

**Student Number** 

## 2023 YEAR 12

# Mathematics Extension 2

**Trial HSC Examination** 

Date: Monday 7th August, 2023

| Q     | Marks |
|-------|-------|
| MC    | /10   |
| 11    | /14   |
| 12    | /14   |
| 13    | /14   |
| 14    | /16   |
| 15    | /18   |
| 16    | /14   |
| Total | /100  |

| <ul> <li>Show relevant mathematical reasoning and/or calculations</li> <li>No white-out may be used</li> <li>Total Marks: Section I - 10 marks         <ul> <li>Allow about 15 minutes for this section</li> <li>Section II - 90 marks</li> <li>Allow about 2 hours and 45 minutes for</li> </ul> </li> </ul>                                                                                                        |               |                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------|
| <ul> <li>Working time – 5 hours</li> <li>Write using blue or black pen</li> <li>NESA approved calculators may be use</li> <li>Show relevant mathematical reasoning<br/>and/or calculations</li> <li>No white-out may be used</li> </ul> Total Marks: Section I - 10 marks <ul> <li>Allow about 15 minutes for this section</li> <li>Section II - 90 marks</li> <li>Allow about 2 hours and 45 minutes for</li> </ul> | General       | Reading time – 10 minutes                                                   |
| <ul> <li>NESA approved calculators may be use</li> <li>Show relevant mathematical reasoning and/or calculations</li> <li>No white-out may be used</li> </ul> Total Marks: Section I - 10 marks <ul> <li>Allow about 15 minutes for this section</li> <li>Section II - 90 marks</li> <li>Allow about 2 hours and 45 minutes for</li> </ul>                                                                            | Instructions: | <ul> <li>Working time – 3 hours</li> </ul>                                  |
| <ul> <li>Show relevant mathematical reasoning and/or calculations</li> <li>No white-out may be used</li> <li>Total Marks: Section I - 10 marks         <ul> <li>Allow about 15 minutes for this section</li> <li>Section II - 90 marks</li> <li>Allow about 2 hours and 45 minutes for</li> </ul> </li> </ul>                                                                                                        |               | <ul> <li>Write using blue or black pen</li> </ul>                           |
| and/or calculations<br>• No white-out may be used<br>Total Marks: Section I - 10 marks<br>100 • Allow about 15 minutes for this section<br>Section II - 90 marks<br>• Allow about 2 hours and 45 minutes for                                                                                                                                                                                                         |               | NESA approved calculators may be used                                       |
| No white-out may be used     Total Marks: Section I - 10 marks     100         Allow about 15 minutes for this section     Section II - 90 marks         Allow about 2 hours and 45 minutes for                                                                                                                                                                                                                      |               | Show relevant mathematical reasoning                                        |
| Total Marks:       Section I - 10 marks         100       • Allow about 15 minutes for this section         Section II - 90 marks       • Allow about 2 hours and 45 minutes for                                                                                                                                                                                                                                     |               | and/or calculations                                                         |
| <ul> <li>Allow about 15 minutes for this section</li> <li>Section II - 90 marks         <ul> <li>Allow about 2 hours and 45 minutes for</li> </ul> </li> </ul>                                                                                                                                                                                                                                                       |               | <ul> <li>No white-out may be used</li> </ul>                                |
| <ul> <li>Allow about 15 minutes for this section</li> <li>Section II - 90 marks         <ul> <li>Allow about 2 hours and 45 minutes for</li> </ul> </li> </ul>                                                                                                                                                                                                                                                       |               |                                                                             |
| <ul><li>Section II - 90 marks</li><li>Allow about 2 hours and 45 minutes for</li></ul>                                                                                                                                                                                                                                                                                                                               | Total Marks:  | Section I - 10 marks                                                        |
| <ul> <li>Allow about 2 hours and 45 minutes for</li> </ul>                                                                                                                                                                                                                                                                                                                                                           | 100           | <ul> <li>Allow about 15 minutes for this section</li> </ul>                 |
| <ul> <li>Allow about 2 hours and 45 minutes for</li> </ul>                                                                                                                                                                                                                                                                                                                                                           |               | Section II - 90 marks                                                       |
| this sostion                                                                                                                                                                                                                                                                                                                                                                                                         |               |                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                      |               | <ul> <li>Allow about 2 hours and 45 minutes for</li> </ul>                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                      |               | <ul> <li>Allow about 2 hours and 45 minutes for<br/>this section</li> </ul> |
|                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                                                                             |

## This question paper must not be removed from the examination room.

This assessment task constitutes 40% of the course.

## Section I

## 10 marks

## Allow about 15 minutes for this section

Use the multiple-choice sheet for Questions 1–10

- During an election, politician A declares that creating more jobs will reduce crime. Politican B declares instead that reducing crime will create jobs. Politician B's statement is the \_\_\_\_\_\_ of politician A's statement.
  - (A) Negation
  - (B) Inverse
  - (C) Converse
  - (D) Contrapositive
- 2 The contrapositive of the statemement "If xy and x y are even, then both x and y are even" is best given by:
  - (A) If either x or y are odd, then either xy or x y are odd
  - (B) If both x and y are odd, then both xy and x y are odd
  - (C) If either xy or x y are odd, then either x or y are odd
  - (D) If both xy and x y are odd, then both x and y are odd

**3** The angle between the diagonals of a cube is:

(A) 
$$\cos^{-1}\frac{1}{9}$$

(B) 
$$\cos^{-1}\frac{1}{3}$$

(C) 
$$\cos^{-1}\frac{1}{\sqrt{3}}$$

(D) 
$$\cos^{-1}\frac{\sqrt{3}}{2}$$

4 A metal sphere is hung by a string fixed to a wall. The sphere is pushed away from the wall by a stick. The forces acting on the sphere are shown in the second diagram.

Which of the following statements is incorrect?



(A) 
$$P = W \tan \theta$$

(B) 
$$\vec{T} + \vec{P} + \vec{W} = 0$$

$$(C) T^2 = P^2 + W^2$$

(D) 
$$\vec{T} = \vec{P} + \vec{W}$$

- 5 The complex numbers z = x + iy which satisfy the equation  $\left|\frac{z-3i}{z+3i}\right| = 1$  lie on
  - (A) circle with centre (0,0) and radius 3
  - (B) a circle passing through the origin
  - (C) the straight line y = 3
  - (D) the *x*-axis
- 6 The roots of the equation  $z^n = (z+1)^n$ 
  - (A) are collinear
  - (B) are vertices of a regular polygon
  - (C) lie on a circle
  - (D) lie on a parabola with vertex  $\left(-\frac{1}{2}, 0\right)$

- 7 If a, b, c are three vectors of which every pair is non-collinear. If a + b and b + c are collinear with vectors c and a respectively, then
  - (A) a + b + c is a null vector
  - (B) a + b + c is a unit vector
  - (C) a + b + c is a vector of magnitude 2 unitsx
  - (D) a + b + c is a vector of magnitude 3 units

8 If 
$$\int f(x)dx = F(x)$$
, then  $\int x^3 f(x^2)dx$  is equal to

(A) 
$$\frac{1}{2} \left[ x^2 F(x) - \frac{1}{2} \int (F(x))^2 dx \right]$$

(B) 
$$\frac{1}{2} \left[ x^3 F(x^2) - 3 \int x^2 F(x^2) dx \right]$$

(C) 
$$\frac{1}{2}\left[x^2(F(x))^2 - \int (F(x))^2 dx\right]$$

(D) 
$$\frac{1}{2} \left[ x^2 F(x^2) - \int F(x^2) d(x^2) \right]$$

9 The diagram below represents a setup for demonstrating motion.



When the lever is released, the support rod withdraws from ball B, allowing it to fall. At the same instant the rod contacts ball A, propelling it horizontally to the left.

Which statement describes the motion that is observed after the lever is released and the balls fall? [Neglect friction.]

- (A) Ball A travels at constant velocity.
- (B) Ball A hits the tabletop at the same time as ball B
- (C) Ball B hits the tabletop before ball A
- (D) Ball B travels with an increasing acceleration

- 10 Unit vectors  $\vec{a}$  and  $\vec{b}$  are inclined at and angle  $2\theta$  such that  $|\vec{a} \vec{b}| < 1$  and  $0 \le \theta \le \pi$ , then  $\theta$  lies in the interval:
  - (A)  $\left[\frac{\pi}{6}, \frac{\pi}{2}\right]$
  - (B)  $\left[\frac{\pi}{6},\pi\right]$
  - (C)  $\left[\frac{\pi}{2}, \frac{5\pi}{6}\right]$

(D) 
$$\left[\frac{5\pi}{6},\pi\right]$$

## **End of Section I**

## Section II

## 90 marks

## Allow about 2 hours and 45 minutes for this section

Answer each question in the appropriate writing booklet. Extra writing booklets are available.

In Questions 11-16, your response should include relevant mathematical reasoning and/or calculations.

Question 11 (14 Marks) Use the Question 11 Writing Booklet.

(a) The complex numbers  $z_1, z_2$  and  $z_3$  are such that  $z_1 = 3 - i\sqrt{3}, z_2 = \frac{1}{2}e^{i\frac{2\pi}{5}}$  and

 $z_3 = z_1 z_2.$ 

- (i) Find exactly the modulus and argument of  $z_3$ . **3**
- (ii) Sketch an Argand diagram showing  $z_1, z_2$  and  $z_3$ . **2** You may use the polar axes on the sheet provided.
- (iii) Find the smallest positive integer value of *n* for which  $z_3^n$  is purely imaginary. **3** State the modulus of  $z_3^n$  in this case, giving answer in surd form.
- (b) Use partial fractions to find

$$\int \frac{(2x^2 + 5x + 9)}{(x - 1)(x^2 + 2x + 5)} dx$$

4

#### Question 11 continues on the next page

(c) Find:

$$\int_{0}^{\frac{\pi}{3}} \frac{d\theta}{1+\sin\theta}$$

## End of Question 11

Question 12 (14 Marks) Use the Question 12 Writing Booklet.

- (a) Prove that if a, b are integers such that 7 divides a + b and  $a^2 + b^2$ , then 7 divides both 2 a and b.
- (b) Show that  $x \ge \ln(1 + x)$  for all x > -1, stating clearly when the equality holds. 2
- (c) Find

$$\int \frac{\sqrt{1+x^2}}{x^4} dx$$

- (d) Prove that for  $\forall a, b, c \in \mathbb{Z}^+$ , where *a*, *b* and *c* form a Pythagorean triple **3** (that is,  $a^2 + b^2 = c^2$ ), that *a*, *b*, and *c* cannot all be odd numbers.
- (e) In an engine, the piston undergoes vertical simple harmonic motion with amplitude 7 cm. A washer of mass m kg rests on top of the piston and moves with it. At optimal speeds the washer stays in contact with the piston. The motor speed is slowly increased.

Find the frequency of the piston at which the washer no longer stays in contact with the piston.

End of question 12

Question 13 (14 Marks) Use the Question 13 Writing Booklet.

(a) (i) It is given that -1 + 2i is a root of the equation,

$$z^{3} + 2(1+i)z^{2} + (5+4i)z + 10i = 0$$

Explain why -1 - 2i may not be a root.

- (ii) Solve the equation  $z^3 + 2(1+i)z^2 + (5+4i)z + 10i = 0$ , giving your answers 4 in the form a + ib, where a and b are exact values.
- (iii) Hence solve  $iz^3 + 2(1+i)z^2 + (4-5i)z 10i = 0.$  2
- (b) In the diagram below C, D, E and F are points in a plane.  $\overrightarrow{CD} = a$ ,  $\overrightarrow{DE} = b$  and

 $\overrightarrow{FC} = a - b$ . *M* is the midpoint of *DE*. *X* is the point on *FM* such that *FX*: *XM* = *n*: 1.



- (i) Express  $\overrightarrow{FE}$  in terms of a and b.
- (ii) Given that CXE is a straight line, find the value of n. 4
- (iii) Find the point P where  $\overrightarrow{CD}$  and  $\overrightarrow{FM}$  intersect.

## End of question 13

1

Question 14 (16 Marks) Use the Question 14 Writing Booklet.

(a) Consider the sequence of real numbers  $x_1 \ge x_2 \ge x_3 \ge \dots \ge x_n$  and  $y_1 \ge y_2 \ge y_3 \ge \dots \ge y_n$ .

Prove that, if  $z_1, z_2, z_3, ..., z_n$  be any permutation of the numbers  $y_1, y_2, y_3, ..., y_n$ , then 4

$$\sum_{i=1}^{n} (x_i - y_i)^2 \le \sum_{i=1}^{n} (x_i - z_i)^2$$

(b) (i) For a, b > 0, prove that

$$\frac{a}{b} + \frac{b}{a} \ge 2$$

(ii) Let  $a_1, a_2, a_3, \dots a_n$  be positive real numbers such that  $a_1a_2a_3 \dots a_n = 1$ . 2 Prove that,

$$(1 + a_1)(1 + a_2)(1 + a_3) \dots (1 + a_n) \ge 2^n$$

(iii) Prove that for a, b, c, d > 0,

$$\frac{a^{2}}{b} + \frac{b^{2}}{c} + \frac{c^{2}}{d} + \frac{d^{2}}{a} \ge a + b + c + d$$

2

(c) Let:

$$I_n = \int \operatorname{cosec}^n x \qquad n \in \mathbb{Z}$$

(i) Prove that, for  $n \ge 2$ 

$$I_n = \frac{n-2}{n-1} I_{n-2} - \frac{\csc^{n-2}x \cot x}{n-1}$$

(ii) Hence, show that

$$\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \csc^6 x \, dx = \frac{56}{135}\sqrt{3}$$

## End of question 14

3

Question 15 (18 Marks) Use the Question 15 Writing Booklet.

(a) A gas company has plans to install a pipeline from a gas field to a storage facility. One part of the route for the pipeline must pass under a river. This part of the pipeline is in a straight line between two points, P and Q.

Points are defined relative to an origin (0, 0, 0) at the gas field. The *x*-, *y*- and *z*-axes are in the directions east, north and vertically upwards respectively, with units in metres. *P* and *Q* has position vectors,

$$\overrightarrow{OP} = \begin{pmatrix} 1136\\92\\p \end{pmatrix} \text{ and } \overrightarrow{OQ} = \begin{pmatrix} 200\\20\\-15 \end{pmatrix}$$

- (i) The length of the pipeline PQ is 939 metres. Given that the level of P is below that 2 of Q, find the value of p.
- (ii) A thin layer of rock lies below the ground. This layer is modelled as a plane. Three **3** points in this plane are A(400, 600, -20), B(500, 200, -70) and C(600, -340, -50).

Find the normal vector n, perpendicular to  $\overrightarrow{AB}$  and  $\overrightarrow{BC}$ .

- (iii) Hence, find the point at which the pipeline meets the rock. 3
- (iv) Find the angle that the pipeline between the points *P* and *Q* makes with the horizontal.

## Question 15 continues on the next page

(b) Consider the function  $f(x) = \sin x \log_e(x + n)$ .

(i) Using integration by parts, show that

$$\int_{0}^{2\pi} \sin x \log_e(x+n) dx = -\log_e\left(1 + \frac{2\pi}{n}\right) + \int_{0}^{2\pi} \frac{\sin x}{(x+n)^2} dx$$

(ii) Prove that 
$$\left| \int_{0}^{2\pi} \frac{\sin x}{(x+n)^2} dx \right| < \frac{2\pi}{n^2}$$
 3

(iii) Deduce that as  $n \to \infty$ ,

$$\int_{0}^{2\pi} \frac{\sin x \log_e(1+x) dx}{-\frac{2\pi}{n}} \to 1$$

## End of question 15

3

(a)



At a racecourse, a model car weighing 2m kilograms is held in place on a ramp by a hanging mass of m kilograms. The two bodies A and B of masses 2m and m kilograms respectively are attached to the ends of a light inextensible string. The string passes over a smooth pulley P. The car rests in equilibrium on a rough ramp LM.

The rough ramp *LM* makes an angle  $\alpha$  to the horizontal and, the rope attached to the car *A* makes an equal angle of  $\alpha$  to the ramp. The body *B* hangs vertically below *P*.

Find the range of values of  $\alpha$  for which the car *A* will not slip down the ramp or lose contact with the ramp.

Question 16 continues on the next page

(b) The diagram below shows a smooth platform inclined at an angle of  $50^{\circ}$  to the horizontal, partially immersed in a medium. A smooth ball falls freely from *O* and strikes the platform at the point *P*, 20 metres vertically below it as shown in the diagram (air resistance is negligible).

The ball then bounces off the platform with velocity of  $V ms^{-1}$  and strikes it again at the point Q. As it bounces and enters the medium, the ball experiences the effect of gravity and a resistance of 0.4V per unit mass in both horizontal and vertical directions.



(The acceleration due to gravity is  $9.8 \text{ ms}^{-2}$ ).

- (i) Show that the ball has a speed of  $2\sqrt{10g}$  as it strikes the platform just above the medium. 2
- (ii) Verify that the ball will strike the platform again at Q after 3.32 seconds. 4
- (iii) Calculate the velocity and angle of impact at Q.

2

## **End of Examination**

Converse (C)

Question 2

(C)

Question 3



Direction cosines of  $OB = \left(\frac{a-0}{\sqrt{a^2+a^2+a^2}}, \frac{a-0}{\sqrt{a^2+a^2+a^2}}, \frac{a-0}{\sqrt{a^2+a^2+a^2}}\right)$ 

$$=\left(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}\right)$$

Direction cosines of  $AC = \left(\frac{0-a}{\sqrt{a^2 + a^2 + a^2}}, \frac{a-0}{\sqrt{a^2 + a^2 + a^2}}, \frac{a-0}{\sqrt{a^2 + a^2 + a^2}}\right)$ 

$$= \left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$$
$$\overrightarrow{OB}. \overrightarrow{AC} = |\overrightarrow{OB}| |\overrightarrow{AC}| \cos \theta$$
$$-\frac{1}{3} + \frac{1}{3} + \frac{1}{3} = 1 \times 1 \cos \theta$$
$$\cos \theta = \frac{1}{3}$$
$$\theta = \cos^{-1}\frac{1}{3}$$

#### Question 4

As the metal sphere is in equilibrium under the effect of the three forces,  $\vec{T} + \vec{P} + \vec{W} = 0$ .

From the figure,  $T\cos\theta = W$  (1) and  $T\sin\theta = P$ . (2) From (1) and (2) Then  $P = W\tan\theta$  and  $T^2 = P^2 + W^2$ 

А

 $\left|\frac{z-3i}{z+3i}\right| = 1$ 

Then, |z - 3i| = |z + 3i|

Interpreting the meaning we get the |PA| = |PB|

Then P is on the perpendicular bisector of the line joining A(3i) and B(-3i)

Hence, P lies on the x-axis.

#### **Question 6**

Multiple choice work

$$\left|\frac{z+1}{z}\right|^n = 1$$

For multiple choice, let n = 1

|z + 1| = |z|

Using symmetry,  $z = -\frac{1}{2}$ 

That is  $x = -\frac{1}{2}$ 

Equation of the locus is 2x + 1 = 0

Which is linear.

Therefore the roots are collinear. (A)

Or

Let z = x + iy and solve algebraically.

#### Question 7

 $\begin{array}{l} a + b \\ a + b \\ \hline \end{array} \text{ is collinear with } \underbrace{c}_{c}, \text{ then } \underbrace{a}_{c} + \underbrace{b}_{c} = \lambda c \\ \Rightarrow \underbrace{a}_{c} + \underbrace{b}_{c} + \underbrace{c}_{c} = \lambda \underbrace{c}_{c} + \underbrace{c}_{c} = \underbrace{c}_{c}(1 + \lambda) \\ \text{Given } \underbrace{b}_{c} + \underbrace{c}_{c} \text{ is collinear with } \underbrace{a}_{c}, \text{ then } \underbrace{b}_{c} + \underbrace{c}_{c} = \mu \underbrace{a}_{c} \\ \Rightarrow \underbrace{a}_{c} + \underbrace{b}_{c} + \underbrace{c}_{c} = \underbrace{a}_{c} + \mu \underbrace{a}_{c} = \underbrace{a}_{c}(1 + \mu) \\ \text{Then, by equating,} \end{array}$ 

 $c(1+\lambda) = a(1+\mu)$ 

But  $\underline{a}$  and  $\underline{c}$  are not collinear. So,  $1 + \lambda = 1 + \mu = 0 \Longrightarrow \lambda = \mu = -1$ Then  $\underline{a} + \underline{b} + \underline{c} = 0$  $\underline{a} + \underline{b} + \underline{c}$  is a null vector (A)

Question 8

$$\int f(x)dx = F(x), \text{ then } \int x^3 f(x^2)dx \text{ is equal to}$$
$$\int x^3 f(x^2)dx = \int x^2 \cdot \frac{1}{2}(2x f(x^2))dx$$
$$= \frac{1}{2} \Big[ x^2 F(x^2) - \int 2x F(x^2)dx \Big]$$
$$= \frac{1}{2} [x^2 F(x^2) - \int F(x^2)d(x^2)] \text{ (D)}$$

#### Question 9

(A)  $V_x$  is constant, but not  $V_y$  (*Not A*) (B)  $y = -\frac{gt^2}{2} + h$  in both cases, hence both A nd B takes the same time

(C) Not C (using B)

(D) y - acceleration is constant which is the only force acting on the body, so, not D

Answer B

Question 10

(D)

Question 11 (12 marks)

| 11   | $ z_3  =  z_1  z_2 $                                            | 1 mark: correctly                               |
|------|-----------------------------------------------------------------|-------------------------------------------------|
| a(i) | $\frac{1}{2} \times \sqrt{12} = \sqrt{3}$                       | calculates the modulus.                         |
|      | $\arg z_3 = \arg z_2 + \arg z_1$<br>$\arg z_1 = -\frac{\pi}{6}$ | 1 mark: calculates $\arg z_1$<br>and $\arg z_2$ |
|      | $=\frac{2\pi}{5} - \frac{\pi}{6} = \frac{7\pi}{30}$             | 1 mark: correctly calculates $\arg z_3$         |

a(ii)  

$$a(iii) z_{3}^{n} = \left(\sqrt{3}e^{\frac{\pi}{2}}e^{n}\right)^{n} = \sqrt{3}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{n}$$

$$= \sqrt{3}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{n}$$

$$= \sqrt{3}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{n}$$

$$= \sqrt{3}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{n}$$

$$= \sqrt{3}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^{\frac{\pi}{2}}e^$$

| 11<br>(b) | $\int \frac{(2x^2 + 5x + 9)}{(x - 1)(x^2 + 2x + 5)} dx$ $\frac{(2x^2 + 5x + 9)}{(x - 1)(x^2 + 2x + 5)} = \frac{A}{x - 1} + \frac{Bx + C}{x^2 + 2x + 5}$ Let $x = 1$ $A = 2$ $2x^2 + 5x + 9 = A(x^2 + 2x + 5) + (Bx + C)(x - 1)$ Comparing $x^2$ term, $A + B = 2 \rightarrow B = 0$                                                                                                                                                                                                                                                                                                                                  | <ul> <li>1 mark: Separates the integrand into appropriate general forms of partial fractions and evaluates at least one of the pronumerals</li> <li>1 mark: evaluates the pronumerals correctly.</li> </ul> |  |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|           | Comparing constants,<br>$9 = 5A - C \rightarrow C = 1$ $\int \frac{(2x^2 + 5x + 9)}{(x - 1)(x^2 + 2x + 5)} dx$ $= \int \frac{2}{x - 1} + \frac{1}{x^2 + 2x + 5} dx$ $= \int \frac{2}{x - 1} + \frac{1}{(x + 1)^2 + 4} dx$ $= 2\ln x - 1  + \frac{1}{2}\tan^{-1}\frac{x + 1}{2} + C$                                                                                                                                                                                                                                                                                                                                  | 2 marks: correctly<br>integrates.<br>1 mark: correctly<br>integrates $\frac{2}{x-1}$ and<br>attempts to integrate the<br>quadratic denominator                                                              |  |
| 11<br>(c) | $\int_{0}^{\frac{\pi}{3}} \frac{d\theta}{1+\sin\theta}$ Let $t = \tan\frac{\theta}{2}$ , then $d\theta = \frac{2dt}{1+t^{2}}$<br>When $\theta = 0, t = 0; \ \theta = \frac{\pi}{3}, \ y = \tan\frac{\pi}{6} = \frac{1}{\sqrt{3}}$<br>$\int_{0}^{\frac{1}{\sqrt{3}}} \frac{2dt}{1+t^{2}} = \int_{0}^{\frac{1}{\sqrt{3}}} \frac{2dt}{1+t^{2}+2t}$ $\int_{0}^{\frac{1}{\sqrt{3}}} \frac{2dt}{(1+t)^{2}} = \left[-\frac{2}{1+t}\right]_{0}^{\frac{1}{\sqrt{3}}}$ $= -\frac{2}{1+\frac{1}{\sqrt{3}}} + 2$ $= 2 - \frac{2\sqrt{3}}{\sqrt{3}+1} \times \frac{\sqrt{3}-1}{\sqrt{3}-1}$ $= 2 - 3 + \sqrt{3}$ $= \sqrt{3} - 1$ | 1 mark: correctly converts<br>the integrand and the<br>limits in terms of t<br>1 mark: correctly<br>integrates and evaluates                                                                                |  |

| 12(a) | Since 7 divides $a + b$ , it divides,<br>$(a + b)^2 = a^2 + 2ab + b^2$<br>Hence 7 also divides the difference of this and<br>$a^2 + b^2$ , which is $2ab$<br>But 7 does not divide 2, so it must divide $ab$<br>Since 7 is a prime, it must divide either $a$ or $b$ .<br>But if it divides $a$ , it divides $b$ as well (since it<br>divides $a + b$ ); similarly, it 7 divides $b$ , it also<br>divides $a$ .<br>So it divides both $a$ and $b$ | <ul> <li>1 mark for substantive progress towards solution by finding 2<i>ab</i> is divisible by 7.</li> <li>2 marks complete and logical solution</li> </ul>                                         |  |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 12(b) | We need to prove that<br>$x \ge \ln(1+x)$ for $\forall x > -1$<br>Consider the function $f(x) = x - \ln(1+x)$<br>$f'(x) = 1 - \frac{1}{1+x}$<br>$f'(x) = 0 \iff x = 0$<br>$f'(x) = 0 \iff x = 0$<br>$f'(x) = 0 \iff x = 0$<br>Thus, $f(x)$ has an absolute minimum of 0 at<br>x = 0 for $x > -1$ , with equality iff $x = 0$ .                                                                                                                    | 1 mark: correctly proves $f(x)$ has a minimum value at $x = 0$<br>! mark: explains that $f(x)$ has the minimum value 0 and also equality holds iff $x = 0$ (must give clear working and explanation) |  |
| 12(c) | $\int \frac{\sqrt{1 + x^2}}{x^4} dx$ Let $x = \tan \theta$<br>Then,<br>$dx = \sec^2 \theta  d\theta$<br>$\sqrt{1 + x^2} = \sec \theta$<br>$\int \frac{\sqrt{1 + x^2}}{x^4} dx = \int \frac{\sec \theta \sec^2 \theta  d\theta}{\tan^4 \theta}$<br>$= \int \frac{\cos \theta}{\sin^4 \theta} d\theta$<br>$= -\frac{1}{3 \sin^3 \theta} + C$                                                                                                        | Uses the correct<br>substitution and<br>transforms the<br>integrand.<br>1 mark: correctly<br>integrates.<br>1 mark: gives the<br>solution in terms of x                                              |  |

| $=-\frac{1}{(2-1)^3}+C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| $= -\frac{1}{3\left(\frac{x}{\sqrt{1+x^2}}\right)^3} + C$ $= -\frac{(1+x^2)^{\frac{3}{2}}}{3x^3} + C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 12<br>(d) for $\forall a, b, c \in \mathbb{Z}^+$ , that form Pythagorean<br>triplet (that is, $a^2 + b^2 = c^2$ ), $a, b, and c$<br>cannot all be odd numbers.<br>We will prove this statement by contradiction.<br>Suppose $a$ and $b$ are both odd.<br>Then $a = 2s + 1$ and $b = 2t + 1$ , $s, t \in \mathbb{Z}^+$<br>$c^2 = a^2 + b^2$<br>$= (2s + 1)^2 + (2t + 1)^2$<br>$= 4s^2 + 4s + 1 + 4t^2 + 4t + 1$<br>$4(s^2 + s + t^2 + t) + 2$<br>This means that $c^2$ is even and so $c$ is even, say<br>$c = 2u$ and therefore $c^2 = 4u^2$ .<br>Putting this together with the previous<br>equation,<br>$4u^2 = 4(s^2 + s + t^2 + t) + 2$<br>$2u^2 = 2(s^2 + s + t^2 + t) + 1$<br>This is impossible as LHS is even, and RHS is<br>odd. Hence, the contradiction is false, and the<br>statement is correct. |  |
| 12The displacement<br>$x = a \sin(\omega t + \phi)$ 1 mark: develops the<br>equations of motion and<br>states the maximum<br>acceleration. $\dot{x} = \omega a \cos (\omega t + \phi)$ 1 mark: develops the<br>equations of motion and<br>states the maximum<br>acceleration. $\ddot{x} = -\omega^2 a \sin (\omega t + \phi)$ 1 mark: converts<br>amplitude = 7 cm = 0.07 m<br>$F + N = mg$<br>As the washer does not stay in contact with the<br>piston, at some frequency, the normal force on<br>the washer equals zero.1 mark: converts<br>amplitude to metres and<br>writes the forces acting<br>on the washer of mass<br>m. $F_{max} = mg$<br>Maximum acceleration = $-\omega^2 a = g$ $\omega^2 = \frac{g}{a}$                                                                                         |  |
| a 1 mark: calculates $\omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |

| $\omega = \sqrt{\frac{g}{a}} = \sqrt{\frac{10}{0.07}} = \sqrt{\frac{1000}{7}} = 10\sqrt{\frac{10}{7}}$                                 |                                   |  |
|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--|
| Frequency of motion<br>$f = \frac{1}{T}$ $T = \frac{2\pi}{\omega} = \frac{2\pi\sqrt{7}}{10\sqrt{10}} = \frac{\pi\sqrt{7}}{5\sqrt{10}}$ | 1 mark: calculates the frequency. |  |
| $f = \frac{1}{T} = \frac{5\sqrt{10}}{\pi\sqrt{7}} \text{ hertz}$                                                                       |                                   |  |
| NF<br>Wy<br>My<br>F= maw <sup>2</sup><br>Max                                                                                           |                                   |  |

| $+ 2(1 + i)z^{2} + (5 + 4i)z + 10i \cong (z + 1 - 2i)(z^{2} + Az + B)$<br>mparing constants,<br>10: (1 - 2i)B | 2 marks: factorises the<br>polynomial into linear<br>and quadratic factors                             |                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10i = (1 - 2i)B                                                                                               |                                                                                                        |                                                                                                                                                                                              |
| en,<br>$B = \frac{10i}{1-2i} = \frac{10i(1+2i)}{5} = -4 + 2i$ mparing $z^2$ term, $2(1+i) = A + 1 - 2i$       | 2 marks: correctly<br>solves the quadratic<br>equation and gives all<br>the three roots.               |                                                                                                                                                                                              |
| en $A = 1 + 4i$<br>us, the polynomial equation is<br>$(+1-2i)(z^2 + (1+4i)z + (-4+2i)) = 0$<br>2 marks        | (Award 1 mark: if minor<br>error in calculations)<br>Students may choose to                            |                                                                                                                                                                                              |
| ving the quadratic,<br>$z = \frac{-1 - 4i \pm \sqrt{(1 + 4i)^2 - 4(-4 + 2i)}}{2}$                             | use the sum of roots,<br>product of roots methos.<br>This would leave you<br>having to find the square |                                                                                                                                                                                              |
| 2<br>vi                                                                                                       | 2 marks<br>ng the quadratic,                                                                           | 2 marks<br>ng the quadratic,<br>$= \frac{-1 - 4i \pm \sqrt{(1 + 4i)^2 - 4(-4 + 2i)}}{2}$ Students may choose to<br>use the sum of roots,<br>product of roots methos.<br>This would leave you |

| 0 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $z = -2i, \qquad \frac{-2-4i}{2} = -1-2i$<br>Roots are<br>$z = -2i, \qquad -1+2i, \qquad -1-2i$<br>$z^{3} + 2(1+i)z^{2} + (5+4i)z + 10i = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| If we replace, z with iz,<br>$(iz)^{3} + 2(1+i)(iz)^{2} + (5+4i)(iz) + 10i$ $= 0$ $-iz^{3} - 2(1+i)z^{2} + (-4+5i)z + 10i = 0$ $iz^{3} + 2(1+i)z^{2} + (4-5i)z - 10i = 0$ Then, the roots are<br>$iz = -2i,  -1+2i,  -1-2i$ $z = -2, \frac{-1+2i}{i}, \frac{-1-2i}{i}$ $z = -2,  2+i, -2+i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 mark: substitutes z<br>with <i>iz</i> to get the<br>necessary equation<br>1 mark: converts the<br>solutions using the<br>transformation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\overrightarrow{FE} = \overrightarrow{FC} + \overrightarrow{CD} + \overrightarrow{DE}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $= \underbrace{a}_{c} - \underbrace{b}_{c} + \underbrace{a}_{c} + \underbrace{b}_{c} = 2\underbrace{a}_{c} \qquad 1 \text{ mark}$<br>Without losing laws of generality, let us keep $F$<br>as the origin. Position vector of C is $\underbrace{a}_{c} - \underbrace{b}_{c}$<br>$\overrightarrow{CE} = \underbrace{a}_{c} + \underbrace{b}_{c}$<br>Thus vector equation of the line $CX$ is<br>$\overrightarrow{FC} + s \ \overrightarrow{CE}$ , where $s \in R$<br>Thus $\overrightarrow{CX} = \underbrace{a}_{c} - \underbrace{b}_{c} + s \left( \underbrace{a}_{c} + \underbrace{b}_{c} \right) \qquad 1 \text{ mark}$<br>$\overrightarrow{FM} = \overrightarrow{FC} + \overrightarrow{CM} = \underbrace{a}_{c} - \underbrace{b}_{c} + \underbrace{a}_{c} + \frac{1}{2}\underbrace{b}_{c}$<br>$= 2 \underbrace{a}_{c} - \frac{1}{2}\underbrace{b}_{c}$<br>Thus vector equation of the line $\overrightarrow{FX} = t \ \overrightarrow{FM}$ , $t \in R$ | 1 mark: correct<br>expression for $\overrightarrow{FE}$ in<br>terms of $a$ and $b$<br>(ii)<br>1 mark: finds the correct<br>equation of the line CX<br>1 mark: correct<br>equation FX<br>2 marks: gets the<br>correct simultaneous<br>equations and solves for<br>s and t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Roots are<br>$z = -2i,  -1 + 2i,  -1 - 2i$ $z^{3} + 2(1 + i)z^{2} + (5 + 4i)z + 10i = 0$ If we replace, z with iz,<br>$(iz)^{3} + 2(1 + i)(iz)^{2} + (5 + 4i)(iz) + 10i = 0$ $-iz^{3} - 2(1 + i)z^{2} + (-4 + 5i)z + 10i = 0$ Then, the roots are<br>$iz = -2i,  -1 + 2i,  -1 - 2i$ $z = -2,  \frac{-1 + 2i}{i}, \frac{-1 - 2i}{i}$ $z = -2,  2 + i, -2 + i$ Method 1<br>$\overrightarrow{FE} = \overrightarrow{FC} + \overrightarrow{CD} + \overrightarrow{DE}$ $= a - b + a + b = 2a \qquad 1 \text{ mark}$ Without losing laws of generality, let us keep F<br>as the origin. Position vector of C is $a - b$<br>$\overrightarrow{CE} = a + b$ Thus vector equation of the line CX is<br>$\overrightarrow{FM} = \overrightarrow{FC} + \overrightarrow{CM} = a - b + a + \frac{1}{2}b$ $= 2a - \frac{1}{2}b$ Thus vector equation of the line $\overrightarrow{FX} = t \ \overrightarrow{FM}$ , | Roots are<br>z = -2i, $-1 + 2i$ , $-1 - 2iz^3 + 2(1 + i)z^2 + (5 + 4i)z + 10i = 0If we replace, z with iz,(iz)^3 + 2(1 + i)(iz)^2 + (5 + 4i)(iz) + 10i= 0-iz^3 - 2(1 + i)z^2 + (-4 + 5i)z + 10i = 0iz^3 + 2(1 + i)z^2 + (4 - 5i)z - 10i = 0Then, the roots areiz = -2i$ , $-1 + 2i$ , $-1 - 2iz = -2, \frac{-1 + 2i}{i}, \frac{-1 - 2i}{i}z = -2$ , $2 + i, -2 + iMethod 1\overline{FE} = \overline{FC} + \overline{CD} + \overline{DE}= a - b + a + b = 2a$ 1 mark<br>Without losing laws of generality, let us keep $F$<br>as the origin. Position vector of $C$ is $a - b$<br>$\overline{CE} = a + b$<br>Thus vector equation of the line $CX$ is<br>$\overline{FC} + s \overline{CE}$ , where $s \in R$<br>Thus $\overline{CX} = a - b + s(a + b)$ 1 mark<br>$\overline{FM} = \overline{FC} + \overline{CM} = a - b + a + \frac{1}{2}b$<br>$= 2a - \frac{1}{2}b$<br>Thus vector equation of the line $\overline{FX} = t \overline{FM}$ ,<br>Thus vector equation of the line $\overline{FX} = t \overline{FM}$ ,<br>Thus vector equation of the line $\overline{FX} = t \overline{FM}$ , |

| <br>                                                                                                                                                                                                                                                                                            |                                                                 |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--|
| $= t\left(2\underset{\sim}{a} - \frac{1}{2}\underset{\sim}{b}\right) \qquad 1 mark$                                                                                                                                                                                                             | (Award 1 mark: gets the correct simultaneous                    |  |
| Finding point of intersection of the lines,                                                                                                                                                                                                                                                     | equation and attempts<br>to solve for s and t.<br>(minor error) |  |
| $\underset{\sim}{a} - \underset{\sim}{b} + s\left(\underset{\sim}{a} + \underset{\sim}{b}\right) = t\left(2\underset{\sim}{a} - \frac{1}{2}\underset{\sim}{b}\right)$                                                                                                                           |                                                                 |  |
| $(1+s)a + (s-1)b = 2ta - \frac{1}{2}tb$<br>Compare $a$ and $b$ coefficients,                                                                                                                                                                                                                    | 1 mark: explains and correctly solves for <i>n</i>              |  |
| $1 + s = 2t$ $s - 1 = -\frac{1}{2}t$ Solving simultaneously,                                                                                                                                                                                                                                    |                                                                 |  |
| $s = 2t - 1$ $2t - 2 = -\frac{1}{2}t$ $\frac{5}{2}t = 2$                                                                                                                                                                                                                                        |                                                                 |  |
| $t = \frac{4}{5}$<br>Then, $s = \frac{3}{5}$ 2 marks                                                                                                                                                                                                                                            |                                                                 |  |
| $\overrightarrow{FX} = t\left(2\underset{\sim}{a} - \frac{1}{2}\underset{\sim}{b}\right)$                                                                                                                                                                                                       |                                                                 |  |
| $ \overrightarrow{FX}  = t \left  \left( 2a - \frac{1}{2}b \right) \right $ from F and $(1 - t)$ multiples from M.<br>Hence,                                                                                                                                                                    |                                                                 |  |
| $\frac{n}{1} = \frac{t}{1-t}$ $n = 4$ 1 mark                                                                                                                                                                                                                                                    |                                                                 |  |
| Method 2                                                                                                                                                                                                                                                                                        |                                                                 |  |
| $\overrightarrow{FM} = 2a - \frac{1}{2}b$ $\overrightarrow{EX} = \overrightarrow{EM} + \overrightarrow{MK}$                                                                                                                                                                                     |                                                                 |  |
| $\overrightarrow{EX} = \frac{-1}{2} \underbrace{b}_{\sim} + \frac{1}{n+1} \overrightarrow{MF} \\ = -\frac{1}{2} \underbrace{b}_{\sim} - \frac{1}{n+1} \left( 2a - \frac{1}{2} \underbrace{b}_{\sim} \right)$                                                                                    |                                                                 |  |
| $= -\frac{1}{2} \underbrace{b}_{\sim} - \frac{2}{n+1} \underbrace{a}_{\sim} + \frac{1}{2(n+1)} \underbrace{b}_{\sim}$ $= -\frac{2}{n+1} \underbrace{a}_{\sim} + \frac{-n-1+1}{2(n+1)} \underbrace{b}_{\sim}$ $= -\frac{2}{n+1} \underbrace{a}_{\sim} + \frac{-n}{2(n+1)} \underbrace{b}_{\sim}$ |                                                                 |  |
| $\overrightarrow{EX} = -\frac{1}{n+1} \begin{pmatrix} 2a+1 \\ 2a+2b \\ 2a \end{pmatrix} $ (1)                                                                                                                                                                                                   |                                                                 |  |

| CXE is a straight line.                                                                                                          |  |
|----------------------------------------------------------------------------------------------------------------------------------|--|
| $\overline{EX} = \lambda  \overline{EC}$ $\overline{EX} = -\lambda  \left( \begin{array}{c} a + b \\ a \end{array} \right)  (2)$ |  |
| Equating (1) and (2),                                                                                                            |  |
| $-\frac{1}{n+1}\left(2a+\frac{n}{2}b\right) = -\lambda\left(a+b\right)$<br>Comparing coefficients of $a$ and $b$ ,               |  |
| $\frac{2}{n+1} = \frac{n}{2(n+1)}$ $n^2 + n = 4n + 4$                                                                            |  |
| $n^{2} - 3n - 4 = 0$<br>(n - 1)(n + 1) = 0<br>$n = 4,  n \neq -1$                                                                |  |
| Hence, $n = 4$                                                                                                                   |  |

Question 14

| 4.4. (1) | NAC 1.                                                                                                                                                    |                                                                                             |  |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|
| 14a(i)   | We need to prove                                                                                                                                          |                                                                                             |  |
|          | $\sum_{i=1}^{n} (x_i - y_i)^2 \le \sum_{i=1}^{n} (x_i - z_i)^2$                                                                                           |                                                                                             |  |
|          | Expanding both sides,                                                                                                                                     |                                                                                             |  |
|          |                                                                                                                                                           | Award 2 marks if                                                                            |  |
|          | n n n                                                                                                                                                     | n n                                                                                         |  |
|          | $\sum_{i=1}^{n} x_i^2 + \sum_{i=1}^{n} y_i^2 - 2 \sum_{i=1}^{n} x_i y_i$<br>$\leq \sum_{i=1}^{n} x_i^2 + \sum_{i=1}^{n} z_i^2 - 2 \sum_{i=1}^{n} x_i z_i$ | $\sum_{i=1}^{i} x_i y_i \ge \sum_{i=1}^{i} x_i z_i$<br>And gives a verbal<br>justification. |  |
|          | But, $i=1$ $i=1$ $i=1$                                                                                                                                    | (Award 1 mark: if any                                                                       |  |
|          | n n                                                                                                                                                       | expands the sequence,                                                                       |  |
|          | $\sum_{i=1} y_i^2 = \sum_{i=1} z_i^2$                                                                                                                     | attempts to simplify<br>with some error                                                     |  |
|          | $z_i$ s Are only permutations of $y_i$ s.                                                                                                                 |                                                                                             |  |
|          | Thus, it is enough to prove that $n$                                                                                                                      | 2 montus                                                                                    |  |
|          | $\sum_{i=1}^{n} x_i y_i \ge \sum_{i=1}^{n} x_i z_i$                                                                                                       | 2 marks:<br>$\sum_{i=1}^{n} x_{i}y_{i} \ge \sum_{i=1}^{n} x_{i}z_{i}$                       |  |
|          | (2 marks)                                                                                                                                                 | i=1 $i=1$                                                                                   |  |
|          | Consider the pairing $x_1 \rightarrow y_1$ , $x_2 \rightarrow y_2$ , $x_n \rightarrow$                                                                    | Proves the result with                                                                      |  |
|          | $y_n$ . By switching around some of the y values,                                                                                                         | full working and logical                                                                    |  |
|          | we have obtained the pairing $x_1 \rightarrow z_1$ , $x_2 \rightarrow z_2$ ,                                                                              | explanation.                                                                                |  |
|          | $\dots x_n \to z_n.$                                                                                                                                      |                                                                                             |  |
|          | Without loss of generality,                                                                                                                               | 1 mark: Attempts to                                                                         |  |
|          | Suppose that we switch around two y- values $y_m$<br>and $y_n$ where $y_m > y_n$ .                                                                        | prove after making the                                                                      |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [                      |                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------------------------------|
| The quitching of numbers will only offect the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mapping and converting |                                                                  |
| The switching of numbers will only affect the<br>sum of products (sum of squares will remain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | to <i>z</i> .          |                                                                  |
| unaltered.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |                                                                  |
| By switching $y_m$ and $y_n$ , the sum of products will                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |                                                                  |
| increase by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                                                  |
| $x_{m}y_{n} + x_{n}y_{m} - x_{m}y_{m} - x_{n}y_{n}$<br>= $x_{n}(y_{m} - y_{n}) - x_{m}(y_{m} - y_{n})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                                                                  |
| $= (x_n - x_m)(y_m - y_n) < 0$ as $y_m > y_n$ and $x_n < 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                                                                  |
| $x_m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                                                                  |
| Thus $x_m y_n + x_n y_m < x_m y_m + x_n y_n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                                                                  |
| LHS is where the permutation has been applied,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |                                                                  |
| so let us call $y_n \to z_m$ , $y_m \to z_n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                                                                  |
| Thus $x_m z_m + x_n z_n < x_m y_m + x_n y_n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                                                                  |
| Equality holds when $x_m = x_n$ and $y_m = y_n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                                                  |
| Generalising this result we have proved that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                                                                  |
| n n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |                                                                  |
| $\sum_{i=1}^{n} x_i y_i \geq \sum_{i=1}^{n} x_i z_i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                                                                  |
| i=1 $i=1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |                                                                  |
| Note: This means that the largest of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |                                                                  |
| sum product will be, when the largest of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |                                                                  |
| one sequence is paired with the largest of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |                                                                  |
| the other .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                                                                  |
| And hence,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |                                                                  |
| $\sum_{i=1}^{n} (x_{i} - y_{i})^{2} \leq \sum_{i=1}^{n} (x_{i} - z_{i})^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                                                                  |
| $\sum_{i=1}^{i} (x_i - y_i) \leq \sum_{i=1}^{i} (x_i - z_i)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                                                                  |
| ι-1 ι-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |                                                                  |
| Method 2 : Using contradiction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |                                                                  |
| First part the same as method 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | Award 2 marks if $n$                                             |
| We need to prove                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | $\sum x_i y_i \ge \sum x_i z_i$                                  |
| We need to prove, $\frac{n}{2}$ $\frac{n}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        | $\sum_{i=1}^{n_i y_i} \sum_{i=1}^{n_i z_i} \sum_{i=1}^{n_i z_i}$ |
| $\sum_{i=1}^{n} (x_i - y_i)^2 \le \sum_{i=1}^{n} (x_i - z_i)^2 \le $                                                                                                                                                     | $(z_i)^2$              | And gives a verbal                                               |
| l-1 $l-1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | justification.                                                   |
| Expanding both sides,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        | (Award 1 mark: if any                                            |
| n n n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        | expands the sequence,                                            |
| $\sum x_i^2 + \sum y_i^2 - 2 \sum x_i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | iγ <sub>i</sub>        | attempts to simplify with                                        |
| $\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j$ |                        | some error                                                       |
| $\sum_{i=1}^{n} x_i^2 + \sum_{i=1}^{n} y_i^2 - 2 \sum_{i=1}^{n} x_i^2$ $\leq \sum_{i=1}^{n} x_i^2 + \sum_{i=1}^{n} z_i^2 - 2 \sum_{i=1}^{n} x_i^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ¥.7.                   | 2 marks: correct Proof by                                        |
| $\simeq \sum_{i=1}^{n} x_i + \sum_{i=1}^{n} z_i - \sum_{i=1}^{n} z_i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <i>∧i</i> ∠i           | contradiction                                                    |
| But,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                                                                  |
| $\sum_{i=1}^{n} y_i^2 = \sum_{i=1}^{n} z_i^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        | Award 1 mark: writes<br>correct the contradiction                |
| $\sum_{i=1}^{j} y_i^{-} = \sum_{i=1}^{j} z_i^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        | statement, and then some                                         |
| $z_i^{i=1}$ $z_i^{i=1}$ s Are only permutations of $y_i$ s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        | minor error                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                                                  |
| Thus, it is enough to prove that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                                                  |

|                                                                                                                                                                                                                                                                      | $\sum_{i=1}^{n} x_i y_i \ge \sum_{i=1}^{n} x_i z_i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| reached out of all p<br>$x_n$ or $y_1 = y_2 = \cdots$<br>Now, assume, for<br>there exists some of<br>$\cdots \ge z_n$ such that<br>greater than the su<br>there exists two ter<br>$x_p z_n +$<br>which means if we<br>original $x_p z_m$ and $z$<br>since we assumed | That the left-hand side of the inequality is the greatest sum<br>possible values of $\sum_{i=1}^{n} x_i z_i$ . Obviously, if $x_1 = x_2 = x_3 = \cdots = x_i = y_n$ , the inequality is true.<br>contradiction, that neither of those conditions are true and that<br>order of $z_i$ s that are not ordered in the form, $z_1 \ge z_2 \ge z_3 \ge \sum_{i=1}^{n} x_i z_i$ is at a maximum out of all possible permutations and is<br>$\sum_{i=1}^{n} x_i y_i$ . This necessarily means that in the sum $\sum_{i=1}^{n} x_i z_i$<br>rms $x_p z_m$ and $x_q z_n$ such that $x_p > x_q$ and $z_m < z_n$ .<br>$-x_q z_m - (x_p z_m + x_q z_n) = (x_p - x_q)(z_n - z_m) > 0$<br>make the terms $x_p z_n$ and $x_q z_m$ instead of the<br>$x_q z_n$ , we can achieve a higher sum. However, this is impossible,<br>we had the highest sum. Thus, the inequality<br>$\sum_{i=1}^{n} x_i y_i \ge \sum_{i=1}^{n} x_i z_i$<br>equivalent to what we wanted to prove. |  |

| 14b(i)      | For $a, b > 0$ ,<br>$(\sqrt{a} - \sqrt{b})^2 \ge 0$<br>$a + b - 2\sqrt{ab} \ge 0$<br>Then, $a + b \ge 2ab$<br>Replace,<br>$a \rightarrow \frac{a}{b} \text{ and } b \rightarrow \frac{b}{a}$<br>Thus,<br>$\frac{a}{b} + \frac{b}{a} \ge 2\sqrt{\frac{a}{b} \cdot \frac{b}{a}} = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 marks: proves the AM<br>– GM inequality and<br>then applies to prove<br>the result.<br>1 mark: Applies AM-GM<br>inequality to get the<br>result. |  |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 14b<br>(ii) | $\begin{array}{c} a_{1},a_{2},a_{3},\ldots \ a_{n}>0\\ \mbox{Using AM-GM inequality}\\ 1+a_{1}\geq 2\sqrt{a_{1}}\\ 1+a_{2}\geq 2\sqrt{a_{2}}\\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ 1+a_{n}\geq 2\sqrt{a_{n}}\\ \mbox{Multiplying the inequalities,}\\ (1+a_{1})(1+a_{2})(1+a_{3})\ldots \ (1+a_{n})\geq \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$ | 2 marks: correct proof<br>1 mark: Minor error in<br>the proof                                                                                      |  |
| 14b         | Let $a \le b \le c \le d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                    |  |

| (iii)        | $\frac{a^{2}}{b} + \frac{b^{2}}{c} + \frac{c^{2}}{d} + \frac{d^{2}}{a} \ge \frac{a^{2}}{b} + \frac{b^{2}}{c} + \frac{c^{2}}{a} + \frac{d^{2}}{d}$ $\ge \frac{a^{2}}{b} + \frac{b^{2}}{a} + \frac{c^{2}}{c} + \frac{d^{2}}{d}$ $\ge \frac{a^{2}}{a} + \frac{b^{2}}{b} + \frac{c^{2}}{c} + \frac{d^{2}}{d}$ $\ge a + b + c + d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 marks: correct proof<br>with all logical steps<br>1 mark: makes<br>reasonable<br>rearrangements at least<br>once.                                                                                                            |  |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 14<br>(c)(i) | $I_{n} = \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \csc^{n}x  dx$ $I_{n} = \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \csc^{n-2}x \csc^{2}x  dx$ $u = \csc^{n-2}x,  v' = \csc^{2}x$ $I_{n} = \csc^{n-2}x (-\cot x) -$ $(n-2) \int \csc^{n-3}x (-\csc x \cot x)(-\cot x)  dx$ $= \csc^{n-2}x (-\cot x) -$ $(n-2) \int (\csc^{n-2}x (-\cot x) -$ $(n-2) \int (-1) I_{n-2} -$ $(n-1) I_{n-2} -$ | 1 mark: Splits the<br>integral and begins the<br>process of integration by<br>parts.<br>1 mark: converts<br>$\cot^2 x$ into $\csc^2 x$<br>1 mark: expresses the<br>integrals as $I_n$ and $I_{n-2}$<br>and completes the proof |  |
| 14c<br>(ii)  | $I_{2} = \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \operatorname{cosec}^{2} x  dx = -\left[\cot x\right]_{\frac{\pi}{3}}^{\frac{\pi}{2}} = \frac{\sqrt{3}}{3}$ $I_{4} = -\frac{2}{3}I_{2} - \left[\frac{\operatorname{cosec}^{2} x \cot x}{3}\right]_{\frac{\pi}{3}}^{\frac{\pi}{2}}$ $= \frac{2}{9}\sqrt{3} - \frac{1}{3}\left(0 - \frac{4}{3} \times \frac{\sqrt{3}}{3}\right)^{3}$ $= \frac{2}{9}\sqrt{3} + \frac{4\sqrt{3}}{27} = \frac{10}{27}\sqrt{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3 marks: A fully correct<br>method using the<br>reduction formula<br>correctly to reach the<br>value for $I_6$<br>(Substitutions must be<br>shown for the non-zero<br>terms)                                                   |  |

| $I_{6} = = \frac{4}{5}I_{4} - \left[\frac{\operatorname{cosec}^{4}x \operatorname{cot}x}{5}\right]_{\frac{\pi}{3}}^{\frac{\pi}{2}}$ $= \frac{4}{5}\left(\frac{4}{27}\sqrt{3} + \frac{2}{9}\sqrt{3}\right) + \frac{16}{135}\sqrt{3}$ $= \frac{56}{135}\sqrt{3}$ | 2 marks: Uses the<br>reductio formula<br>correctly to find $I_4$ in<br>terms of $I_2$ (need not<br>evaluate yet) |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|
| 133                                                                                                                                                                                                                                                            | 1 mark: Begins the process of application of reduction to find $I_6$ in terms of $I_4$                           |  |

| 15a(i)      | $\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP}$ $= \begin{pmatrix} 200\\ 20\\ -15 \end{pmatrix} - \begin{pmatrix} 1136\\ 92\\ p \end{pmatrix} = \begin{pmatrix} -936\\ -72\\ p+15 \end{pmatrix}$ $936^2 + 72^2 + (p+15)^2 = 939^2$ $936^2 + 72^2 + p^2 + 30p + 225 = 939^2$ $441 = 225 + 30p + p^2$ $p^2 + 30p - 216 = 0$ $p = 6, \ p = -36$ Point <i>P</i> is below <i>R</i> . Then, <i>P</i> = -36                                                                                                                  | 1 mark: Finds $\overrightarrow{PQ}$ and<br>uses $ \overrightarrow{PQ}  = 939$<br>1 mark: correctly solves<br>for $p$ and chooses the<br>correct value, citing<br>reason.                                                                                                                                                                        |  |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 15a<br>(ii) | Let $\overrightarrow{OA} = \begin{pmatrix} 400\\ 600\\ -20 \end{pmatrix}$ , $\overrightarrow{OB} = \begin{pmatrix} 500\\ 200\\ -70 \end{pmatrix}$<br>$\overrightarrow{OC} = \begin{pmatrix} 600\\ -340\\ -50 \end{pmatrix}$<br>Find the vectors AB and BC parallel to the plane.<br>$\overrightarrow{AB} = \begin{pmatrix} 100\\ -400\\ -50 \end{pmatrix} = -50 \begin{pmatrix} -2\\ 8\\ 1 \end{pmatrix}$ , ,<br>$\overrightarrow{BC} = \begin{pmatrix} 100\\ -540\\ 20 \end{pmatrix} = 20 \begin{pmatrix} 5\\ -27\\ 1 \end{pmatrix}$ , | 1 mark: Finds $\overrightarrow{AB}$ and<br>$\overrightarrow{BC}$ , and states that the<br>normal to the plane is<br>the perpendicular to the<br>two vectors in the plane.<br>1 mark: States $\overrightarrow{AB} \cdot n =$<br>0 and $\overrightarrow{BC} \cdot n = 0$ and<br>attempts to find $n$<br>1 mark: correct<br>calculations and gives |  |

| r           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                        |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | Vectors $AB$ and $BC$ are in the same plane.<br>Finding the vector perpendicular<br>to $\overrightarrow{AB}$ and $\overrightarrow{BC}$ .<br>Let $n = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ be the normal to the vectors<br>(normal to the plane).<br>Hence, $\overrightarrow{AB} \cdot n = 0$ and $\overrightarrow{BC} \cdot n = 0$<br>Hence,<br>-2a + 8b + c = 0<br>5a - 27b + c = 0<br>$3a = 15b \rightarrow a = 5b$<br>c = 2(5b) - 8b = 2b<br>Hence, $n = \begin{pmatrix} 5b \\ b \\ 2b \end{pmatrix} = \begin{pmatrix} 5 \\ 1 \\ 2 \end{pmatrix}$ | the correct normal vector.                                                                                                                             |
| 15a         | $\sim$ $(2b)$ $(2)$<br>Hence, find the coordinates of the point where                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                        |
| (iii)       | the pipeline meets the rock.<br>$\overrightarrow{PQ} = \begin{pmatrix} -936\\ -72\\ 21 \end{pmatrix} = -3 \begin{pmatrix} 312\\ 24\\ -7 \end{pmatrix}$ Equation of line <i>PQ</i> is $r = \begin{pmatrix} 200\\ 20\\ -15 \end{pmatrix} + \lambda \begin{pmatrix} 312\\ 24\\ -7 \end{pmatrix}$ , where $\lambda \in \mathbb{R}$                                                                                                                                                                                                                             | 1 mark: Writes the equation of the line $PQ$ in vector form in terms of $\lambda$                                                                      |
|             | For some value of $\lambda$ , $\overrightarrow{PQ}$ meets the plane.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                        |
|             | Then,<br>$\overrightarrow{PQ}. n = \overrightarrow{(OA)}. n$ $\begin{pmatrix} 200 + 312\lambda \\ 20 + 24\lambda \\ -15 - 7\lambda \end{pmatrix}. \begin{pmatrix} 5 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 400 \\ 600 \\ -20 \end{pmatrix}. \begin{pmatrix} 5 \\ 1 \\ 2 \end{pmatrix}$ $990 + 1570\lambda = 2560$ $\lambda = 1$                                                                                                                                                                                                                         | 1 mark: states<br>$\overrightarrow{PQ}$ . $\underline{n} = (\overrightarrow{OA}) \cdot \underline{n}$ or<br>otherwise, finds the<br>value of $\lambda$ |
|             | Then, the point of intersection of the pipeline with the rock is $ \begin{pmatrix} 200 + 312\lambda \\ 20 + 24\lambda \\ -15 - 7\lambda \end{pmatrix} = \begin{pmatrix} 512 \\ 44 \\ -22 \end{pmatrix} $ for $\lambda = 1$ .                                                                                                                                                                                                                                                                                                                               | 1 mark: finds the<br>coordinates of the point<br>of intersection                                                                                       |
|             | Coordinate (512, 44, -22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                        |
| 15a<br>(iv) | Let the angle with the horizontal be $\theta$<br>Project $\overrightarrow{PQ}$ with XY plane,                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                        |

| $\sin\theta = \frac{\begin{vmatrix} \begin{pmatrix} 312\\ 24\\ -7 \end{pmatrix} \begin{pmatrix} 0\\ 0\\ 1 \end{vmatrix}}{\begin{vmatrix} \begin{pmatrix} 312\\ 24\\ -7 \end{pmatrix} \end{vmatrix}}$ | $\frac{P}{\begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix}} \neq \frac{P}{2} \neq \frac{Q}{2}$ $\frac{Q}{2} = \frac{Q}{2} + \frac{Q}{2}$ |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| $\sin \theta = \frac{7}{313}$ $\theta = 1.28^{\circ} \approx 1.3^{\circ}$                                                                                                                            | 2 marks: correct answer<br>from correct working<br>1 mark: draws a<br>diagram and attempts to<br>find angle with the                                                                                                                                          |  |
|                                                                                                                                                                                                      | horizontal                                                                                                                                                                                                                                                    |  |

| 45(1)        |                                                                                                                                                                                                                       |                                                                          |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| 15(b)<br>(i) | Let<br>$I = \int_{1}^{2\pi} \sin x \log_e(1+x) dx$                                                                                                                                                                    |                                                                          |
|              | $= [\log(x+n) \times (-\cos x)]_0^{2\pi} - \int_0^{2\pi} \frac{-\cos x}{x+n} dx$                                                                                                                                      | 1 mark: Applies<br>integration by parts<br>correctly                     |
|              | $= \log(2\pi + n) \times -1 - \log n \times (-1) + \int_{0}^{2\pi} \frac{\cos x}{x + n} dx  1 \text{ mark}$ $= -\log\left(n\left(\frac{2\pi}{n} + 1\right)\right) + \log n + \int_{0}^{2\pi} \frac{\cos x}{x + n} dx$ | 1 mark: Applies log rules<br>to simplify the expression<br>correctly     |
|              | $= -\log n - \log\left(1 + \frac{2\pi}{n}\right) + \log n + \int_{0}^{2\pi} \frac{\cos x}{x+n} dx$                                                                                                                    |                                                                          |
|              | $= -\log\left(1 + \frac{2\pi}{n}\right) + \int_{0}^{2\pi} \frac{1}{x+n} \cos x  dx \qquad 1 \text{ mark}$<br>Integrating by parts again,                                                                              | 1 mark: correctly applies                                                |
|              | $= -\log\left(1 + \frac{2\pi}{n}\right) + \left[\frac{1}{x+n} \times \sin x\right]_{0}^{2\pi} - \int_{0}^{2\pi} \frac{\sin x}{(x+n)^{2}} dx$                                                                          | 1 mark: correctly applies<br>integration by parts to<br>prove the result |
|              | $= -\log\left(1 + \frac{2\pi}{n}\right) + 0 - \int_{0}^{2\pi} \frac{\sin x}{(x+n)^2} dx$ $= -\log\left(1 + \frac{2\pi}{n}\right) - \int_{0}^{2\pi} \frac{\sin x}{(x+n)^2} dx$ <b>1 mark</b>                           |                                                                          |
| 15(b)        | 0<br>We need to prove that                                                                                                                                                                                            |                                                                          |
| (ii)         |                                                                                                                                                                                                                       |                                                                          |

$$\begin{vmatrix} \sum_{n=1}^{2\pi} \frac{\sin x}{(x+n)^2} dx \end{vmatrix} < \frac{2\pi}{n^2} \\ We have \\ -1 \le \sin x \le 1 \quad \forall x \in \mathcal{R} \\ Thus, \\ -\frac{1}{(x+n)^2} \le \frac{\sin x}{(x+n)^2} \le \frac{1}{(x+n)^2} ax \\ (x+n)^2 > 0 \quad \forall x \in [0, 2\pi] \quad 1 \text{ mark} \\ \text{Hence,} \\ \begin{cases} \frac{2}{n} \frac{\sin x}{(x+n)^2} dx \end{vmatrix} \le \frac{2}{n} \frac{\pi}{(x+n)^2} dx \\ \text{if } (x+n)^2 > 0 \quad \forall x \in [0, 2\pi] \quad 1 \text{ mark} \\ \text{Hence,} \\ g(x) = \frac{1}{(x+n)^2} \text{ is a decreasing function} \\ \text{in } [0, 2\pi] \\ \text{Hence, the maximum value of } \frac{1}{(x+n)^2} in \\ [0, 2\pi] \text{occurs when } x = 0, \\ \text{and equals } \frac{1}{n^2}, n \neq 0 \\ \end{cases} \\ \text{Hence,} \\ \begin{cases} \frac{2}{n} \frac{1}{(x+n)^2} dx < \text{Area } 0\text{ABC} = \frac{2\pi}{n^2} \\ \text{Hence,} \\ \begin{cases} \frac{2\pi}{n^2} \frac{1}{(x+n)^2} dx < \text{Area } 0\text{ABC} = \frac{2\pi}{n^2} \\ \text{Hence,} \end{cases} \\ \text{Hence,} \\ \begin{cases} \frac{2\pi}{n^2} \frac{1}{(x+n)^2} dx < \text{Area } 0\text{ABC} = \frac{2\pi}{n^2} \\ \text{Hence,} \\ \end{cases} \\ \begin{cases} \frac{2\pi}{n^2} \frac{\sin x}{(x+n)^2} dx \\ \frac{2\pi}{n^2} \\ \text{Hence,} \end{cases} \\ \begin{cases} \frac{2\pi}{n^2} \frac{\sin x}{(x+n)^2} dx \\ \frac{2\pi}{n^2} \\ \frac{2\pi}{n^2} \\ \text{Hence,} \end{cases} \\ \begin{cases} \frac{2\pi}{n^2} \frac{\sin x}{(x+n)^2} dx \\ \frac{2\pi}{n^2} \\ \end{cases} \\ \text{(ii)} \qquad \text{Using the results from (i) and (ii),} \\ \\ \frac{2}{n^2} \frac{2\pi}{n^2} \frac{\sin x}{(x+n)^2} dx \\ < -\log_e \left(1 + \frac{2\pi}{n}\right) + \frac{2\pi}{n^2} \\ \frac{2\pi}{n} \\ \frac{2\pi}{n^2} \\ \frac{$$

Using the result from Q13,  

$$x \ge \ln(1+x)$$
 for  $\forall x > -1$ ,  
 $\log_a \left(1+\frac{2\pi}{n}\right) \le \frac{2\pi}{n}$   
Thus,  
 $\int_{0}^{2\pi} \sin x \log_e(1+x) dx = -\log_e \left(1+\frac{2\pi}{n}\right) + \int_{0}^{2\pi} \frac{\sin x}{(x+n)^2} dx$   
 $< -\log_e \left(1+\frac{2\pi}{n}\right) + \frac{2\pi}{n^2}$   
 $< -\log_e \left(1+\frac{2\pi}{n}\right) + \frac{2\pi}{n^2}$   
 $< -\frac{2\pi}{n} \left(1-\frac{1}{n}\right)$   
 $As n \to \infty, \frac{1}{n} \to 0$   
Thus,  
 $\int_{0}^{2\pi} \sin x \log_e(1+x) dx \to -\frac{2\pi}{n}$   
Hence,  
 $\int_{0}^{2\pi} \frac{\sin x \log_e(1+x) dx}{-\frac{2\pi}{n}} \to 1 \text{ as } n \to \infty$   
 $+\text{Hence,}$ 

| 16<br>(a) | R<br>R<br>T<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M                                                           | 2 marks: correct<br>free body diagrams<br>for both A and B               |  |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--|
|           | Freebody diagrams are as shown below:                                                                                                                      |                                                                          |  |
|           | 2 mg sind<br>2 mg sind<br>2 mg sind<br>2 mg 2 mg 6 sol                                                                                                     |                                                                          |  |
|           | T<br>B<br>M<br>M<br>At <i>A</i> , resolving along and perpendicular to the plane,                                                                          |                                                                          |  |
|           | $\begin{pmatrix} T\cos\alpha\\T\sin\alpha \end{pmatrix} + \begin{pmatrix} -2mgsin\alpha\\-2mgcos\alpha \end{pmatrix} = \begin{pmatrix} F\\0 \end{pmatrix}$ | 1 mark: writes the correct force equations.                              |  |
|           | At $B$ , $T = mg$                                                                                                                                          |                                                                          |  |
|           | $F = T\cos \alpha - 2mg\sin \alpha$<br>$R = T\sin \alpha - 2mg\cos \alpha$                                                                                 |                                                                          |  |
|           | For the body not to slip down the plane, $F\geq 0$                                                                                                         |                                                                          |  |
|           | $F = T\cos\alpha - 2mg\sin\alpha \ge 0$                                                                                                                    | 1 marks: sets $F \ge 0$<br>and gives the range<br>of values for $\alpha$ |  |
|           | $T = mg$ $2mg\sin\alpha - mg\cos\alpha \le 0$                                                                                                              |                                                                          |  |

|                  | $mg > 0,  \text{hence,}  2 \sin \alpha \le \cos \alpha$ $\tan \alpha \le \frac{1}{2}  (1)$ $\alpha \le 26.565 \dots \approx 27^{\circ}$ For the body not to lose contact with the surface, $R = T \sin \alpha - 2mg \cos \alpha \ge 0$ $2mg \cos \alpha - mg \sin \alpha \le 0$ $mg (2 \cos \alpha - \sin \alpha) \le 0$ $mg > 0,  \tan \alpha \le 2  (2)$ | 1 mark: sets $R \ge 0$ ,<br>solves the trig<br>inequation $\tan \alpha \le$<br>2 and solves<br>simultaneously with<br>the solution of<br>$\tan \alpha \le \frac{1}{2}$ |  |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 16<br>(b)<br>(i) | Using (1) and (2),<br>Hence, $\alpha < 27^{\circ}$<br>$v = 0, y = 0, \dot{y} = 0$<br>20 m<br>$\ddot{y} = -mg$<br>$\ddot{y} = mg$<br>$\dot{y} = \int g dt = gt + c$<br>$t = 0, \dot{y} = 0 \Rightarrow \dot{y} = gt$<br>$y = \int gt dt = \frac{1}{2}gt^{2} + C$<br>t = 0, y = 0, then C = 0                                                                | 2 marks: correct<br>answer from correct<br>working                                                                                                                     |  |
|                  | t = 0, y = 0,  then  C = 0<br>Thus, $y = \frac{1}{2}gt^2$<br>When, $y = 20, t^2 = \frac{2y}{g}$<br>$t = \sqrt{\frac{40}{g}},  t > 0$<br>When,<br>$t = \sqrt{\frac{40}{g}},  \dot{y} = g\sqrt{\frac{40}{g}} = \sqrt{40g} = 2\sqrt{10g}$<br>Thus the speed of impact on the platform is<br>$2\sqrt{10g}$                                                     | 1 mark: sets up the<br>equations of motion,<br>and attempts to find<br>the time of impact.                                                                             |  |



|               | 1                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                   |  |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--|
|               | $y = 0.037697 \dots \approx 0$                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                   |  |
|               | Hence, the ball hits the plane after 3.32 seconds.                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                   |  |
|               |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                   |  |
| 16 b<br>(iii) | $a_{x} = \frac{dV_{x}}{dt} = g_{x} - 0.4V_{x}$ And $a_{y} = \frac{dV_{y}}{dt} = g_{y} - 0.4V_{y}$ Using the results from 16 b(ii), $0.4V_{y} = g_{y} - (g_{y} - 0.4u_{y})e^{-0.4t}$ and Similarly, along the plane, $0.4W_{y} = g_{y} - (g_{y} - 0.4u_{y})e^{-0.4t}$                                                                                                                                       | *gives the<br>expression for $V_x$<br>*calculates $V_x$ at<br>t=3.32<br>*calculates $V_y$ at t =<br>3.32<br>*Calculates the<br>resultant velocity |  |
|               | $0.4V_x = g_x - (g_x - 0.4u_x)e^{-0.4t}$<br>Substitute                                                                                                                                                                                                                                                                                                                                                     | *Calculates the angle of impact                                                                                                                   |  |
|               | $g_y = -9.8 \cos 50$<br>$u_y = 2\sqrt{10 \times 9.8} \cos 50$<br>$g_x = 9.8 \sin 50$<br>$u_x = 2\sqrt{10 \times 9.8} \sin 50$<br>At $t = 3.32$ , $V_x = 17.81528$<br>$V_y = -8.20227$<br>Direction<br>$\tan^{-1} \frac{-8.20227}{17.81375} = -28.418 = 151.581$<br>Then velocity is<br>$V = \sqrt{V_x^2 + V_y^2} = 19.6114 \approx 19.6 \text{ m/s}$ at an angle<br>of approximately 152° to the vertical. | 2 marks: correct<br>answer from correct<br>working<br>1 mark: At least<br>three of the aspects<br>are correctly<br>executed                       |  |