|\left(\begin{array}{c} 312 \\ 24 \\ -7 \end{array}\right)\right\|} \\ & \sin \theta=\frac{7}{313} \\ & \theta=1.28^{\circ} \approx 1.3^{\circ} \end{aligned}$	2 marks: correct answer from correct working 1 mark: draws a diagram and attempts to find angle with the horizontal	

$\begin{aligned} & \hline 15(\mathrm{~b}) \\ & \text { (i) } \end{aligned}$	Let $\begin{aligned} & I=\int_{0}^{2 \pi} \sin x \log _{e}(1+x) d x \\ & =[\log (x+n) \times(-\cos x)]_{0}^{2 \pi}-\int_{0}^{2 \pi} \frac{-\cos x}{x+n} d x \\ & =\log (2 \pi+n) \times-1-\log n \times(-1)+\int_{0}^{2 \pi} \frac{\cos x}{x+n} d x \quad \mathbf{1} \text { mark } \\ & =-\log \left(n\left(\frac{2 \pi}{n}+1\right)\right)+\log n+\int_{0}^{2 \pi} \frac{\cos x}{x+n} d x \\ & =-\log n-\log \left(1+\frac{2 \pi}{n}\right)+\log n+\int_{0}^{2 \pi} \frac{\cos x}{x+n} d x \\ & =-\log \left(1+\frac{2 \pi}{n}\right)+\int_{0}^{2 \pi} \frac{1}{x+n} \cos x d x \quad \mathbf{1 ~ m a r k} \end{aligned}$ Integrating by parts again, $\begin{aligned} & =-\log \left(1+\frac{2 \pi}{n}\right)+\left[\frac{1}{x+n} \times \sin x\right]_{0}^{2 \pi}-\int_{0}^{2 \pi} \frac{\sin x}{(x+n)^{2}} d x \\ & =-\log \left(1+\frac{2 \pi}{n}\right)+0-\int_{0}^{2 \pi} \frac{\sin x}{(x+n)^{2}} d x \\ & =-\log \left(1+\frac{2 \pi}{n}\right)-\int_{0}^{2 \pi} \frac{\sin x}{(x+n)^{2}} d x \end{aligned}$ 1 mark	1 mark: Applies integration by parts correctly 1 mark: Applies log rules to simplify the expression correctly 1 mark: correctly applies integration by parts to prove the result
15(b) (ii)	We need to prove that	

	$\left\|\int_{0}^{2 \pi} \frac{\sin x}{(x+n)^{2}} d x\right\|<\frac{2 \pi}{n^{2}}$ We have $-1 \leq \sin x \leq 1 \quad \forall x \in \mathcal{R}$ Thus, $\begin{aligned} & -\frac{1}{(x+n)^{2}} \leq \frac{\sin x}{(x+n)^{2}} \leq \frac{1}{(x+n)^{2}} \quad \text { as } \\ & (x+n)^{2}>0 \forall x \in[0,2 \pi] \quad \mathbf{1 m a r k} \end{aligned}$ Hence, $\left\lceil\int_{0}^{2 \pi} \frac{\sin x}{(x+n)^{2}} d x\right\rceil \leq \int_{0}^{2 \pi} \frac{1}{(x+n)^{2}} d x$ $g(x)=\frac{1}{(x+n)^{2}}$ is a decreasing function $\text { in }[0,2 \pi]$ Hence, the maximum value of $\frac{1}{(x+n)^{2}}$ in $[0,2 \pi]$ occurs when $x=0$, $\text { and equals } \frac{1}{n^{2}}, n \neq 0$ Hence, $\int_{0}^{2 \pi} \frac{1}{(x+n)^{2}} d x<$ Area $O A B C=\frac{2 \pi}{n^{2}}$ Hence, $\left\lceil\int_{0}^{2 \pi} \frac{\sin x}{(x+n)^{2}} d x\right\rceil \leq \int_{0}^{2 \pi} \frac{1}{(x+n)^{2}} d x<\frac{2 \pi}{n^{2}}$ Hence, $\left\lceil\int_{0}^{2 \pi} \frac{\sin x}{(x+n)^{2}} d x\right\rceil<\frac{2 \pi}{n^{2}}$	
(iii)	Using the results from (i) and (ii), $\begin{gathered} \int_{0}^{2 \pi} \sin x \log _{e}(1+x) d x=-\log _{e}\left(1+\frac{2 \pi}{n}\right)+\int_{0}^{2 \pi} \frac{\sin x}{(x+n)^{2}} d x \\ <-\log _{e}\left(1+\frac{2 \pi}{n}\right)+\frac{2 \pi}{n^{2}} \end{gathered}$	2 marks: *Combines the results from 15(b) (i) and (ii)

16 (a)	Freebody diagrams are as shown below: At A, resolving along and perpendicular to the plane, $\binom{T \cos \alpha}{T \sin \alpha}+\binom{-2 m g \sin \alpha}{-2 m g \cos \alpha}=\binom{F}{0}$ At $B, \quad T=m g$ $\begin{aligned} & F=T \cos \alpha-2 m g \sin \alpha \\ & R=T \sin \alpha-2 m g \cos \alpha \end{aligned}$ For the body not to slip down the plane, $F \geq 0$ $\begin{aligned} & F=T \cos \alpha-2 m g \sin \alpha \geq 0 \\ & T=m g \end{aligned}$ $2 m g \sin \alpha-m g \cos \alpha \leq 0$	2 marks: correct free body diagrams for both A and B 1 mark: writes the correct force equations. 1 marks: sets $F \geq 0$ and gives the range of values for α

	$\begin{align*} & \quad m g>0, \quad \text { hence, } \quad 2 \sin \alpha \leq \cos \alpha \\ & \tan \alpha \leq \frac{1}{2} \quad \text { (1) } \tag{1}\\ & \alpha \leq 26.565 \ldots \approx 27^{\circ} \end{align*}$ For the body not to lose contact with the surface, $\begin{aligned} & R=T \sin \alpha-2 m g \cos \alpha \geq 0 \\ & 2 m g \cos \alpha-m g \sin \alpha \leq 0 \\ & m g(2 \cos \alpha-\sin \alpha) \leq 0 \\ & m g>0, \quad \tan \alpha \leq 2 \\ & \text { Using (1) and (2), } \end{aligned}$ Hence, $\alpha<27^{\circ}$	1 mark: sets $R \geq 0$, solves the trig inequation $\tan \alpha \leq$ 2 and solves simultaneously with the solution of $\tan \alpha \leq \frac{1}{2}$	
$\begin{array}{\|l} \hline 16 \\ \text { (b) } \\ \text { (i) } \end{array}$	 The force equations are: $m \ddot{y}=m g$ $\begin{aligned} & \dot{y}=\int g d t=g t+c \\ & t=0, \dot{y}=0 \Rightarrow \dot{y}=g t \\ & y=\int g t d t=\frac{1}{2} g t^{2}+C \\ & t=0, y=0, \quad \text { then } C=0 \end{aligned}$ Thus, $y=\frac{1}{2} g t^{2}$ When, $y=20, t^{2}=\frac{2 y}{g}$ $t=\sqrt{\frac{40}{g}}, \quad t>0$ When, $t=\sqrt{\frac{40}{g}}, \quad \dot{y}=g \sqrt{\frac{40}{g}}=\sqrt{40 g}=2 \sqrt{10 g}$ Thus the speed of impact on the platform is $2 \sqrt{10 g}$	2 marks: correct answer from correct working 1 mark: sets up the equations of motion, and attempts to find the time of impact.	

	$y=0.037697 \ldots \approx 0$ Hence, the ball hits the plane after 3.32 seconds.		
$\begin{aligned} & 16 \mathrm{~b} \\ & \text { (iii) } \end{aligned}$	$a_{x}=\frac{d V_{x}}{d t}=g_{x}-0.4 V_{x}$ And $a_{y}=\frac{d V_{y}}{d t}=g_{y}-0.4 V_{y}$ Using the results from 16 b (ii), $0.4 V_{y}=g_{y}-\left(g_{y}-0.4 u_{y}\right) e^{-0.4 t} \quad \text { and }$ Similarly, along the plane, $0.4 V_{x}=g_{x}-\left(g_{x}-0.4 u_{x}\right) e^{-0.4 t}$ Substitute $\begin{gathered} g_{y}=-9.8 \cos 50 \\ u_{y}=2 \sqrt{10 \times 9.8} \cos 50 \\ g_{x}=9.8 \sin 50 \\ u_{x}=2 \sqrt{10 \times 9.8} \sin 50 \end{gathered}$ At $t=3.32, \quad V_{x}=17.81528 \ldots$ $V_{y}=-8.20227 \ldots$ Direction $\tan ^{-1} \frac{-8.20227}{17.81375}=-28.418 . .=151.581 \ldots$ Then velocity is $V=\sqrt{V_{x}^{2}+V_{y}^{2}}=19.6114 \approx 19.6 \mathrm{~m} / \mathrm{s} \text { at an angle }$ of approximately 152° to the vertical.	*gives the expression for V_{x} *calculates V_{x} at $\mathrm{t}=3.32$ *calculates V_{y} at $\mathrm{t}=$ 3.32 *Calculates the resultant velocity *Calculates the angle of impact 2 marks: correct answer from correct working 1 mark: At least three of the aspects are correctly executed	

