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Abstract

In this paper we consider stiffness properties of square symmetric unidirectional two-phase composites with given volume fractions. First,
we compare the effective moduli of the stiffest possible (or softest possible) of such materials which satisfy transverse isotropy or square

isotropy with that of materials satisfying 3D-isotropy.

Next, we present some numerical FEM computations of in-plane stiffness properties of square honeycombs. Our results are compared with
the effective moduli of the stiffest possible square symmetric composites. The numerical results are used to optimize the directions of square
prisms in the core of sandwich plates with respect to stiffness. Our calculations can therefore be useful in connection with optimization of

structural topology. © 2001 Published by Elsevier Science Ltd.
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1. Introduction

Engineering and mathematical aspects of the homo-
genization method for determination of effective properties
of composites have been discussed in several papers and
books, see e.g. Refs. [5,11,14,20,24] (for other methods,
e.g. discrete network analysis, see Ref. [9]).

In this paper, we consider stiffness properties of square
symmetric unidirectional two-phase composites with given
volume fractions. First, we compare the effective moduli of
the stiffest possible (or softest possible) of such materials
which satisfy transverse or square isotropy with that of
materials satisfying 3D-isotropy. Our comparison is based
on a rewritten version of some optimal bounds for such
materials. The main result of this comparison is presented
in Remarks 4-9.

Next, we present some numerical FEM computations of
in-plane stiffness properties of square honeycombs. Special
attention is payed to the accuracy of the computations by
comparing our FEM-results with results obtained by using
the method of Greengard and Helsing [10]. Our results are
compared with the effective moduli of the stiffest possible
square symmetric composites. The main observation
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concerning these numerical calculations is that the in-plane
stiffness properties of square honeycombs turn out to be less
than expected. The numerical results are used to optimize
the directions of square prisms in the core of sandwich
plates with respect to stiffness. The observed tendencies in
our numerical results are discussed and also explained by
use of simple illustrations. It also seems that our calculations
can be useful in connection with the optimization of
structural topology (see [4]).

The paper is organized as follows. In Section 2, we
discuss and compare some bounds for effective properties.
We consider numerical computations of square honeycombs
in Section 3. Section 4 is left for some final comments and
concluding remarks. All the numerical values can be found
in Appendix A.

2. On bounds for effective elastic properties

A precise definition of the effective moduli in general can
be found elsewhere (see e.g. Ref. [2]). Therefore, we will
not go into details here.

Let us consider the case of two-component unidirectional
fiber composites with local shear moduli G; < G, and local
plane strain bulk moduli K; < K, with corresponding
volume fractions p; and p,. In addition, assume that the
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composite satisfies the property of square symmetry, i.e.
that the effective stiffness matrix for the plane strain
problem is of the form

K'+Gy K'=Gr 0
K'-Gr K'+Gr 0 |,
0 0 Gras

where K* is the effective transverse bulk modulus and G}
and Gr 45 are the effective transverse shear moduli. Then, it
is possible to prove the following bounds for the effective
bulk modulus K*:

pipa(Ky — Kp)*

PiK; + prK; — =K’
Ky + piK;y + Gy

pipa(Ky — Ky

=piKi + ;K — ,
2Ky + piK; + G,y

2.

the following bounds for the effective transverse shear
moduli Gt and GTs :

— — -1 * *
(Gl 'pi + G, 1Pz) = Gr, G145

PG — Gy)?

=p1Gy + prGy — ,
PG +piGy + K,

2.2)

and the following bounds for the effective longitudinal shear
modulus Gj :
pip2(Gi — Gy’

G, + p,G, — =G
Pt P2Gy + piG, + G b

pip2(Gy — G2)2
D02Gi + piGy + Gy

=piG1 + Gy (2.3)

Concerning these facts and some further information, see
Refs. [1,7,8,11,14]. Moreover, by Hill [13] we have the
following bounds for the effective longitudinal Young’s
modulus E; and the effective longitudinal Poisson’s ratio
v

DiD2 - E{ — piE; — pE,
(PI/Ky) + (po/Ky) + (1/Gy) 4(v; — »)?

< PiP2
(P1/K>) + (po/Ky) + (1/Gy)’

P1P2 < VE — D1V T P2
(P1/Ky) + (po/Ky) + (1/Gy) (v) — m)(I/K, — 1/K)

< P1P2
(P1/Ky) + (po/Ky) + (1/Gy)’

where E; and v; are Young’s modulus and Poisson’s ratio,
respectively, of the phase.

Remark 1. The latter two bounds were proved in Ref. [13]
for the case of transverse isotropy. However, by following

the proof in Ref. [13] it is easy to check that the same facts
hold in the case square isotropy.

Remark 2. It is interesting to note that the longitudinal
Young’s modulus Ej is always larger (or equal to) the arith-
metic mean of the local Young’s modulus p,E; + p,E,. We
may even have that E] is larger than max{E,, E,}, which
shows that £} is not any type of mean of E,, E, (note that a
mean of numbers always lies between the minimum and
maximum, see Ref. [3, p. 35 Remark 5]). As an example
put p; = p, = 1/2, E; = E; and v; =0, v, = 1 (like cork
and rubber, respectively). In this case, Ef: turns out to be
7.9% larger than E; = E, for the most extreme structure.

If we in addition assume that Gt = Grus (i.e. plane
isotropy) we obtain the same bounds for K* and Gj but
the following sharper bounds for Gr :

Ppa(Gy — Gy .

= Gr

G, +p,G, — =
priy bt PG+ piGy + Gy

PGy — Gy)?

=p1Gy + prGy — ,
P2Gy + pi1Gy + Gy

2.4)

where

K,G, K>G,
Gy = K, +2G,’ Gy = K, +2G,

On the other hand, if we assume that the composite
macroscopically is isotropic in the three dimensional sense
(not unidirectional fibers), then we obtain the following
bounds for the effective three dimensional bulk modulus
k*(= K* — G*/3) and the effective shear modulus G*:

pipatky — ky)’ -
D2k + prky kg

piky + poky —

pipatky — k)

= p,ky + prky — 2.5
Prfe b2t paky + piky + koy )
and
G, — Gy’ .
21G1 + paGoy — P1P2(G )T _
PG+ piGy + Gy
G, — G,
= p1Gy + )Gy — PG =G 2.6)
D2Gi + pi1Gy + Gy
where
G, 4
k=K, — =L, k= —G.
i i 3 it 3 i
and
8G; + 9k;
Gu=G i " 70
#716(2G; + k)
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(more generally in dimension n:

n
n
2n—1
ki# = (n )Gw
n

G = G, 2G,(n* — n — 2) + k;n? )
The bounds (2.5) and (2.6) are the same bounds as those
presented in Jikov et al. [16], but rewritten in a different and

perhaps more convenient way (especially in view of the
discussion below).

Remark 3. All the above bounds are best possible, i.e.
there exist structures such that the bounds are attained.

Noting that (for n = 3)

o 8G; + 9k . 8G; + 9(K; — (Gi/3))
#TUU62G + k) 16(2G; + (K; — (Gi/3))
5G; + 9K;
"2(5G; + 3K,)’

we obtain that the upper bound for the shear modulus given in
Eq. (2.6) is less than the upper bound given in Eq. (2.2) when

.+ 9K.
12(55G(;17+931;) =K; 2.7)
fori =2, 1ie.

(Ki + G)(6K; — 5G;) = 0,

and since K;, G; > 0, we obtain that 6K; — 5G; = 0. Thus,
6K; = 5G;

or equivalently

6E; _ SE
20+ v)(1 —21) 21 + )

(recall the well-known relations: K; = (E;/2(1 + v;) X
(1 =2y)) and G; = E;/2(1 + v;)). Hence, we make the
following interesting conclusions:

X2

L.

Remark 4. The upper bound for the shear modulus is the
three-dimensional isotropic case given in Eq. (2.6) is less
than the upper bound in the square symmetric case given in
Eq. (2.2) if and only if », = —0.1, which normally is
satisfied since ‘natural’ materials almost always possess
positive Poisson’s ratios (however there exist materials
with negative Possion’s ratios, see e.g. Refs. [17,23]).

Remark 5. Since Gy, G > 0, and since the lower bound
of Eq. (2.2) can be written

pip2(G) — Gy)?

PG +prGy — ———————,
i 2 G +pGy 0

we have that the lower bound for the shear modulus is
smallest for the square symmetric case given in Eq. (2.2).

Remark 6. Since

K; +2G; ~ '2(5G; + 3K;)’

we always have that the bounds for the shear modulus in the
plane isotropic case given in Eq. (2.4) are less than the
bounds for the three-dimensional isotropic case (2.6).

Remark 7. By replacing the right side of Eq. (2.7) with G;
we obtain similarly that the lower bound (resp. upper bound)
for the shear modulus in the three-dimensional isotropic
case given in Eq. (2.6) is less than the lower bound (resp.
upper bound) for the longitudinal shear modulus in the
square symmetric case given in Eq. (2.3) if and only if v; =
0.2 (resp. v, = 0.2).

Remark 8. Since G, < K, for positive Poisson’s ratios
we have that the upper bound for the longitudinal shear
modulus in the square symmetric case given in Eq. (2.3)
is less than the upper bound for the transverse shear moduli
given in Eq. (2.2) if and only if v, > 0.

Remark 9. Since

KiG;

L 4 =G
K; + 2G; :

we always have that the bounds for the shear modulus in the
plane isotropic case given in Eq. (2.4) are less than the

K, G,
K G

Fig. 1. The square honeycomb structure.
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Ll

Fig. 2. The two effective moduli measure resistance against the indicated
average strains.

bounds for the longitudinal shear modulus in the square
symmetric case given in Eq. (2.3).

3. Numerical calculations of the effective moduli for
square honeycombs

We consider the case of square honeycombs with locally
isotropic material properties (see Fig. 1) where K; < K|, and
G; < Gy. In order to compare with the upper bounds of Egs.
(2.2) and (2.1) we have computed K™ and G} numerically by
solving the cell problem on a quarter of a period of the
structure (see Fig. 3). For details concerning the method
of computing the effective elastic moduli in general, see
e.g. Refs. [2,5,10,12,14,20,24]. A visual interpretation of K
and G, is givenin Fig. 2. The numerical procedure used in this
paper follows the one presented in Ref. [2] which is a variant
of those used earlier in [14,20,24]. We do not compute G;45
since this value often is significantly less than G and therefore
very far from the upper bound of Eq. (2.2).

The values of these moduli computed numerically by a
FEM-program are always larger than the exact value. This
follows by the fact that the exact effective moduli turn out to
be the minimum of a variational problem taken over a func-
tion space. Concerning this fact see Ref. [16] (for an analogy
to the heat conduction problem see Refs. [21,22]).

Let K** and G?J“ denote the (FEM) numerical values of
K* and G;. Moreover, let error K** and error G5 denote the
corresponding maximum error estimate for our calculations
using the method developed in Ref. [6] (used for the estima-
tion of the error in calculating the strain energy in case of
even more general boundary conditions). Since K* and GT are
minimum values of some variational problems it follows that

K™ =K' =kK*"

e — * %4
Gr =Gr=Gr,

- o+ o+ e— <+
where K~ =K' —error K* and Gy =Gy —
. . . . .
error G1 . Consider also the maximum error estimates in %

+
. errorK”

me K = e — 100,
K
. G*+
me G = ST PT 100,
Gy

Furthermore, let dg- and dG; denote the difference in %
between K* and the upper bound Ky, in Eq. (2.1) and
between G and the upper bound Gj;g, in Eq. (2.2), i.e.

K* _ K*+
dg- = H“?loo,
G* _ G*+
de = 25 =T 100.
T

s+
GT

In the table presented in Appendix A, we have listed
K*/IK,, me K*, dg«, G'/G,, me G and dg: for some values
of the volume fraction p; and the Poisson’s ratio v, for the
case when the Young’s modulus of the inner material is
negligible. We have used quadrilateral-solid elements.
Each element has eight nodes, and each node has two
degrees of freedom (the values of the displacements in the
x1- and x,- direction). See Fig. 3, which shows the triangula-
tion for the case p; = 0.8.

An effort has been made to obtain accurate computations.
For some cases, we have compared our FEM-results with
results obtained with a fast multipole-accelerated iterative
scheme based on integral equations and developed by
Greengard and Helsing [10] (see Ref. [12] for details on
the particular implementation). Using sufficiently long
computation time the method of Greengard and Helsing
ensures error less than 107 '°%. In all the cases that we
have tested it turns out that the maximum error estimates
me K* and me Gy are much larger than the actual error. This
indicates that out table-values for di- and dg: probably are
considerably more accurate than estimated (see also Ref. [6]
for similar considerations).

The calculation has been performed by using the FEM-
code ANSYS.

4. Some final comments and concluding remarks

From the table in Appendix A, we observe that the
effective bulk modulus K* of square honeycombs becomes

Fig. 3. The FEM-model of a quarter of a period of the structure.
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Fig. 4. Deformation related to the computation of the shear modulus Gy.
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Fig. 5. Deformation related to the computation of the bulk modulus K.

relatively closer to the upper bound Kjs, in Eq. (2.1) as the
Poisson’s ratio increases. On the other hand, we observe that
the effective shear modulus G becomes relatively closer to
the upper bound Gy, in Eq. (2.2) as the Poisson’s ratio
decreases. These tendencies are particularly apparent for
small values of p; (see e.g. Appendix A). Figs. 4 and 5
may help to explain this behavior since it is reasonable to
think (but not obvious) that the objects to the left could have
been made more resistant against the indicated effective
strains than those to the right.

The values of dx- and dg: turn out to be somewhat larger
than we expected. By iterating square honeycombs it has

core-
structure

Alternative 1

L
Go
0.8
0.6 + NN
04 +
Decreasing
02 | b Poisson’s ratio, Vo.
Volume-
0 fraction
0 0.2 04 0.6 0.8 1

Fig. 7. Plots for G}/G, (dotted lines) and Gy /G, (solid line).

been proven that it is possible to make K*, Gt and G} as
close as we want to the upper bounds of Egs. (2.1)-(2.3),
respectively (see Ref. [19]). Moreover for square
honeycombs it turns out that Gy is relatively close to the
corresponding upper bound in Eq. (2.3). Thus one could
expect that this also would be the case for K* and Gry.
However, this is not true. For example, for p; = 0.1 we
have that the deviation between Gj and the upper bound
dc;*L = 1.7% (see Ref. [21]). On the other hand, we observe
from Appendix A that the corresponding values for the bulk
modulus and shear modulus are up to 12.2 and 18.6%,
respectively. Moreover, the highest possible value for dg*
is 4.6% whereas the highest value for dg- and dG are 15.4
and 21.7%, respectively.

By interpolating the table values it is possible to obtain
very accurate values of K* and G for any value of p; and the
local moduli K, and G, (or E, and v,). This may be useful
e.g. in connection with optimization of structural topology
and material (see Ref. [4]).

Square honeycombs can be used as cores in sandwich
panels. One of the primary functions of the honeycomb
cores is to carry the shear loads in the panel surface.

Alternative 2

Fig. 6. Sandwich plate with two alternative cores.
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When the axis of the square prisms is perpendicular to the
panel surface (see Alternative 1 in Fig. 6) the shear strain
resistance in the core is given by the longitudinal shear
modulus Gy in both orthogonal directions in the panel
plane. On the other hand, when the axis of the square prisms
is parallel with the panel surface (see Alternative 2 in Fig. 6)
the shear strain resistance in the core will be given by the
transverse shear modulus Gt in one direction in the panel
plane and by the longitudinal shear modulus Gj in the other
direction. What alternative which is best will therefore depend
on whether G7 is larger or less than Gy . The latter will depend
on the volume fraction of the core p; and the Poisson’s ratio
v,. By using our numerical calculations, we have plotted
G71/G,, for some values of Poisson’s ratio v, in Fig. 7. In the
same figure we have also plotted G1/G, (the solid line),

borrowed from Ref. [21]. Now, using Fig. 7 we can easily
find the best alternative. The results can be summed up in
the following table: ('depending on the volume fraction p,)

Poisson’s =00 0.1 0.2 0.3 0.4

ratio, v,

Alternative 1 Stiffest Stiffest/softest! Stiffest/softest’ Softest Softest
Alternative 2 Softest  Stiffest/softest’ Stiffest/softest’ Stiffest Stiffest
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Appendix A
Vo K*IK, me K* (%) dg (%) G'IG, me Gt (%) dg; (%)
pr =0.1
-0.95 0.8456792 0.018 2.9 0.5883600 0.00152 18.6
-0.9 0.8444856 0.019 2.9 0.5946380 0.00149 18.2
-0.8 0.8418332 0.019 3.0 0.6076020 0.00142 17.6
Number of elements: 5763 -0.7 0.8387640 0.019 3.0 0.6211410 0.00135 16.9
-0.6 0.8351614 0.020 3.1 0.6353000 0.00128 16.1
-0.5 0.8308800 0.021 3.2 0.6501200 0.00121 15.4
-04 0.8257064 0.022 33 0.6656460 0.00113 14.6
-0.3 0.8193304 0.023 34 0.6819316 0.00105 13.8
Number of nodes: 17618 —-0.2 0.8112754 0.024 3.5 0.6990344 0.00096 12.9
—0.1 0.8007800 0.026 3.7 0.7170174 0.00087 12.1
0 0.7865340 0.029 4.0 0.7359500 0.00077 11.2
0.1 0.7660910 0.033 44 0.7559101 0.00067 10.2
0.2 0.7342848 0.039 5.1 0.7769820 0.00056 9.3
0.3 0.6779864 0.050 6.2 0.7992634 0.00044 8.3
0.4 0.5512136 0.075 8.9 0.8228612 0.00031 7.2
0.45 0.4011860 0.107 12.2 0.8351899 0.00025 6.7
pr =02
-0.95 0.7108944 0.0147 53 0.4161275 0.000550 21.7
-0.9 0.7090160 0.0149 53 0.4224520 0.000539 21.4
-0.8 0.7048652 0.0151 54 0.4356960 0.000517 20.8
Number of elements: 5543 —0.7 0.7000812 0.0154 5.5 0.4497960 0.000493 20.2
-0.6 0.6945110 0.0158 5.6 0.4648400 0.000468 19.5
-0.5 0.6879420 0.0162 5.7 0.4809275 0.000442 18.8
-04 0.6800814 0.0167 59 0.4981668 0.000413 18.1
-0.3 0.6705037 0.0174 6.1 0.5166875 0.000384 17.3
Number of nodes: 16984 -0.2 0.6585802 0.0182 6.3 0.5366384 0.000352 16.5
-0.1 0.6433258 0.0193 6.6 0.5581926 0.000318 15.6
0 0.6231200 0.0208 7.0 0.5815500 0.000281 14.6
0.1 0.5950842 0.0228 7.6 0.6069470 0.000242 13.6
0.2 0.5535734 0.0259 8.4 0.6346644 0.000199 12.6
0.3 0.4857991 0.0310 9.8 0.6650345 0.000154 114
0.4 0.3553004 0.0410 12.6 0.6984572 0.000105 10.1
0.45 0.2311271 0.0512 15.4 0.7164610 0.000080 9.5
pr =03
-0.95 0.5957412 0.00847 6.5 0.3126325 0.0001157 19.7
-0.9 0.5935440 0.00854 6.5 0.3182410 0.0001138 19.5
-0.8 0.5886972 0.00870 6.6 0.3300860 0.0001100 19.1
Number of elements: 5638 -0.7 0.5831474 0.00887 6.7 0.3428460 0.0001061 18.7
-0.6 0.5767194 0.00908 6.8 0.3566312 0.0001021 18.2
-0.5 0.5691900 0.00931 6.9 0.3715725 0.0000979 17.7
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(continued)
Vo K'IK, me K* (%) dg+ (%) G'IG, me Gy (%) dg; (%)
-0.4 0.5602500 0.00958 7.1 0.3878202 0.0000937 17.2
-0.3 0.5494630 0.00991 7.3 0.4055541 0.0000892 16.6
Number of nodes: 17293 -0.2 0.5361888 0.01030 7.5 0.4249872 0.0000846 16.0
=0.1 0.5194573 0.01078 7.8 0.4463766 0.0000797 15.3
0 0.4977150 0.01139 8.2 0.4700330 0.0000746 14.6
0.1 0.4683114 0.01219 8.7 0.4963376 0.0000693 13.7
0.2 0.4263343 0.01329 9.5 0.5257596 0.0000635 12.8
0.3 0.3615238 0.01498 10.6 0.5588908 0.0000575 11.8
0.4 0.2482914 0.01809 12.8 0.5964784 0.0000513 10.7
0.45 0.1526618 0.02133 14.6 0.6172346 0.0000488 10.1
pr=04
-0.95 0.4945472 0.028 6.6 0.2384230 0.00181 16.5
-0.9 0.4922680 0.028 6.7 0.2431710 0.00179 16.4
-0.8 0.4872592 0.029 6.7 0.2532600 0.00174 16.1
Number of elements: 5156 -0.7 0.4815425 0.030 6.8 0.2642208 0.00169 15.9
-0.6 0.4749580 0.030 6.9 0.2761740 0.00163 15.6
-0.5 0.4672890 0.031 7.0 0.2892595 0.00157 15.2
-0.4 0.4582472 0.032 7.1 0.3036474 0.00150 14.9
-0.3 0.4474243 0.033 7.3 0.3195409 0.00142 14.5
Number of nodes: 15813 -0.2 0.4342397 0.035 7.5 0.3371904 0.00133 14.1
—0.1 0.4178228 0.037 7.7 0.3569040 0.00124 13.6
0 0.3968200 0.039 8.0 0.3790650 0.00113 13.1
0.1 0.3689972 0.043 8.4 0.4041609 0.00100 12.5
0.2 0.3303893 0.047 9.0 0.4328148 0.00086 11.8
0.3 0.2732174 0.055 9.8 0.4658420 0.00069 11.0
0.4 0.1798518 0.067 11.2 0.5043262 0.00049 10.2
0.45 0.1068359 0.078 12.3 0.5260557 0.00039 9.7
pr=035
-0.95 0.4018327 0.0082 6.1 0.1802985 0.000245 13.2
-0.9 0.3996440 0.0082 6.2 0.1841690 0.000241 13.1
-0.8 0.3948448 0.0083 6.2 0.1924320 0.000235 13.0
Number of elements: 4747 -0.7 0.3893897 0.0085 6.3 0.2014710 0.000228 12.8
-0.6 0.3831344 0.0086 6.3 0.2114008 0.000220 12.6
-0.5 0.3758880 0.0088 6.4 0.2223605 0.000212 12.4
—-04 0.3673955 0.0090 6.5 0.2345184 0.000203 12.2
-0.3 0.3573046 0.0093 6.6 0.2480828 0.000103 12.0
Number of nodes: 14634 -0.2 0.3451168 0.0096 6.8 0.2633128 0.000182 11.7
—0.1 0.3301042 0.0100 6.9 0.2805354 0.000170 11.4
0 0.3111550 9.0106 7.1 0.3001680 0.000156 11.1
0.1 0.2864866 0.0113 7.4 0.3227554 0.000141 10.7
0.2 0.2530498 0.0123 7.8 0.3490188 0.000123 10.2
0.3 0.2051608 0.0137 8.3 0.3799354 0.000103 9.7
04 0.1308639 0.0161 9.2 0.4168612 0.000081 9.0
0.45 0.0758949 0.0181 9.8 0.4381538 0.000071 8.7
pr =06
—0.95 0.31489795 0.028 53 0.13263000 0.00210 10.1
-0.9 0.31293360 0.028 5.3 0.13564700 0.00208 10.0
-0.8 0.30864132 0.028 53 0.14211180 0.00204 10.0
Number of elements: 5159 —=0.7 0.30377880 0.029 5.3 0.14922390 0.00200 9.9
-0.6 0.29822672 0.029 5.4 0.15708520 0.00195 9.8
-0.5 0.29182600 0.030 54 0.16582100 0.00189 9.7
-0.4 0.28436724 0.031 5.5 0.17558580 0.00183 9.5
-0.3 0.27556256 0.032 5.6 0.18657240 0.00176 9.4
Number of nodes: 15910 -0.2 0.26501328 0.033 5.7 0.19902560 0.00168 9.2
—0.1 0.25214328 0.034 5.8 0.21326040 0.00158 9.1
0 0.23609200 0.036 5.9 0.22968800 0.00147 8.8
0.1 0.21551288 0.038 6.1 0.24885740 0.00134 8.6
0.2 0.18817560 0.042 6.3 0.27151920 0.00118 8.3
0.3 0.15009696 0.046 6.6 0.29872050 0.00098 8.0
0.4 0.09339820 0.054 7.1 0.33197920 0.00075 7.6
0.45 0.05320384 0.061 74 0.35154815 0.00061 7.3
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(continued)
v, K°IK, me K (%) dg (%) G'IG, me Gy (%) dg: (%)
pr =07
—0.95 0.23204785 0.0051 4.2 0.09236250 0.000153 7.2
—0.9 0.23042740 0.0051 42 0.09456310 0.000152 7.2
—-0.8 0.22689264 0.0051 4.2 0.09929500 0.000149 7.1
Number of elements: 5945 -0.7 0.22290336 0.0052 42 0.10452540 0.000146 7.1
—0.6 0.21836584 0.0053 4.2 0.11033720 0.000142 7.1
—0.5 0.21315900 0.0054 4.3 0.11683400 0.000138 7.0
—-04 0.2071234 0.0055 43 0.12414300 0.000134 7.0
-0.3 0.2004208 0.0057 43 0.13242810 0.000129 6.9
Number of nodes: 18370 -0.2 0.19161968 0.0059 44 0.14189760 0.000123 6.8
—0.1 0.18143460 0.0061 44 0.15282630 0.000117 6.7
0 0.16886800 0.0064 45 0.16557800 0.000109 6.6
0.1 0.15297568 0.0068 4.6 0.18065190 0.000100 6.5
0.2 0.13223376 0.0073 4.7 0.19874520 0.000090 6.3
0.3 0.10402444 0.0080 49 0.22086740 0.000077 6.1
0.4 0.06343036 0.0092 5.1 0.24852940 0.000062 59
0.45 0.03562549 0.0102 53 0.26513250 0.000054 5.8
pr =038
—0.95 0.15239210 0.0046 29 0.05760600 0.000098 4.6
—0.9 0.1512187 0.0046 2.9 0.05903250 0.000097 4.6
—0.8 0.14866436 0.0046 29 0.06210840 0.000095 4.6
Number of elements: 5714 —-0.7 0.14579136 0.0046 29 0.06552240 0.000093 4.5
—0.6 0.14253536 0.0047 29 0.06933360 0.000091 4.5
—0.5 0.13881600 0.0047 29 0.07361550 0.000089 4.5
—-04 0.13452480 0.0048 29 0.07846140 0.000086 4.5
-0.3 0.12952128 0.0048 29 0.08399020 0.000084 44
Number of nodes: 17789 —0.2 0.12360880 0.0049 3.0 0.09035680 0.000082 4.4
—0.1 0.11651688 0.0050 3.0 0.09776790 0.000079 4.4
0 0.10785500 0.0052 3.0 0.10650300 0.000076 43
0.1 0.09703408 0.0054 3.1 0.11695310 0.000074 43
0.2 0.08313264 0.0056 3.1 0.12967680 0.000070 42
0.3 0.06461832 0.0060 32 0.14550640 0.000067 4.1
0.4 0.03873716 0.0067 33 0.16573760 0.000064 4.0
0.45 0.02150800 0.0075 33 0.17812090 0.000063 4.0
pr=09
—0.95 0.07521498 0.021 1.5 0.02710925 0.00138 22
-0.9 0.07458332 0.021 1.5 0.02780280 0.00137 22
-0.8 0.07321184 0.021 1.5 0.02930220 0.00134 2.2
Number of elements: 2518 -0.7 0.07167391 0.021 1.5 0.03097230 0.00132 2.2
—0.6 0.06993791 0.021 1.5 0.03284460 0.00129 22
—0.5 0.06796250 0.021 1.5 0.03495770 0.00127 22
—-04 0.06569467 0.022 1.5 0.03736140 0.00124 22
—-0.3 0.06306418 0.022 1.5 0.04012001 0.00121 22
Number of nodes: 8111 —0.2 0.05907645 0.022 1.5 0.04331856 0.00118 22
—0.1 0.05630105 0.023 1.5 0.04707117 0.00115 2.1
0 0.05185260 0.023 1.5 0.05153570 0.00112 2.1
0.1 0.04635822 0.024 1.5 0.05693589 0.00108 2.1
0.2 0.03940013 0.024 1.5 0.06360024 0.00105 2.1
0.3 0.03030352 0.026 1.5 0.07203144 0.00101 2.1
0.4 0.01790323 0.027 1.6 0.08303974 0.00097 2.1
0.45 0.00984560 0.030 1.6 0.08991015 0.00096 2.0
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