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In this article we study the problem of finding the temperature distribu-
tion and effective conductivity for a domain divided in four subdomains,
see Figure 1. The local conductivity depends on a variable k that is large.
We see that the local conductivity function λ is constant equal to kb1 inΩ1,
b2/k inΩ2, kb3 inΩ3 and b4/k inΩ4. We are searching for an estimate of the
problem

min
w∈W1,2

0 (Ω)

∫
Ω

λ(x)| 5 (u + w)|2dx, (1)

where u is a function in W1,2(Ω) satisfying the boundary conditions seen
in Figure 1. This is the variational formulation of the problem

−divλ 5 u = 0.

If we try to find an approximation of (1) in some finite dimensional
subspace of W1,2

0 (Ω), we see that (1) tends to infinity as k tends to infinity.
This is due to the fact that finite dimensional spaces are closed and that
our exact solutions tends to something that is larger than zero. See [1] for
a numerical example.

The solution of our problem tends to the same limit as Mortola–Steffes
[12] conjecture. Mortola and Steffe conjectured the homogenized effective
conductivity of a four phase checkerboard. The proof was later found
independently by Milton [11] and Craster & Obnosov [6]. In fact the
effective conductivity (=energy) of our problem tends to the same limit as
Mortola–Steffes conjecture. We are not surprised that our solution tends to
this limit, since the energy concentrates around the point where the four
phases meets, as k becomes large, hence our solution became increasingly
less dependent on other parts of the domain. Theorem 3 is an example
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of this property. It is also interesting that we can give a very explicit
estimate how fast the approximated energy will tend to the exact energy
as k → ∞. The ideas we use are relatively uncomplicated and it is not
difficult to propose further generalizations. As an example, we suggest a
very reasonable way to our result to three dimensions, but was not able to
find a satisfactory proof that the approximated energy tends to the same
limit as the exact solution as k→∞.

It is interesting to compare with an article of Keller [9] often referred
to by later articles treating high contrast problems in conductivity. Here
some less general cases (and much simpler cases, see also [1]) with only
two phases were treated; a rectangular shaped and a paralellogram shaped
checkerboard. Keller approximated the effective conductivity for these
structures, when the conductivity ratio was large between the phases.
This in some sense extended an earlier result of Dykhne [4], showing the
exact effective conductivity of a square checkerboard with two phases.

Figure 1: Ω

1 The problem in two dimensions (See Figure 1)

We will use polar coordinates (r, θ) unless otherwise said. The considered
domainΩ is a disc with radius 1, centered in the origin. The local conduc-
tivity function λk has the value b1k in Ω1, b2/k in Ω2, b3k in Ω3 and b4/k in
Ω4. From elementary calculus we have the following relation

5u =
[∂u
∂x
+
∂u
∂y

]
=
[∂u
∂r
∂u
r∂θ

]
,
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where x = r cos(θ) and y = r sin(θ). For u in W1,2(Ω), we define the energy
functional

Ek(u) =
∫
Ω

λk(r, θ)| 5 u(r, θ)|2dΩ. (2)

For large k’s, we will look for an approximation to the minimizer uk of Ek

in W1,2(Ω), satisfying the boundary conditions in Figure 1. Suppose that q
is in W1,2(Ω). We will say that u is in Hq(Ω) if there exists a v in W1,2

0 (Ω),
and, a constant c, such that u is the sum of q, v and c.

2 Results in the two dimensional case

Theorem 1. Let Λ be a subset of W1,2(Ω) such that for every v ∈ W1,2(Ω), we
have v ∈ Λ if and only if the following conditions are satisfied:

• The function v satisfies the boundary conditions in Figure 1 up to a
constant translation.

•
∂v
∂θ = 0 in Ω1 and Ω3.

•
∂v(r,θ)
∂θ is constant for each fixed r when (r, θ) ∈ (Ω2 ∪Ω4).

Let uk be a minimizer of Ek. If vk is a minimizer of Ek in Λ, then

τ(k)Ek(vk) −
3Ek(uk)

2k2

(b2

b1
+

b2

b3
+

b4

b1
+

b4

b3

)
≤ Ek(uk),

where

τ(k) =
A2

1A2
3

(A1 + A2)(A1 + A4)(A3 + A2)(A3 + A4)
, (3)

and
A1 =

b1k
θ1
, A2 =

b2

θ2k
, A3 =

b3k
θ3

and A4 =
b4

θ4k
.

Observe that τ(k) → 1 as k → ∞. What we want to know is if |E(vk) −
E(uk)| → 0 as k tends to infinity. The next theorem is useful to answer this
question. First we should observe that from the definition of Λ, if v is in
Λ, we know v for all of Ω if we know v only for two fixed angles θ′1 and
θ′2, where 0 < θ′1 < θ1 and θ1 + θ2 < θ′2 < θ1 + θ2 + θ3. This property of Λ
makes it easier for us to derive some explicit results:

Theorem 2. Let Sk : W1,2(Ω)→ R be defined as

Sk(v) = Ek(v) −
∫
Ω2∪Ω4

λk(r, θ)
(∂v
∂r

)2
rdrdθ.
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If v is in Λ, then it follows that Sk(v) is the radial energy of v. Define

vk(r, θ) =
φ2

φ1 + φ2
r
φ3(φ1+φ2)
φ1φ2 in Ω1,

and

vk(r, θ) = −
φ1

φ1 + φ2
r
φ3(φ1+φ2)
φ1φ2 in Ω3,

where
φ1 = kb1θ1 , φ3 = kb3θ3 and φ2 =

1
k

( b2

θ2
+

b4

θ4

)
.

Then vk is a minimizer of Sk in Λ.

Remark 1. Let a = φ3(φ1+φ2)
φ1φ2

. A quick computation gives∫
Ω2

b2

k

( ∂vk

r∂θ

)2
rdrdθ <

θ2b2

k

∫ 1

0
(2ara−1)2rdrdθ <

C
k2 .

Thus
|in fv∈ΛSk(v) − in fv∈ΛEk(v)| → 0 as k→∞.

We conclude that |E(vk) − E(uk)| → 0 as k tends to infinity.

Remark 2. Let vk be defined as in Theorem 2. Computations then gives

Sk(vk) =

√
b1b3(b2 + b4)

b1 + b3
. (4)

This formula has the the same form as the limit case of Mortola–Steffes conjecture.
Observe that the right hand side of (4) does not depend on k.

3 A result for other shapes of the domain

There are many ways to generalize Theorem 2. Here we give only one
example in the two dimensional case.

Theorem 3. Let us use a Cartesian coordinate system. Let λk be the local
conductivity function with λk(x, y) = b1k for x, y > 0, λk(x, y) = b2/k for
x,−y < 0, λk(x, y) = b3k for x, y < 0 and λk(x, y) = b4/k for x,−y > 0. Let Ω
be an open, bounded and connected domain in R2, with Lipschitz boundary and
containing the origin. Let Ek be given by

Ek(u) =
∫
Ω

λk(x, y)| 5 u|2dx.
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Let q be a function in W1,2(Ω) with q = 1 on the part of ∂Ω with x, y > 0 ,and,
q = 0 on the part of ∂Ω with x, y < 0. Let Ek be given by

Ek(u) =
∫
Ω

λk(x, y)| 5 u|2dx,

for u ∈W1,2(Ω). Then for uk in H1
q(Ω), we have

minuk∈H1
q (Ω)Ek(uk)→

√
b1b3b2 + b1b3b4

b1 + b3
as k→∞. (5)

Proof. Let R1 denote the region where x, y > 0, R2 denote the region where
x,−y < 0, R3 denote the region where x, y < 0 and R4 denote the region
where x,−y > 0. We want to find a lower bound for Ek in H1

q(Ω). Let D1

and D2 be two discs centred in the origin such that D1 is a subset ofΩ and
Ω is a subset of D2. Let us define

Ψ =
{
(D2 ∩ R1) ∪ (D2 ∩ R3) ∪ (D1 ∩ R2) ∪ (D1 ∩ R4)

}
.

Let s be a function in W1,2(Ψ) such that s = 1 on the part of ∂Ψ contained
in R1 and s = 0 on the part of ∂Ψ contained in R3. Let uk be any function in
H1

q(Ω). Now let wk be a function in W1,2(Ψ) such that wk = uk on the part
where Ω and Ψ overlap, and, such that wk is constant on those parts of Ψ
that do not overlap Ω. Clearly wk is in H1

s (Ψ). Moreover, EΨk (wk) ≤ Ek(uk).
By using similar methods as in the proof of Theorem 1 and Theorem 2, it
is easy to show that

lim
k→∞

inf
w∈H1

s (Ω)
Ek(w) =

√
b1b3b2 + b1b3b4

b1 + b3
.

Next, we want to find an upper bound for Ek in H1
q(Ω). We will use polar

coordinates. Let r′ be the radius of D1. In Theorem 2 we defined a function
vk. Define v′k(r, θ) in D1 as equal to vk(r, θ) divided by vk(r′, θ). Then v′k
equals 1 on the part of ∂D1 whics is in R1 and v′k equals 0 on the part of ∂D1

which is in R3. Then we can extend v′k to a function in H1
q(Ω), still labeled

v′k, such that
Ek(v′k) = ED1

k (v′k) + C/k,

where C does not depend on k and is equal to

C = b2

∫
R2∩(Ω/D1)

| 5 v′k|
2rdrdθ + b4

∫
R4∩(Ω/D1)

| 5 v′k|
2rdrdθ.
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Obviously Ek(v′k) is an upper bound for Ek(uk). Moreover, we can easily
verify that

lim
k→∞

Ek(v′k) =

√
b1b3b2 + b1b3b4

b1 + b3
.

�

4 A result in the 3 dimensional case

We suggest how the results in the 2–dimensional case can be extended to 3
dimensions. First we need to redefine the domain for our problem. Let Ω
be a ball in R3 with radius r = 1 and with center in r = 0. LetΩs

1 andΩs
2 be

sets on the boundary ∂Ω ofΩwith dist(Ωs
1,Ω

s
2) = d > 0. Also suppose that

Ωs
1 and Ωs

2 are open and connected sets with Lipscitz boundary, relative
to the surface of Ω (not relative to R3). Let Ωs

3 = ∂Ω ∩ (Ωs
1 ∪ Ω

s
2)c. Put

Ωi = {(r, θ, φ) : (1, θ, φ) ∈ Ωs
i and 0 < r < 1} for i = 1, 2, 3. Define

|Ωs
i | =

∫
Ωs

i

cos(φ)dφdθ,

for i = 1, 2, 3. Let λk be the local conductivity function with λk(x) = b1k in
Ω1, λk(x) = b2k in Ω2 and λk(x) = b3/k in Ω3. For u ∈ W1,2(Ω) define the
energy functional Ek as

Ek(u) =
∫
Ω

λk(r, θ, φ)| 5 u|2r2 cos(φ)dθdφ. (6)

Let w = u + q, where u is the solution to the problem

E1 = min
u∈Hq(Ωs

3)

{∫
Ωs

3

((∂u
∂θ

)2
+
(∂u
∂φ

)2)
cos(φ)dθdφ

}
,

where q is in W1,2(Ω), and, q = 0 on Ωs
1 and q = 1 on Ωs

2 (in the sense
of trace). We do not know the analytic solution of the above problem in
general. Now we define the approximation space:

Definition 1. Let u ∈ Λ3D if and only if

• u ∈ Hq(Ω).

• u(r, θ, φ) is constant with respect to θ and φ, for fixed r in Ω1 and Ω2.

• For 0 < r < 1, let (r, θ1, φ1) ∈ Ω1 and (r, θ2, φ2) ∈ Ω2. Then for every
(r, θ, φ) ∈ Ω2, we define u(r, θ, φ) = (u(r, θ2, φ2) − u(r, θ1, φ1))w(θ, φ).
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Let (1, θ1, φ1) ∈ Ωs
1 and (1, θ2, φ2) ∈ Ωs

2. We see that any u ∈ Λ3D

is uniquely defined by u(x1(r)) and u(x2(r)), where x1(r) = (r, θ1, φ1) and
x2(r) = (r, θ2, φ2). For uk ∈ Λ

3D, we define the functional Tk as

Tk(u) =
∫
Ω3

λk(r, θ, φ)
(
(
∂u
r∂θ

)2 + (
∂u
r∂φ

)2
)
r2 cos(φ)drdθdφ+

∫
Ω1∪Ω2

λk(r, θ, φ)
(∂uk

∂r

)2
r2 cos(φ)drdθdφ

=

∫ 1

0

(
b1k|Ωs

1|
(∂u
∂r

)2
+ b2k|Ωs

2|
(∂u
∂r

)2
+

b2E1

|Ωs
3|k

(u(x2(r)) − u(x1(r)
r

)2)
rdr

Then by the steps from the proof of Theorem 2, we have

Theorem 4. Define

Sk(uk) = Ek(uk) −
∫
Ω3

λk(r, θ, φ)
((∂uk

r∂θ

)2
+
( ∂uk

r∂φ

)2)
r2 cos(φ)drdθdφ.

If uk is a minimizer of Sk in Λ3D, then

uk(x1(r)) + c =
ρ2

ρ1 + ρ2
r
ρ3(ρ1+ρ2)
ρ1ρ2 and uk(x2(r)) + c = −

ρ1

ρ1 + ρ2
r
ρ3(ρ1+ρ2)
ρ1ρ2 ,

where ρ1 = kb1|Ω
s
1|, ρ2 = kb2|Ω

s
2| and ρ3 =

b3E1
k|Ωs

3|
and c is just some constant to

assure that uk ∈ Λ
3D.

Observe that by the Maximum Modulus principle, we have 0 ≤ w(θ, φ) ≤
1 for (r, θ, φ) ∈ Ω3. It follows that

u(r, θ, φ) = w(θ, φ)u(x1(r)) + (1 − w(θ, φ))u(x2(r)),

for (r, θ, φ) ∈ Ω2. Thus we can repeat the calculations we did for the
2-dimensional example to see that

|min
u∈Λ3D

Tk(u) − min
u∈Λ3D

Ek(u)| → 0 as k→∞.

Is it true then that

|min
u∈Λ3D

Ek(uk) − min
u∈W1,2

0 (Ω)
Ek(u + q)| → 0 as k→∞

holds? It would be a very reasonable assumption, but to find a rigid proof
is more complicated.
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5 Proof of Theorem 1 and Theorem 2

5.1 Proof of Theorem 1

Proof. Let uk be a minimizer of Ek. Define ω1 and ω2 such that∫ 1

0

(∂uk(r, ω1)
∂r

)2
rdr = min

ω∈[0,θ1]

∫ 1

0

(∂uk(r, ω)
∂r

)2
rdr

∫ 1

0

(∂uk(r, ω2 + θ1 + θ2)
∂r

)2
rdr = min

ω∈[θ1+θ2,θ1+θ2+θ3]

∫ 1

0

(∂uk(r, ω)
∂r

)2
rdr.

Fix r′ such that 0 < r′ < 1. We have∫ θ1

ω1

( ∂uk

r′∂θ

)2
dθ =

(
θ1 − ω1

) ∫ θ1

ω1

( ∂u
r′∂θ

)2 dθ
θ1 − ω1

.

Using dθ/(θ1 − ω1) as a probability measure, we obtain from Jensens in-
equality that

(
θ1 − ω1

)( ∫ θ1

ω1

∂u
r′∂θ

dθ
θ1 − ω1

)2
≤

(
θ1 − ω1

) ∫ θ1

ω1

( ∂u
r′∂θ

)2 r′dθ
θ1 − ω1

.

Thus
(uk(r′, θ1) − uk(r′, ω1))2

r′(θ1 − ω1)
≤

∫ θ1

ω1

(∂uk(r′, θ)
∂θ

)2
dθ.

By repeating the above argument a number of times we obtain

r′
∫ 2π

0
λk(r′, θ)

(∂uk(r, θ)
r′∂θ

)2
r′dθ ≥

a1(u0 − u11)2

ω1
+

a1(u1 − u11)2

θ1 − ω1
+

a2(u2 − u1)2

θ2
+

a3(u33 − u2)2

ω2
+

a3(u33 − u3)2

θ3 − ω2
+

a4(u0 − u3)2)
θ4

≥

a1(u0 − u11)2

θ1
+

a1(u1 − u11)2

θ1
+

a2(u2 − u1)2

θ2
+

a3(u33 − u2)2

θ2
+

a3(u33 − u3)2

θ3
+

a4(u0 − u3)2

θ4

, with a1 = b1k, a2 = b2/k, a3 = b3k, a4 = b4/k, u11 = uk(r′, ω1), u33 = uk(r′, θ1 +
θ2 + ω2), u0 = uk(r′, 0), u1 = uk(r′, θ1), u2 = uk(r′, θ2) and u3 = uk(r′, θ3).
We can now get a lower bound for the last expression, call it W, of (7),
expressed in terms of u11 and u22. Just replace u0 with a free variable s0,
minimize W with respect to s0, insert the minimized variable into W and
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repeat the same procedure with u1, u2 and u3. We will then obtain a very
long expression W′ such that W ≥ W′. Now we show how to use this
estimate. Define v ∈ Λ such that

vk(r′, ω1) = uk(r′, ω1) and vk(r′, ω2 + θ1 + θ2) = uk(r′, ω2 + θ1 + θ2). (7)

Then v is defined everywhere in Ω by our definition of Λ, and,∫ 2π

0
λk(r′, θ)(

∂vk

r′∂θ
)2r′dθ =

(u11 − u33)2

r′
(

a2

θ2
+

a4

θ4
).

Let A1 = b1k/θ1, A2 = b2/(θ1k), A3 = b3k/θ3 and A4 = b4/θ4k. Now

r′
∫ 2π

0
λk(r′, θ)(∂uk(r′,θ)

r′∂θ )2r′dθ

(u33 − u11)2( a2
θ2
+ a4
θ4

)
≥

W′

(u33 − u11)2( a2
θ2
+ a4
θ4

)
=

Q1

Q2
, (8)

where
Q1 =

(
2 A1 A2 A2

3 + 2 A2
1 A2 A3

)
A4 + A2

1 A2
3 (A4 + A2)

and

Q2 = (A4 + A2) (A2 + A1) (A3 + A2) (A4 + A1) (A4 + A3) −Q3,

where

Q3 =
(
(A2 + A1) A3 + A2

2 + A1 A2

)
A3

4+
((

2 A2
2 + A1 A2

)
A3 + A3

2 + 2 A1 A2
2

)
A2

4
(9)

+
((

A3
2 + A1 A2

2

)
A3 + A1 A3

2

)
A4 + A1 A3

2 A3.

Then it is easy to see that

Q1

Q2
≥ τ(k) =

A2
1A2

3

(A1 + A2)(A1 + A4)(A3 + A2)(A3 + A4)
. (10)

Note that this result holds for every 0 < r < 1 since r′ was cancelled out.
Trivially, if v′k is a minimizer of Ek in Λ, then τ(k)Ek(v′k) ≤ τ(k)Ek(vk).

By our defintion of vk in (7) we have that∫
Ω1∪Ω3

λk(r, θ)
(∂vk(r, θ)
∂r

)2
rdrdθ ≤

∫
Ω1∪Ω3

λk(r, θ)
(∂uk(r, θ)
∂r

)2
rdrdθ (11)

For 0 ≤ α(θ) = (θ1 + θ2 − θ)/θ2 ≤ 1 we have in Ω2 that(∂v(r, θ)
∂r

)2
=
(
α(θ)
∂u(r, ω2)
∂r

+ (1 − α(θ))
∂u(r, ω1)
∂r

)2
≤ (12)(∂u(r, ω1)

∂r

)2
+
∂u(r, ω1)
∂r

∂u(r, ω2)
∂r

+
(∂u(r, ω2)
∂r

)2
≤

3
2

((∂u(r, ω1)
∂r

)2
+
(∂u(r, ω2)
∂r

)2)
.
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By (11) and (12) we have that

b2

k

∫
Ω2

(∂vk

∂r

)2
rdrdθ ≤ (13)

3b2

2k

( 1
b1k

∫
Ω1

b1k
(∂uk

∂r

)2
rdrdθ +

1
b3k

∫
Ω3

b3k
(∂uk

∂r
)2rdrdθ

)
≤

3b2

2k

( 1
b1k
+

1
b3k

)
Ek(uk).

The same kind of reasoning holds for Ω4, of course. �

5.2 Proof of Theorem 2

Proof. Let v ∈ Λ. By the definition we have∫
Ω1∪Ω3

( ∂v
r∂θ

)2
rdrdθ = 0. (14)

Define

Tk(v) =
∫
Ω1∪Ω3

λk(r, θ)
(∂v
∂r

)2
rdrdθ +

∫
Ω2∪Ω4

λk(r, θ)
( ∂v
r∂θ

)2
rdrdθ. (15)

We will use the Euler–Lagrange equation to find a minimizer of Tk in Λ.
Let L be defined by

L(x1, x2, x3, x4, x5) =

(1 − c)2 p2 x2
2 x5 + c2 p1 x2

1 x5 +
(1 − c)2 p3 x2

4

x5
+ 2

(1 − c) cp3 x3 x4

x5
+

c2 p3 x2
3

x5
. (16)

Then the energy is given as

Tk(u, v) =
∫ 1

0
L(

du
dr
,

dv
dr
,u, v, r). (17)

This is associated with the following Euler–Lagrange equation

c
(
− φ1c

d2u
dr2 r − φ1c

du
dr
+

u
r
φ3(2c − 1)

)
+ (18)

(1 − c)
(
− φ2(1 − c)

d2v
dr2 r − φ2(1 − c)

dv
dr
+

v
r
φ3

)
= 0.
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After inserting u = rau and v = rav and splitting the equation in two parts
we obtain

(−φ1ca2
u + φ3)rau−1 = 0 (19)

(−φ2(1 − c)a2
v + φ3)rav−1 = 0.

Thus

au = ±

√
φ3

cφ1
and av = ±

√
φ3

(1 − c)φ2
. (20)

We are only interested in the positive parts of the root. Now we want to
compute c. The most straightforward way to do this is to insert the new
values of au and av into (17) and differentiate with respect c so that we can
find minimum points. But it seems very difficult to find the roots of the
resulting expression. Instead we can use the following approach: Fix a real
value d such that 0 < d < 1. Let u = ra and v = rb, with

a =

√
φ3

dφ1
and b =

√
φ3

(1 − d)φ2
. (21)

Insert u and v into (17). After computing the integral, we obtain

Tk(u, v) =
c2 φ3

2 a
+

2 (1 − c) cφ3

b + a
+

(1 − c)2 φ3

2 b
+

b (1 − c)2 φ2

2
+

a c2φ1

2
. (22)

We want to find which c minimize T(u, v). The parameter c will minimize
(22) for the fixed functions u and v if

dTk(u, v)
dc

= −
2 cφ3

b + a
+

cφ3

a
+

2 (1 − c) φ3

b + a
−

(1 − c)φ3

b
− b (1 − c)φ2+ a cφ1 = 0.

(23)
By definition, the above equation holds for all 0 < d < 1, in particular it
will hold for d = c. Now we can insert the values from (21) into (23). Then
replace d by c. Then use the facts that a > 0, b > 0, 0 < c and 0 < 1 − c to do
a number of algebraic computations on (23). This will yield

√

1 − c
√

c (2 c − 1)
√
φ1

√
φ2 φ

2
3 =(

(c − 1)φ2 + cφ1

)
φ2

3 −
((

c2
− 2 c + 1

)
φ2 − c2φ1

)
φ2

3

Square both sides of the above expression. Then we obtain a fourth degree
polynom. of which only one of the roots can be a solution to our problem,
namely

c =
φ2

φ1 + φ2
.

�
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