
Parallel algorithms for dynamic shortest path problems

Ismail Chabini and Sridevi Ganugapati

Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

E-mail: chabini@mit.edu

Received 26 June 1999; received in revised form 19 October 2001; accepted 11 December 2001

Abstract

The development of intelligent transportation systems (ITS) and the resulting need for the solution of a variety of

dynamic traffic network models and management problems require faster-than-real-time computation of shortest

path problems in dynamic networks. Recently, a sequential algorithm was developed to compute shortest paths in

discrete time dynamic networks from all nodes and all departure times to one destination node. The algorithm is

known as algorithm DOT and has an optimal worst-case running-time complexity. This implies that no algorithm

with a better worst-case computational complexity can be discovered. Consequently, in order to derive algorithms

to solve all-to-one shortest path problems in dynamic networks, one would need to explore avenues other than

the design of sequential solution algorithms only. The use of commercially-available high-performance comput-

ing platforms to develop parallel implementations of sequential algorithms is an example of such avenue. This

paper reports on the design, implementation, and computational testing of parallel dynamic shortest path

algorithms. We develop two shared-memory and two message-passing dynamic shortest path algorithm

implementations, which are derived from algorithm DOT using the following parallelization strategies: decom-

position by destination and decomposition by transportation network topology. The algorithms are coded using

two types of parallel computing environments: a message-passing environment based on the parallel virtual

machine (PVM) library and a multi-threading environment based on the SUN Microsystems Multi-Threads (MT)

library. We also develop a time-based parallel version of algorithm DOT for the case of minimum time paths in

FIFO networks, and a theoretical parallelization of algorithm DOT on an ‘ideal’ theoretical parallel machine.

Performances of the implementations are analyzed and evaluated using large transportation networks, and two

types of parallel computing platforms: a distributed network of Unix workstations and a SUN shared-memory

machine containing eight processors. Satisfactory speed-ups in the running time of sequential algorithms are

achieved, in particular for shared-memory machines. Numerical results indicate that shared-memory computers

constitute the most appropriate type of parallel computing platforms for the computation of dynamic shortest

paths for real-time ITS applications.

Keywords: dynamic shortest paths; parallel and distributed computing; computer algorithms; intelligent transportation

systems; dynamic networks.

Intl. Trans. in Op. Res. 9 (2002) 279–302

2002 International Federation of Operational Research Societies.

Published by Blackwell Publishers Ltd.

1. Introduction

Shortest path problems in networks have been the subject of extensive research for many years,

resulting in a large number of scientific publications. The vast majority of these publications however

have dealt with static networks that have fixed topology and fixed link costs. In recent years there has

been a renewed interest in the study of shortest path problems, however, with a new twist: link costs

and link travel times generally depend on the time of entry onto a link. This results in a new family of

shortest path problems known as dynamic or (time-dependent) shortest path problems.

The development of intelligent transportation systems (ITS) and the resulting need for real-time

dynamic management and route guidance models and algorithms are examples of applications where

dynamic shortest path problems arise. One of the fundamental network problems in such applications

is the computation of shortest paths from all nodes to a set of destination nodes for all possible

departure times, in a given time-dependent network. This problem can be reduced to solving many

dynamic shortest path sub-problems, each of which consists in finding shortest paths from all nodes to

a certain destination node for all possible departure times. This last problem is the focus of this paper,

and is referred to as the all-to-one dynamic shortest path problem.

The development of solution algorithms for the all-to-one dynamic shortest path problem is a

research topic that has been studied by various researchers. Various solution algorithms have been

proposed (Cooke and Halsey, 1966; Ziliaskopoulos and Mahmassani, 1993). Recently, Chabini (1997,

1998) proposed an efficient solution algorithm, called algorithm DOT, and showed that no sequential

solution algorithm with a better worst-case computational complexity can be developed.

Numerical results show that on a Silicon Graphics Indy (SGI) workstation, algorithm DOT computes

shortest paths from all nodes to one destination node for all departure times within one second, for

dynamic networks containing 1000 nodes, 3000 arcs, and 100 times intervals. In the context of

dynamic models of traffic flows on road networks, the number of destination nodes for networks of the

above size is typically in the order of 300. Hence, the computation of dynamic shortest paths for 300

destinations would require five minutes of computation time on an SGI workstation. The solution of

more evolved dynamic network models, such as the dynamic traffic assignment problem (for instance

see Chabini and He, 2000), typically requires the solution of a series of all-to-many dynamic shortest

path problems. Thus, computational times of sequential dynamic shortest path algorithms may not be

low enough to meet the real-time operational requirement of ITS applications, at the heart of which

arise the need to solve large-sized instances of evolved dynamic network models.

To achieve faster computation times, one needs to explore avenues other than design of sequential

algorithms. The application of high performance computing to solve shortest path problems is an

example of an avenue. The objective of this paper is to report on the design, implementation and

computational testing of parallel algorithms that exploit possibilities offered by parallel and distributed

computing platforms, to compute all-to-many shortest path problems in time-dependent networks.

We develop two shared-memory and two message-passing algorithm implementations. The algo-

rithms are derived from algorithm DOT using the following parallelization strategies: decomposition

by destination and decomposition by network topology. The algorithms are coded using two types of

parallel computing environments: a message-passing environment based on the PVM library and a

multi-threading environment based on the SUN Microsystems Multi-Threads (MT) library. We also

develop a time-based parallel version of algorithm DOT for the case of minimum time paths in FIFO

networks, and a theoretical parallelization of algorithm DOT on an ‘ideal’ theoretical parallel machine.

280 I. Chabini, S. Ganugapati / Intl. Trans. in Op. Res. 9 (2002) 279–302

Numerical results are obtained using large-sized dynamic networks, and two parallel computing

platforms: a distributed network of Unix workstations and a SUN shared-memory machine containing

eight processors. Satisfactory speed-ups of sequential algorithms are achieved, in particular on shared-

memory machines. Based on numerical results obtained, shared-memory platforms appear to be the

most appropriate type of parallel computing platforms for the computation of dynamic shortest paths

for real-time ITS applications.

This paper is organized as follows. In the next section, we overview the formulation of the all-to-one

dynamic shortest paths problem, and the DOT solution algorithm. Section 3 gives an overview of

concepts related to parallel computing and to the parallel implementations of this paper. Section 4

describes a message-passing algorithm and a shared-memory algorithm, which are derived from

algorithm DOT using a parallelization strategy of decomposition by destinations. Section 5 describes a

message-passing implementation and a shared-memory implementation of algorithm DOT using a

parallelization strategy of decomposition by network topology. In Section 6 we develop a time-based

parallel version of algorithm DOT for the case of minimum time paths in FIFO networks and a

parallelization of algorithm DOT on an ‘ideal’ theoretical parallel machine. Section 7 summarizes

results obtained from a computational study of the parallel implementations developed.

2. All-to-one shortest paths for all departure times in a time-dependent network

Chabini (1997, 1998) distinguishes various types of dynamic shortest path problems depending on the

following:

(1) Discrete versus continuous representation of time,

(2) Fastest versus minimum cost (or shortest) path problems.

(3) Deterministic versus stochastic time-dependent network data.

(4) FIFO networks versus non-FIFO networks. In the latter networks one can depart later at the

beginning of one or more arcs and arrive earlier at their end.

(5) Waiting policies at nodes: for such, waiting is allowed versus waiting is not allowed at nodes.

(6) Types of shortest path questions asked: one-to-all shortest paths for a given departure time or for

all departure times, and all-to-one shortest paths for all departure times.

In this paper we are interested in the all-to-one and all-to-many minimum-time path problem for all

departure times. The derivations in this paper can be extended to minimum-cost paths as well.

In the rest of this section, we overview a formulation and a solution algorithm for the all-to-one

dynamic shortest paths problem in discrete-time dynamic networks. The main content in the rest of the

section is borrowed from Chabini (1997, 1998), and is included here in order to have a self-contained

paper.

2.1. Notation

Let G ¼ (N , A, D, C) be a directed network, where N ¼ f1, . . ., ng is the set of nodes, and

A ¼ f1, . . ., mg is the set of links (or arcs). n and m are, respectively, the number of nodes and the

number of arcs. Network G ¼ (N , A, D, C) is said to be time-dependent if its link travel times and

costs vary as a function of time. Let t be an index to an interval of time. Let dij (t) and cij (t) respectively

I. Chabini, S. Ganugapati / Intl. Trans. in Op. Res. 9 (2002) 279–302 281

denote the travel time and travel cost experienced by a commodity traveling along arc

(i, j), departing node i at time t. Sets D and C are, respectively, the set of link travel time and travel

cost functions dij (t) and cij (t). Arc travel times are assumed nonnegative. We assume that the domain

of functions dij (t) and cij (t) is the set of integers. Furthermore we assume that dij (t) have an integer

range and that dij (t) ¼ dij(M � 1) and cij (t) ¼ cij (M � 1) for t . M � 2. We assume that travel costs

cij (M�1) can be negative, but should not lead to negative cycles. We denote by A(i) the set of nodes

having an incoming arc from node i, that is A(i) ¼ f j 2 N j(i, j) 2 Ag). B(j) ¼ fi : (i, j) 2 Ag denotes

the set of nodes before node j. We use standard definitions (which can be found in standard books on

algorithms) of O, Ł, and � notations in the computational analysis of this paper.

Arc travel time functions can be such that commodities exit an arc in the same order in which they

enter it. This is known as the First-In-First-Out (FIFO) property. An arc (i, j) satisfies the FIFO

condition if function aij(t) ¼ t þ dij(t) is non-decreasing as a function of t. As time is assumed discrete,

the FIFO definition is equivalent to: t þ 1 þ dij[t þ 1] > t þ dij[t] 8t in [0, M � 1]. Network

G ¼ (N , A, D, C) is said to be FIFO if all its arcs are FIFO.

2.2. Problem formulation

Assume that waiting is not allowed anywhere in the network. Let �i(t) denote the minimum travel time

to a destination node q departing node i at time index t. Functions �i(t) are the solution to the

following system of functional equations:

�i(t) ¼
0 if i ¼ q

min
j2A(i)

fcij(t) þ � j(t þ dij(t))g if i 6¼ q 8i 2 N , 8t 2 [0, M � 1]

(
(1)

Optimal paths can be traced by saving for each node i and time t an outgoing link, the end node of

which is an argument to the minimization operation in equation (1).

Equation (1) is called the dynamic shortest path optimality conditions. They are useful in designing

solution algorithms, and were first proposed by Cooke and Halsey (1966). Cooke and Halsey developed

a solution algorithm that extends Bellman-Ford’s static shortest path algorithm, while Ziliaskopoulos

and Mahmassani (1993) developed an algorithm that extends static label correcting algorithms. In both

approaches only the minimum-time path problem was considered, and the label of a node, say i, is a

vector of travel times from node i to destination node q for all possible departure times. The worst-case

running time complexity of both algorithms is O((n þ M)(nM þ mM)).

In Chabini (1997, 1998), the acyclic nature in the time dimension of the discrete-time dynamic

network is exploited to design an algorithm to solve functional equation (1). The algorithm computes

optimal labels in Decreasing Order of Time, and is called algorithm DOT. The design of algorithm

DOT is based on the following proposition:

Proposition 1. Optimal labels �i(t) can be set in a decreasing order of departure time index t.

Proof. Since all arc travel times are positive integers, labels corresponding to time steps t never update

labels corresponding to time steps greater than t (see Equation 1). This result implicitly reflects the

acyclic property, along the time dimension, of the equivalent time-space expansion of a discrete-time

dynamic network. j

282 I. Chabini, S. Ganugapati / Intl. Trans. in Op. Res. 9 (2002) 279–302

2.3. A decreasing order of time (DOT) algorithm

For a departure time t greater than or equal to M�1, the computation of �i(t) is equivalent to a static

shortest path problem. The main loop of Algorithm DOT is carried out in decreasing order of time, and

assumes that a static shortest path procedure, StaticShortestPaths(lij, q), is available. The procedure

computes a shortest path tree to a destination node q in network (N, A), using lij as link costs. The

running time complexity of this procedure is denoted SSP. The statements of the algorithm DOT

follow.

Step 0 (Initialization).

�i(t) ¼ 1, 8(i 6¼ q), �q(t) ¼ 0, 8(t , M � 1)

�i(M � 1) ¼ StaticShortestPaths(cij(M � 1), q), 8i 2 N :

Step 1 (Main Loop).

For t ¼ M � 2 down to 0 do:

For (i, j) 2 A do:

�i(t) ¼ (�i(t), cij(t) þ � j(t þ dij(t))

2.4. Complexity of algorithm DOT

Proposition 2. Algorithm DOT solves for the all-to-one shortest path problem, with a running time in

Ł(SSP þ nM þ mM), where Ł(SSP) is the worst-case computational complexity of the ‘best’ algorithm

to compute all-to-one static shortest paths.

Proof. The correctness of the algorithm follows directly from Proposition 1. The running time

complexity can be determined in a straightforward manner by counting the number of operations in the

algorithm. The initialization step needs Ł(nM) operations, the main loop requires Ł(mM) operations

and the worst-case time complexity of the static shortest path computation is in Ł(SSP). Hence, the

total running time complexity is Ł(SSP þ nM þ mM). j

Proposition 3. The complexity of the all-to-one shortest paths problem for all departure times is

�(nM þ mM þ SSP). Hence, algorithm DOT is optimal, in the sense that no algorithm with a better

worst-case running time complexity can be found.

Proof. The problem has a worst-case complexity of �(nM þ mM þ SSP) for the following reasons.

In the worst case every solution algorithm must access all arc data (mM), initialize nM labels as

shortest paths for all departure times are sought (nM), and compute all-to-one static shortest paths for

departure time intervals greater than or equal to M � 1 (SSP). In Proposition 2 we proved that the

computational complexity of algorithm DOT is Ł(nM þ mM þ SSP). Hence, algorithm DOT has an

optimal running time complexity. j

I. Chabini, S. Ganugapati / Intl. Trans. in Op. Res. 9 (2002) 279–302 283

3. Parallel computing concepts and dynamic shortest implementations: A brief overview

In the discussion of the previous section, we implicitly assumed that algorithm DOT would be executed

on a machine that can only do a single calculation at a given time. One way to speed up the

computation time of algorithm DOT is to exploit parallel and distributed computing platforms, on

which it is possible to perform multiple instructions simultaneously. In this section we overview some

concepts related to parallel computing in general, and summarize some aspects common to the parallel

implementations developed in this paper.

3.1. Shared-memory and distributed-memory multi-processors

The concept of parallel computing consists of simultaneously using multiple processors to carry out the

computation of subtasks for a given computational task. Parallel computers are now widely available.

Unlike sequential computers, they differ in a variety of ways that impact the design and implementation

of algorithms. Compared to sequential processing, this adds new dimensions to the complexity of

algorithm design and implementation. For a given computational problem, one has to find the best

combination of type of parallel computing platform, parallelization strategy, and solution algorithm.

To define the meaning of computer type, a systematic classification of parallel computers is needed.

Various classifications exist in the literature. Depending on the purpose behind their use, some are

more suitable than others. Below we briefly describe a classification that provides a framework for the

parallel algorithms of this paper. This classification is based on the type of medium through which

processors of a parallel system communicate.

In existing parallel computers, processors communicate in essentially two different ways, though

hybrid solutions also exist: (1) through a shared-memory, or (2) by passing messages through links

connecting processors that do not have a common memory. This leads to two (extreme) classes of

computer systems: shared-memory computers, and distributed-memory or message-passing machines.

A brief description of each class of computers follows.

Shared memory computers

In this parallel computer design, there exists a global memory that can be accessed by all processors.

Processors can communicate with one another by writing into locations in the global memory. A

processor requiring this information reads it from that global-memory location. Although this solves

the inter-processor communication problem, it also introduces other problems. For instance, one would

need methods to resolve possible conflicts due to simultaneous modifications by different processors of

the data stored in the same memory location. This problem is usually solved using mutual exclusion

locks (see Lewis and Berg, 1996, for more details on this topic). There is however generally no need to

explicitly resolve conflicts when processors are accessing memory locations for reading purposes only,

as computer systems typically contain built-in switching circuits that automatically resolve such

conflicts. Note that mechanisms which resolve data-access conflicts introduce computational delays.

Distributed memory (message-passing) systems

In these systems, processors have their own local memory, and typically communicate through an inter-

connection network, which possesses a topology describing how processors are interconnected.

Common topologies are rings, trees, meshes, and hypercubes. A major factor affecting the speed of

284 I. Chabini, S. Ganugapati / Intl. Trans. in Op. Res. 9 (2002) 279–302

parallel algorithms developed for these systems is the amount of time taken to communicate between

the processors. An appropriate topology is chosen depending on the communication requirements of

the parallel algorithm. In the next sections we will see that for certain decomposition strategies,

implementations of dynamic shortest path algorithms on these systems can lead to high communication

requirements. In such cases, shared-memory systems are usually a better alternative.

3.2. Multi-processor platforms: Examples and programming

We now give two examples of multi-processor platforms, each of which was used to test the computer

implementations of the parallel algorithms developed in this paper. A SUN UltraSparc HPC 5000

Symmetric Multiprocessor workstation is an example of a shared-memory machine. SUN UltraSparc

HPC 5000 workstations used to evaluate the shared-memory implementations of this paper have

512MB of RAM, 8 processors and 1GB of swap memory. At MIT we have nine such machines

organized in a cluster, known as the Xolas cluster. An example of distributed-memory machines is a

distributed network of Silicon Graphics Indy (SGI) workstations.

The development of codes on shared-memory machines is usually done using multi-threading

techniques (see Lewis and Berg, 1996, for more details on this topic). Many processors can

simultaneously execute threads, which have access to a single copy of the algorithm code and data.

Each processor executes the same code for its own subset of data. The subsets of data may not be

disjointed. Global memory locations used by processors for communication purposes are examples of

data that may be accessed by all processors. Access to joint data for writing purposes, must be done in

a way to avoid simultaneous access conflicts and preserve the order of data updating as specified in the

algorithm. Shared-memory implementations of this paper were developed using the Solaris Multi-

threading (MT) library (Lewis and Berg, 1996).

Parallel codes for distributed memory machines are a collection of sequential processes that

communicate between each other. The physical communication medium is the interconnection network

that links processors to each other. Processors communicate by passing messages through a commu-

nication software library. Parallel virtual machine (PVM) (Geist et al., 1995) is an example of such a

library. PVM was used to develop the distributed memory implementations of this paper. Note that

PVM implementations also run on shared-memory machines.

Tasks assigned to processors can be implemented as threads or as processes. The tasks can be

organized under various paradigms such as the master-slave(s) paradigm, in which a master process

(master thread) decomposes the problem into sub-problems and spawns out slave processes (slave

threads) to solve each of the sub-problems. Slave processes (slave threads) report back to the master

process (master thread) at the end of the computation.

3.3. Decomposition strategies for dynamic shortest paths computation

Parallel implementations of a given algorithm are generally obtained by partitioning the computational

tasks into subtasks each of which is then assigned to a processor. This is known in the parallel

computing literature as decomposition. For a given sequential algorithm, there usually exist various

dimensions along which decomposition can be achieved. Note that for larger and more uniform sub-

tasks, the performance of a parallel implementation improves.

Below we outline possible decomposition strategies for the following computational tasks: (1) the

I. Chabini, S. Ganugapati / Intl. Trans. in Op. Res. 9 (2002) 279–302 285

computation of dynamic shortest paths from all nodes to many destinations by repeatedly applying

algorithm DOT, and (2) the computation of all-to-one dynamic shortest paths using algorithm DOT.

Note that a decomposition scheme for the last computational task can also serve as an implicit

decomposition scheme for the first computational task.

The above two computational tasks offer three dimensions to develop parallel implementations: (1)

the set of destinations to which dynamic shortest paths are sought, (2) the set of network arcs (or links),

and (3) the set of departure/arrival times at nodes. We now give a brief description of each

decomposition strategy.

Destination-based decomposition

This design is trivial and has been adopted in earlier works such as Chabini et al. (1996), and

Zialiaskopoulos et al. (1997). The set of destinations is divided into disjoint subsets. Subsets are then

allotted to different processors, which compute all-to-one dynamic shortest paths for each of the

destinations in their assigned subset.

Network-topology-based decomposition

The network is split into sub-networks. Each sub-network is allotted to a processor. Each processor

determines the optimal labels of the nodes that belong to its sub-network. Parallel implementations of

static shortest path algorithms using this decomposition technique have been developed in the literature

(Hribar and Taylor, 1996; Habbal et al., 1994). To the best of our knowledge, no such implementations

have been developed for dynamic shortest path algorithms.

Time-based decomposition

The decomposition of algorithm DOT by time is less explicit than the other two decomposition

dimensions. A time-based parallelization of this algorithm is given in Section 6. Time-based parallel

implementations can alternatively be viewed as decompositions by network topology of the time-space

network representation of the time-dependent network.

Cooke and Halsey (1966)’s algorithm is decomposable by time and by network topology. Each step

of the algorithm in Ziliaskopoulos and Mahmassani (1993) performs O(M) operations, which are

amenable to a decomposition by time. This latter parallelization was explored in Ziliaskopoulos et al.

(1997), in the context of shared memory machines. The time loop in algorithm DOT performs O(m)

operations that are amenable to a decomposition by number of arcs. A sequential computational

analysis of all-to-one dynamic sequential shortest path algorithms in Chabini and Dean (1999) shows

that algorithm DOT is significantly faster than currently known alternative algorithms and is less

sensitive to the choice of a destination node. Consequently, in dynamic networks with a number of time

intervals less than or equal to the number of arcs (which is usually the case in practice), it follows that

parallel implementations of algorithm DOT would lead to faster running times than parallel implemen-

tations of other alternative algorithms in the literature. Section 6 shows that a parallelization of

algorithm DOT is also possible along the time dimension.

Based on the first two decomposition strategies outlined above, we have developed four parallel

implementations based on algorithm DOT: two shared-memory and two distributed-memory implemen-

tations. In each of the two shared-memory implementations, only one copy of the network is stored in the

global memory. In distributed-memory implementations, where each processor has its own local memory,

286 I. Chabini, S. Ganugapati / Intl. Trans. in Op. Res. 9 (2002) 279–302

the network storage scheme depends on the decomposition strategy adopted. For the destination-based

decomposition, each processor needs a copy of the entire dynamic network. Hence the network is

replicated: a complete network copy is stored in each processor’s local memory. For the network-

topology-based decomposition, only the sub-network assigned to a processor is stored in its local memory.

3.4. Some notation used in the description of parallel implementations

Following is additional notation used in the description of the parallel implementations. MP denotes a

master process or thread. The number of processors is denoted by p. The set of indices to slave

processes (or slave threads) is P ¼ f1, . . ., pg. k denotes the number of destinations to which dynamic

shortest paths need to be determined. Without loss of generality, we assume that the set of destinations

to which dynamic shortest paths needs to be computed is K ¼ f1, . . ., kg. This set is decomposed in p

disjoint subsets Ki, such that that [p
i¼1 Ki ¼ K. Subset Ki is allotted to slave process (thread) i 2 P. If r

is the remainder of the integer division of k by p, K is decomposed into disjoint subsets Ki such that

processors indexed 1 to r, contain (k � p þ 1) destinations each, while the other slave processes (or

slave threads) are assigned k � p destinations each.

4. Parallel implementations based on decomposition by destinations

4.1. Distributed-memory parallel implementation

4.1.1. Description of the implementation and the algorithms

As each processor stores its own copy of the dynamic network, in this implementation the master

process has to communicate all network information to all slave processes. Since dynamic shortest path

results are computed in different processor memories, if it is needed, the master process collects them

from all the slave processes at the end of the computations. In Section 7, we will see that the collection

of results leads to communication times that may significantly impact the performance of a distributed-

memory implementation.

The collection of results by the master process is done in the following way. A slave process sends

the results as soon as the computation for a given destination node, say node j, is complete.

Consequently, while this slave process computes for the next destination, j þ 1, the master process is

busy receiving the results for destination j. This method is better than an approach in which a slave

process would first compute shortest paths to all destinations assigned to it, before sending back at once

all results; the latter approach may lead to idle times at the master process, and at the slave processes,

and hence increase the overall computation time.

Below are statements of the algorithms on which the master process and the slave processes are

based, and which together constitute the distributed-memory implementation of the dynamic shortest

path computations based on a decomposition by destinations.

Master process algorithm: destination-based decomposition

1. Read the dynamic network G(N , A, D, C)

2. Decompose the destinations set K into p disjoint subsets Ki

I. Chabini, S. Ganugapati / Intl. Trans. in Op. Res. 9 (2002) 279–302 287

3. Spawn p child processes
4. Broadcast network G to all p processes
5. For all i 2 P and Ki 6¼ �, send subset Ki to process i

6. While (K 6¼ �)

• Receive dynamic shortest path labels for a destination j 2 Ki from a
ready processor i

• K ¼ K � f jg
7. Broadcast the message "Quit" to all processes i 2 P

8. Stop

Slave process algorithm: destination-based decomposition

In the statements of the slave process algorithm, i 2 P denotes the index of the slave process on which

the algorithm runs.

1. Receive the network G from the master process MP

2. Receive subset Ki from the master process MP

3. For all j 2 Ki

– Run Algorithm DOT
– Send the dynamic shortest path labels for destination j to the master
process MP

4. Wait for the message "Quit" from the master process MP

5. Stop

4.1.2. Run-time analysis

In the analysis below we assume that the time required transmitting one byte in a data-message between

two processors, does not depend on the following: the size of the message, the pair of processors, and

on the number of processors. Denote by c the average time required to transmit one byte of data

between any pair of processors.

Proposition 4. The average worst-case running time complexity of the distributed-memory implemen-

tation based on decomposition by destination is given by:

O(mMc log p þ Max
k

p
(nM þ mM þ SSP) þ k

p
nMc, knMC)

� �

Proof. The first term (O(mMc log p)) in the worst-case run-time complexity denotes the amount of

time required to communicate the network to all p slave processes by the master process. The amount of

information to be communicated is in O(mM), which corresponds to link travel-times for all possible M

departure times. As we broadcast the information instead of sending it in sequence to each processor,

the communication time required sending link travel times to all processes is in O(mMc log p).

The second term denotes the time that a slave process takes to compute dynamic minimum time

labels, and to communicate them to the master process. The computation of dynamic fastest paths and

288 I. Chabini, S. Ganugapati / Intl. Trans. in Op. Res. 9 (2002) 279–302

the communication of results are interleaved. The total time taken to compute the dynamic shortest

paths for k destinations by p processors using algorithm DOT is (k=p)(nM þ mM þ SSP). The time

taken by a slave process to send out nM fast path labels corresponding to k=p destinations is

(k=p)(nMC). The total time spent by a slave process to compute the results and to send them out to the

master process is (k=p)(nM þ mM þ SSP þ nMC). The master process takes knMc units of time to

collect nM labels for k destinations. The time taken to compute and communicate the results to the

master process is the maximum of the worst-case run-time taken by the master and the slave processes

to carry out these two separate tasks. j

4.2. Shared-memory destination-based parallel implementation

4.2.1. Description of implementation and algorithms

In the shared-memory implementation, each slave sub-task is implemented as a different thread. Only

one copy of the network is maintained in the global memory. As all the threads have access to all

network data and results, the master thread does not need to collect the results from the slave processes.

Below are statements of the algorithms on which are based the master and slave threads.

Master thread algorithm: destination-based decomposition

1. Read the network G(N , A, D, C)

2. Decompose the destinations set K into p disjoint subsets Ki

3. Create p child slave threads
4. Wait for the slave threads to join
5. Stop

Slave thread algorithm: destination-based decomposition

In the statements of a slave thread algorithm, i 2 p denotes the ID of a slave thread

1. For all j 2 Ki do:
– Run a thread implementation of algorithm DOT for destination j using
network G

2. Exit

It can be seen from the above algorithm statements that there is no communication required in the

shared-memory implementation. The ‘equivalent’ of the communication delay required in the

distributed-memory implementation, is the time needed to resolve possible contentions of threads to

access a same memory location, while reading link travel times for given departure times. This can

increase the memory-access time, and hence the overall running time of the parallel implementation.

This computation-time overhead is assessed in Section 7.

5. Parallel implementations of algorithm DOT by decomposition of network topology

In the discussion of this section, we focus on the parallelization of the truly dynamic part of algorithm

DOT, which corresponds to t , M � 1. The computations needed at time t ¼ M � 1, which consist of

I. Chabini, S. Ganugapati / Intl. Trans. in Op. Res. 9 (2002) 279–302 289

computing a static shortest path tree, are comparatively less expensive than the computational needs of

the dynamic part. A variety of parallel implementations of static shortest path algorithms exist in the

literature. They can be adopted for the computational needs of algorithm DOT at time index

t ¼ M � 1. We hence omit including details on the parallel implementation of the static part of

algorithm DOT.

Shortest path algorithms generally visit network links in a particular order, such as a forward (or a

backward star) order. In the main step of algorithm DOT, links can be processed, however, in an

arbitrary order at each time interval. This renders the decomposition based on network topology

particularly suitable to apply to algorithm DOT.

5.1. Additional notation

We provide additional notation used in the description of the master process (thread) and the slave

process (thread) algorithms of this section. The set of nodes N is split into p disjoint subset of nodes

Ni, such that [p
i¼1 Ni ¼ N . Each subset of nodes will be assigned to a different processor. Let P(i)

denote the index of the subset of nodes to which node i belongs. If node i 2 N j, we have P(i) ¼ j. Let

Sij be the set of links from a node in sub-network i to node in sub-network j: Sij ¼
f(x, y) 2 Ajx 2 Ni, y 2 N jg. Let SDij denote the set of travel time and travel cost functions of the

arcs belonging to Sij: SDij ¼ f(dxy(t), cxy(t))j(x, y) 2 Sij, 0 < t < M � 1g. Set Sij contains the arcs

linking nodes in subset Ni . Let S from
ij

denote the set of start nodes of all arcs belonging to set Sij, i.e.

S
from
ij ¼ fxj(x, y) 2 Sijg. Similarly, let S

to
ij denote the set of end-nodes of all arcs belonging to set Sij,

i.e. S to
ij ¼ fyj(x, y) 2 Sijg. Note that S from

ij

 Ni, and that S to

ij
 N j.

5.2. Distributed-memory implementation

In this implementation each processor i ¼ 1, . . ., p, stores the following data: a copy of its own sub-

network which is composed of nodes in subset Ni, and of the links in sets Sij(j ¼ 1, . . ., p), as well as

the sets of nodes S
from
ij (and S to

ij) (j ¼ 1, . . ., p), to which processor i sends (respectively from which

processor i receives) values of optimal labels that are needed in subsequent computations. The master

process communicates information about these sets to all p slave processes. In Section 7 we will see

that the communication of this data can require significant communication times that substantially

impact the overall running time of this distributed-memory implementation. The results of dynamic

shortest path computations reside in the processors’ local memories. If needed, the master process

collects them from the slave processes at the end of the computation. This of course adds an additional

communication time overhead, which however should be lower than the communication time overhead

discussed above.

In the remainder of this subsection, we provide the statements of the algorithms on which the master

process and the slave processes are based. Together these algorithms constitute the distributed-memory

implementation of algorithm DOT, based on a decomposition by network topology.

Master process algorithm: decomposition by network topology

1. Read the network G(N , A, D, C)

2. Compute �i(M� 1) ¼ StaticShortestPaths(cij(M� 1), q) 8i 2 N

290 I. Chabini, S. Ganugapati / Intl. Trans. in Op. Res. 9 (2002) 279–302

3. Divide the set of nodes N into p disjoint subsets Ni

4. 8(i, j) 2 A do: (l, m) ¼ (P(i), P(j)); Slm ¼ Slm [f(i, j)g
5. Spawn p slave processes
6. Send to processes i ¼ 1, . . . p:

• Set Ni

• Sets Sij, Sji and SDij, 8 j 2 P

• Destination node q, and �s(M � 1), 8s 2 Ni

7. 8i 2 P do:

Receive from process i: � j(t) 8(j, t) 2 N j 3 [0, M � 2]

8. Broadcast the message "Quit" to all slave processes
9. Stop

Slave process algorithm: decomposition by network topology

In the algorithm statements, index i denotes the ID of the slave process, (i 2 P ¼ f1, . . ., pg).

Initialization

1. Receive from the master process (MP):

• Set Ni

• Sets Sij, Sji and SDij, 8 j 2 P

• Destination q

• �s(M � 1) 8s 2 Ni

2. Set �s(t) ¼ 1, 8s 2 Ni � fqg, �q(t) ¼ 0, 80 < t , M � 1

Main Steps

3. For t ¼ M � 2 downto 0

• 8 j ¼ 1, . . ., p: 8(a, b) 2 Sij do:

�a(t) ¼ min(�a(t), cab(t) þ �b(Min(t þ dab(t), M � 1)))

• 8 j 2 P, j 6¼ i do:

Send to process j : �a(t), 8a 2 S to
ij

• 8 j 2 P, j 6¼ i

Receive from process j : �a(t), 8a 2 S to
ji

4. Send �a(t), 8a 2 Ni, 8t, 0 < t < M � 2

5. Wait for message "Quit" from MP

6. Stop

5.3. Shared-memory implementation

In algorithm DOT, the labels of nodes for time index t should be set before computing labels for time

index (t � 1). All threads need to be synchronized before the computation for a next time index can

proceed. (This condition can, however, be relaxed such that the synchronization is done only after a

number of time steps that is equal to the minimum among all link travel times.) In the distributed-

I. Chabini, S. Ganugapati / Intl. Trans. in Op. Res. 9 (2002) 279–302 291

memory implementation, this synchronization is implicitly ensured, as a slave processor may not

proceed to time t � 1 until it receives necessary results for time t from other processors. The

synchronization of threads is implemented using a synchronization barrier function (see Lewis and

Berg 1996). Let us denote by SYNCHRONIZATION_BARRIER(x) the function that synchronizes an

‘x’ number of threads.

Master thread algorithm: Decomposition by network topology

The statements of the master thread algorithm are as follows.

1. Read the network G ¼ (N , A, D, C)

2. Compute �i(M� 1) ¼ StaticShortestPaths(cij(M� 1), q) 8 i 2 N

3. Divide the set of nodes N into p disjoint subsets Ni

4. For all (i, j) 2 A do: (l, m) ¼ (P(i), P(j)); Slm ¼ Slm [f(i, j)g
5. Create p slave threads
6. Wait for all the threads to join back, and then Stop

Slave thread algorithm: Decomposition by network topology

A slave thread i 2 f1, . . ., pg, performs the following sequence of steps:

1. Set �s(t) ¼ 1, 8s 2 Ni � fqg, �q(t) ¼ 0, 80 < t , M � 1

2. For t ¼ M � 2 downto 0 do:

1.1 For all (a, b) 2 Sii : �a(t) ¼ Min(�a(t), cab(t) þ �b(Min(t þ dab(t), M � 1))

1.2 For all j 2 P, j 6¼ i

For all (a, b) 2 Sij do:

�a(t) ¼ Min(�a(t), cab(t) þ �b(Min(t þ dab(t), M � 1))

1.3 SYNCHRONIZATION_BARRIER(p)
3. Exit

There are two potential sources of parallelization time overheads in a shared-memory implementa-

tion: (1) the waiting time at the synchronization barrier for every time interval t; (2) the time lost due

to the contention of threads to access given link travel time data or a given minimum travel time label

computed at earlier steps. If the computational loads of the threads are balanced, the lost time at the

synchronization barrier is minimal.

5.4. Decomposition of network topology

In the preceding description of the two implementations of algorithm DOT based on the decomposition

by network topology, we did not specify the criteria and methods used to partition the network into sub-

networks. An adequate partitioning should split the network into p balanced sub-networks. That is, for

each sub-network, the sum of the number of links within the sub-network and the number of its

boundary outgoing links should be ‘equal’. The problem of partitioning a network satisfying this

condition is known to be an NP-Hard problem (see for instance Karypis and Kumar, 1998). In the case

292 I. Chabini, S. Ganugapati / Intl. Trans. in Op. Res. 9 (2002) 279–302

of distributed-memory implementations, one should additionally balance the sum of the number of

incoming and outgoing links of node-subsets Ni.

There exist a variety of network-partitioning algorithms and software libraries in the public domain.

In the implementations of this paper, we have used a graph partitioning software library called METIS

(Karypis and Kumar, 1998). It is available in the public domain and was developed at the University of

Minnesota. Following are statistics obtained using METIS to decompose a randomly generated network

composed by 3000 nodes and 9000 arcs into two sub-network parts. The first part contains 3504 links

and the second part contains 3518 links. There were 1020 links going from sub-network 1 to sub-

network 2, and 958 going from sub-network 2 to sub-network 1. At each time interval in algorithm

DOT, a slave process needs to send (receive) information about the boundary links to (from) the other

slave processes. In the network example of this paragraph, at every time interval, slave process 1 will

need to send 958 node labels to process 2, and receive 1020 node labels from process 2, and vice versa

for process 2. Moreover, the master process will send to the two slave processes their respective link

travel time data, and the slave processes will send the computed labels back to the master process. The

network example of this paragraph suggests that in a distributed-memory implementation, a substantial

amount of communication time may be required among the slave processes and between the master

process and the slave processes. Consequently the distributed-memory implementation can potentially

become slower than even the sequential implementation as a result of these coordination requirements.

The multi-threads shared-memory implementation may also ‘suffer’ from these coordination require-

ments, however at a lesser degree with comparison to the distributed-memory implementation.

6. Other parallel implementations of algorithm DOT

6.1. A time-based parallelization

In this section we present a time-based parallelization of algorithm DOT. It is valid for the minimum-

time path problem in FIFO networks. We first study the problem of computing maximum departure

times at nodes, for which it is possible to arrive at destination node q at or before a given time t0.

Let us consider the latter problem for one arc, say (i, j). Consider function bij(s) defined as follows:

bij(s) ¼ Maxft, such that aij(t) ,¼ sg. As aij(t) is non-decreasing (because the network is assumed

FIFO), function bij(s) is well defined on interval [dij(0), þ1), and is also non-decreasing.

Consider a path, say i1 � i2� . . . �ik. The latest departure time at the beginning of the path

corresponding to an arrival by times s at its end, is given by the following composite function:

bi1 i2 (. . . (bi k�1 i k
(s))).

Denote by fj the latest departure time at node j, such that there exists a path that allows one to arrive

at destination node q by time t0. fi are solutions to the following equations:

f i ¼
t0, if i ¼ q

max j2A(i)bij(f j), otherwise

�
(2)

For t0 ,¼ M � 1, equations (2) can be solved by a dynamic adaptation of a static shortest path

algorithm such as Dijkstra’s shortest path algorithm. Details of such adaptations are omitted in this

paper, as they are similar to well-known dynamic adaptations of static shortest path algorithms to solve

I. Chabini, S. Ganugapati / Intl. Trans. in Op. Res. 9 (2002) 279–302 293

one-to-all fastest path problems in FIFO networks for a given departure time. The latter two problems

are in fact symmetric problems of one another in FIFO networks.

We now describe the time-based parallelization of algorithm DOT to solve the all-to-one minimum

time problem in FIFO networks. We discuss the parallelization for the case of two processors only. The

generalization of the result to multiple processors is straightforward. Consider an arrival time t0 (for

instance t0 ¼ (M � 1)=2). Solving equation (2), one obtains for each node i 2 N the latest departure

time fi for which an arrival at the destination node q is possible by time t0.

Now consider the following sets of (node, time) pairs: N1 ¼ f(i, t)ji 2 N and t < f ig and

N2 ¼ f(i, t)ji 2 N and t . f ig. We assign to one processor the computation of minimum time labels

for (node, time) pairs in N1. To the second processor we assign similar computations for (node, time)

pairs in set N2. The computations in both processors involve only travel times of links that are internal

to their corresponding set of (node, time) pairs. The remaining arcs, which form a cut from N1 to N2 in

the time space network, need not be considered, as they will never be part of a minimum time path for

(node, time) pairs in set N2 (and also in set N1). Therefore, the partition of the all-to-one minimum time

path computations for the whole time-space network reduces to two disjoint sub-networks. Thus, the

two processors need not communicate and the total number of link travel time data sent by the master

process is at most equal to the travel time data of all links. Each processor independently applies

algorithm DOT for its assigned sub-network. Note that the parallelization described in this subsection

applies to any all-to-one minimum time path algorithm in FIFO networks.

6.2. Implementation of algorithm DOT on an ideal parallel machine

We define an ideal parallel computer as a shared-memory parallel computer containing as many

processors as required by the parallel algorithm, and with a constant memory access time regardless of

the number of processors in use.

In describing parallel algorithms designed for this ideal parallel computer, we use parallel statements

of the general form:

For x in S in parallel do: statement(x)

This statement means that we assign a processor to each element x of set S, and then carry out in

parallel the instructions in statement(x) for every such element, using x as the data.

The parallel implementation of algorithm DOT on the ideal parallel computer is referred to as DOT-

IP. In DOT-IP, we use a similar technique to the network decomposition technique described in Section

5. At each time step, we use m processors to run the main loop of algorithm DOT. We use nM

processors to initialize the labels for all nodes at all time intervals. We assume a parallel static shortest

path algorithm called ParallelStaticShortestPaths(N , A, lij, q), which returns the all-to-one static short-

est path distances in the minimum run time possible. lij denotes link costs and q denotes the destination

node. The statements of algorithm DOT-IP are:

Step 0 (Initialization).

8(t , M� 1) in parallel do: �q(t) ¼ 0

8(i 6¼ q, t , M� 1) in parallel do: �i(t) ¼ 1
�i(M� 1) ¼ ParallelStaticShortestPaths(N , A, cij(M � 1), q), 8i 2 N

294 I. Chabini, S. Ganugapati / Intl. Trans. in Op. Res. 9 (2002) 279–302

Step 1 (Main Loop).

For t ¼ M� 2 downto 0 do:
For all (i, j) 2 A in parallel do: �ij ¼ (�i(t), cij(t) þ �j(tþ dij(t))

For all i 2 N in parallel do: �i(t) ¼ Minf�ij, j 2 A(I)g
The worst-case run-time complexity of algorithm DOT-IP is O(PSSP þ M log(R)), where O(PSSP) is

the best possible worst-case run-time complexity of a parallel static shortest path algorithm on an ideal

parallel computer, and R is the maximum out-degree of a node. Assuming that O(M log(R)) dominates

O(PSSP), algorithm DOT-IP is approximately O(m� log R) times faster than algorithm DOT. Thus, the

maximum speed-up of algorithm DOT on an ideal parallel machine is approximately O(m� log R):
Note that a better implementation of algorithm DOT on an ideal parallel computer, can be developed

in the case of minimum time paths in FIFO networks. One can partition the computations into M

independent static shortest path problems, each of which corresponds to computing the latest departure

times at all nodes for an arrival at destination node q by a time between 0 and M � 1. These M

problems are simultaneously solved in O(PSSP) on an ideal parallel machine.

7. Computational results

7.1. Introduction

The shared-memory implementations were coded using the SUN Solaris Multi-Threads (MT) library

and the Cþþ programming language. The distributed-memory implementations were coded using the

Cþþ programming language and the PVM interprocess communications library.

We conducted a computational study of the parallel implementations developed to assess and analyze

their computational performance. Given space limitations, we report only on a subset of computational

results.

The platforms used to evaluate the four parallel implementations are (1) a SUN Ultrasparc HPC

5000 workstation denoted here as the Xolas machine and, (2) a distributed network of six SGI

workstations. A Xolas machine is a shared-memory computer containing eight processors. Both the

PVM and the multi-threads (MT) implementations can run on this platform. Results on a Xolas

machine obtained using the PVM and the MT implementations are respectively referred to as PVM-

Xolas and MT-Xolas. We refer to the results obtained on the distributed network of SGI workstations

using the PVM implementations as PVM-SGI. The MT implementations may not benefit from the

distributed network of SGI workstations, as these are not shared-memory machines.

Most of the numerical results obtained in this section were performed using a random network with

1000 nodes, 3000 links and 100 time intervals. The running time of sequential algorithm DOT for one

destination was in the order of 1 second (0.98 seconds on (one processor of) the Xolas machine, and

1.08 seconds on an SGI workstation).

7.2. Performance measures

The parallel performance measures reported are the curves of speed-up and of relative burden, as a

function of the number of processors available on each parallel machine used in the tests. Let T(p)

I. Chabini, S. Ganugapati / Intl. Trans. in Op. Res. 9 (2002) 279–302 295

denote the running time obtained using p processors. The speed-up is defined here as T (1)=T (p). Next,

we first give the motivation behind the relative burden measure before we give its definition.

When the number of processors on parallel machines used in laboratory experiments is limited, the

evaluations of the performance measures are available for only a relatively small number of processors.

In our study, the number of processors is in the order of eight. One may, however, want to be able to

draw conclusions on the performance of parallel implementations for a larger number of processors.

The speed-up measure does not generally allow for performance predictions for a larger number of

processors, based on results obtained using a small number of processors. This is essentially due to

numerical problems inherently related to the definition of the speed-up measure. The relative burden is

a parallel performance measure that was designed to avoid this numerical problem. It measures the

deviation from the ideal improvement in time from the execution of the algorithm on one processor, to

its execution on p processors, normalized by the running time on one processor. The expression of the

burden is: (T(1)=T (p)�1=p).

As their definitions suggest, the burden and the speed-up are interrelated measures. If we denote by

S(p) and B(p) the speed-up and the relative burden, we have: B(p) ¼ (1=S(p) � 1=p) and

S(p) ¼ p=(1 þ B(p)p). In most parallel algorithms, the value of the burden is usually small, especially

for smaller values of the number of processors. Consequently, for smaller values of the number of

processors p, the term B(p)p in the denominator of the expression of the speed-up as a function of the

burden is typically dominated by 1. Hence, the speed-up curve of any parallel algorithm is typically

linear (or almost linear) for smaller values of the number of processors.

Relative burden curves can be useful in obtaining further insight into the performance of parallel

implementations for a larger number of processors, and in situations where speed-up curves alone do

not distinguish among parallel implementations for smaller values of the number of processors. For

instance, the relative burden can be used to obtain better estimate of (maximum) speed-ups for larger

values of the number of processors. This is useful if one wants, for instance, to obtain estimates of

speed-ups, prior to investing in a parallel machine with a larger number of processors.

A description and an analysis of the speed-up and the relative burden performance measures can be

found in Chabini and Gendron (1995). A mathematical analysis of the speed-up as a function of the

burden demonstrates that if the relative burden curve is linear, the maximum speed-up is achieved at a

number of processors equal to the square root of the inverse of the slope of the linear curve. If the

relative burden tends towards a constant, the maximum speed-up is reached asymptotically. For large

values of the number of processors, the speed-up converges to the inverse of the relative burden. In the

rest of this paper, we also use the shorter term ‘burden’ to refer to the term ‘relative burden’.

7.3. Numerical results for destination-based parallel implementations

Figure 1 shows the speed-up curves of the PVM-Xolas , PVM-SGI and MT-Xolas implementations

based on a decomposition by destinations to compute all-to-many dynamic minimum time paths for

100 different destinations using algorithm DOT. The transportation network used contains 1000 nodes,

3000 links, and 100 time intervals.

PVM implementations involve message exchanges between the master process and the slave

processes, while the MT-Xolas does not. This explains why the MT-Xolas implementation showed

better speed-ups than the PVM implementations. Furthermore, the PVM-Xolas implementation shows

better speed-ups than the PVM-SGI implementation. This is due to faster communication speeds on a

296 I. Chabini, S. Ganugapati / Intl. Trans. in Op. Res. 9 (2002) 279–302

Xolas workstation, as compared to the distributed network of SGI workstations where communications

take place over a non-dedicated 10 Mbit/second Ethernet network.

Some speed-up values for the MT-Xolas implementation are greater than the number of processors.

This may be explained by the reduced amount of memory swapping that takes place when the number

of threads increases.

For the range of five processors used in the tests, the speed-up curve of the PVM-SGI implementa-

tion tends to a value of 2, while the speed-up curve of the PVM-Xolas is linear. Assume that one is

interested in predicting the speed-ups that would be obtained if one had more processors in the Xolas

machine and in the network of SGI workstations. The burden curves should answer this question.

Figure 2 shows the burden curves of the PVM-Xolas and PVM-SGI implementations. If the PVM-

SGI burden is approximated by a linear curve, its slope would be approximately equal to 0.04. This

suggests a maximum speed-up at around five processors, which is consistent with the experimental

results reported on the PVM-SGI speed-up curve. On the other hand, the PVM-Xolas burden curve

suggests that the maximum speed-up on a Xolas machine would be asymptotically approached with

more processors, and that its values would be approximately 50 (1/0.02). Note that if one had 50

processors on a Xolas machine, a speed-up of only 25 would be attained. In such case, only half the

time, a process would be busy doing computations specified in the sequential algorithm.

The results in Figs 1 and 2 were obtained assuming that the shortest-path results are sent back to the

master process. We now analyze the effect on parallel performance of this communication task. The

analysis is useful for network problems where the results may not need to be communicated back to

the master process.

Figure 3 shows the speed-up curves of the PVM-Xolas and PVM-SGI implementations, when slave

processes do not send back the computational results to the master process. The speed-up curve of the

MT-Xolas implementation is not affected by this experiment, as it does not involve exchange of results,

but was included in Fig. 3 for comparison only. One can note the improvements in the speed-ups for

1000 nodes, 3000 links, 100 time intervals, and

100 destinations

1

2

3

4

5

6

7

Number of processors

S
pe

ed
-u

p PVM-Xolas

PVM-SGI

MT-Xolas

1 2 3 4 5 6

Fig. 1. Speed-up curves of the parallel implementations based on decomposition by destinations.

Note: The network used in these tests contains 1000 nodes, 3000 links, 100 time intervals, and 100 destination nodes.

I. Chabini, S. Ganugapati / Intl. Trans. in Op. Res. 9 (2002) 279–302 297

the PVM-SGI implementation, and hence its parallel running time, while there was not noticeable

improvement in the PVM-Xolas implementation. In Proposition 4, it is shown that the second term in

the parallel run-time analysis is the maximum among a computational term and of a communication

delay term. The communication speed on the SGI network is lower that the communication speed on

1000 nodes, 3000 arcs, 100 time intervals, and
100 destinations

0

0.05

0.1

0.15

0.2

0.25

0.3

Number of processors

B
ur

de
n

PVM-SGI

PVM-XOLAS

0 2 4 6 8

Fig. 2. Burden curves of the PVM parallel implementations based on decomposition by destinations.

Note: The networks used in these tests contain 1000 nodes, 3000 links, 100 time intervals, and 100 destination nodes.

1

2

3

4

5

6

7

1

S
pe

ed
-u

p PVM-SGI

PVM-Xolas

MT-Xolas

1000 nodes, 3000 links, 100 time intervals, and

100 destinations

2 3 4 5 6

Number of processors

Fig. 3. Speed-up curves of the parallel implementations based on decomposition by destinations, without collection of

shortest path results.

Note: The network used in these tests contains 1000 nodes, 3000 links, 100 time intervals, and 100 destination nodes.

298 I. Chabini, S. Ganugapati / Intl. Trans. in Op. Res. 9 (2002) 279–302

the Xolas machine. In the PVM-SGI implementation, the second term in the run-time analysis appears

to be due to the communication part, while in the PVM-Xolas implementation it appears to be due to

the computation part. The term that dominates is of course dependent on the values of the parameters

n, m, M, and p .

7.4. Numerical results for parallel implementations based on the decomposition by network topology

Figure 4 shows the speed-up curves for the parallel implementations of algorithm DOT using the

network-topology decomposition. The PVM implementations for two processors and more have lower

running times than the run-time obtained on one processor (the latter run-time is approximately the

same as the running time of the sequential implementation of algorithm DOT). The communication

requirements among slave processes, and between the master process and the slave processes are too

high to obtain a speed-up greater than one.

The speed-up curve of the MT-Xolas implementation shows satisfactory speed-ups, which are

however lower than the ideal speed-ups. The idle time due to the synchronization barrier function, as

well as the potential time overhead due to contentions of threads requiring access to the same memory

location, is a possible explanation of the differences between observed and ideal speed-ups.

The burden curve of the MT-Xolas implementation shown in Fig. 5 suggests that the maximum

speed-up would be asymptotically approached with more processors, and that the value of the

asymptotic speed-up would be 20 (the inverse of 0.05, which is the maximum value of the burden).

The numerical results indicate that only the MT-Xolas implementation, based on a network-topology

decomposition, led to speed-ups of the sequential running time of algorithm DOT. The latter running

time depends on the following network parameters: number of nodes, number of links, and number of

time intervals. In the rest of this subsection we analyze the effect of these parameters on the

computational performance of the MT-Xolas implementation.

Figure 6 shows speed-up curves of the MT-Xolas parallel implementation of algorithm DOT for

three values of the number of time intervals. The time taken by the synchronization barrier function

1000 nodes, 3000 links, 100 time intervals

0.5
1

1.5
2

2.5
3

3.5
4

4.5

Number of processors

S
pe

ed
-u

p PVM-Xolas

PVM-SGI

MT-Xolas

1 2 3 4 5 6

Fig. 4. Speed-up curves of the parallel implementations based on decomposition by network topology.

Note: The network used in these tests contains 1000 nodes, 3000 links, and 100 time intervals.

I. Chabini, S. Ganugapati / Intl. Trans. in Op. Res. 9 (2002) 279–302 299

should increase with the number of time intervals. The speed-up is then a decreasing function of the

number of time intervals. This analysis is consistent with the results obtained in Fig. 6.

The average number of potential contentions to memory locations should increase with the number

of arcs leaving out of a given subset of nodes assigned to a given processor. This would happen under

the following two scenarios: (1) the number of arcs is kept constant while the number of nodes

decreases, and (2) the number of nodes is kept constant while the number of arcs increases. This would

explain the trends shown in Figs 7 and 8, where speed-ups appear to be an increasing function of the

1000 nodes, 3000 links, 100 time intervals

0

0.01

0.02

0.03

0.04

0.05

0.06

Number of processors

B
ur

de
n

MT-Xolas

1 2 3 4 5 6

Fig. 5. The burden curve of the MT-Xolas parallel implementation of algorithm DOT based on decomposition by network

topology.

Note: The network used in these tests contains 1000 nodes, 3000 links, and 100 time intervals.

1000 nodes and 3000 links

1

1.5

2

2.5

3

3.5

4

4.5

Number of processors

S
pe

ed
-u

p M=100

M=200

M=300

1 2 3 4 5 6

Fig. 6. Speed-up curve of the MT-Xolas implementation of algorithm DOT for three values of the number of time intervals

(M ¼ 100, 200 and 300).

Note: The network used in these tests contains 1000 nodes and 3000 links.

300 I. Chabini, S. Ganugapati / Intl. Trans. in Op. Res. 9 (2002) 279–302

number of nodes, for a constant number of arcs, and a decreasing function of the number of arcs, for a

constant number of nodes.

Acknowledgments

This research was supported by the US National Science Foundation (NSF) and by the US Department

of Transportation (DOT). The NSF support was under the CAREER Award Grant number CMS-

3000 links and 100 time intervals

1
1.5

2
2.5

3
3.5

4
4.5

5

Number of processors

S
pe

ed
-u

p

n � 2000

n � 3000

1 2 3 4 5 6

Fig. 7. Speed-up curve of the MT-Xolas implementation of algorithm DOT for two values of the number of nodes

(n ¼ 2000, n ¼ 3000).

Note: The network used in these tests contains 3000 links and 100 time intervals.

1000 nodes and 100 time intervals

1

1.5

2

2.5

3

3.5

4

4.5

Number of processors

S
pe

ed
-u

p

m � 2000

m � 3000

1 2 3 4 5 6

Fig. 8. Speed-up curve of the MT-Xolas implementation of algorithm DOT for two different values of the number of arcs

(m ¼ 2000, m ¼ 3000).

Note: The network used in these tests contains 3000 links and 100 time intervals.

I. Chabini, S. Ganugapati / Intl. Trans. in Op. Res. 9 (2002) 279–302 301

9733948. The DOT support was under contracts DTRS99-G-0001 and DTRS95-G-0001 to the New

England (Region One) University Transportation Centers Program at MIT.

References

Bertsekas, D., Tsitsikilis J., 1989. Parallel and Distributed Computation: Numerical Methods. Prentice Hall, Englewood

Cliffs.

Chabini, I., 1997. A New Shortest Paths Algorithm for Discrete Dynamic Networks. Proceeding of 8th IFAC Symposium on

Transport Systems, 551–556.

Chabini, I., 1998. Discrete Dynamic Shortest Path Problems in Transportation Applications: Complexity and Algorithms with

Optimal Run Time. Transportation Research Record 1645, 170–175.

Chabini, I., Dean, B., 1999. Shortest Path Problems in Discrete-Time Dynamic Networks: Complexity, Algorithms, and

Implementations. Internal Report, MIT, Cambridge, USA.

Chabini, I., Gendron, B., 1995. Parallel Performance Measures Revisited. Proceedings of High Performance Computing

Symposium 95, Montreal, Canada, July 10–12.

Chabini, I., Florian, M., Le Saux, E., 1997. High Performance Computation of Shortest Routes for Intelligent Transportation

Systems Applications. Proceedings of the Second World Congress of Intelligent Transport Systems ’95, Yokohama,

2021–2026.

Chabini, I., He, Y., 1999. An Analytical Approach to Dynamic Traffic Assignment: Models, Algorithms and Computer

Implementations. Internal Report, MIT, Cambridge, USA.

Cooke, K., Halsey, E., 1966. The Shortest Route Through a Network with Time Dependent Internodal Transit Times. Journal

of Math. Anal. Appl. 14, 492–498.

Ganugapati, S., 1998. Dynamic Shortest Paths Algorithms: Parallel Implementations and Application to the Solution of

Dynamic Traffic Assignment Models. M.S. Thesis, Department of Civil and Environmental Engineering, MIT.

Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchak, R., Sunderam, V., 1995. PVM: A Users’ Guide and Tutorial for

Networked Parallel Computing. The MIT Press, Cambridge, MA.

Habbal, M., Koutsopolous, H., Lerman, S., 1994. A Decomposition Algorithm for the All-Pairs Shortest Path Problem on

Massively Parallel Computer Architectures. Transportation Science, 28(4), 292–308.

Hribar, M., Taylor, V., 1996. Reducing the Idle Time of Parallel Transportation Applications. Submitted to the International

Parallel Processing Symposium.

Karypis, G., Kumar, V., 1998. Multilevel Algorithms for Multi-Constraint Graph Partitioning. Technical Report #98-019,

Department of Computer Science, University of Minnesota.

Lewis, B., Berg, D., 1996. Threads Primer: A Guide to Multithreaded Programming. Prentice Hall, Upper Saddle River, NJ.

Ziliaskopoulos, A., Mahmassani, H., 1993. A Time-Dependent Shortest Path Algorithm for Real-Time Intelligent Vehicle/

Highway System. Transportation Research Record 1408, 94–104.

Ziliaskopoulous, A., Kotzinos, D., Mahmassani, H., 1997. Design and Implementation of Parallel time dependent least time

path algorithms for Intelligent Transportation Applications. Transportation Research Part C 5(2), 95–107.

302 I. Chabini, S. Ganugapati / Intl. Trans. in Op. Res. 9 (2002) 279–302

