
SPSS Tutorial 7: Various Topics Page 1 of 10

Bruce Weaver (29-Oct-2003)

SPSS Tutorial 7: Various Topics

Goals

 To compute AGE from date of birth and another date variable
 To merge files (add variables, and add cases)
 To flag the First and Last records in a group of records
 To combine data across records using the AGGREGATE command
 To restructure a data file (from WIDE to LONG and vice versa)

Computing AGE

After SPSS is running, open a new syntax file (File New Syntax), paste the following
syntax into it, and run the syntax. (If you wish, add another line of data that has your
own birthday.)

DATA LIST LIST /id (f5.0) dob(date11).
BEGIN DATA.
1 8-Aug-1936
2 9-Aug-1937
3 26-Jan-1957
4 18-May-1960
5 21-Aug-1963
6 12-Aug-1965
END DATA.

numeric today (date11). /* This creates a numeric variable TODAY.
compute today = $time. /* $TIME is a system variable.
exe.
var width dob today(11). /* Widen column for display purposes .

Your data file should now look like this (except TODAY will have a different date):

SPSS Tutorial 7: Various Topics Page 2 of 10

Bruce Weaver (29-Oct-2003)

Here are the steps needed to compute a new variable AGE:

• Click on Transform Compute (when the data editor is active)
• Type age into the Target Variable box
• Find the CTIME.DAYS(timevalue) function in the list of functions, and move it

into the Numeric Expression box
• Replace the question mark in CTIME.DAYS(?) with today – dob
• Divide the result of the CTIME.DAYS function by 365.25 to convert the scale to

YEARS; i.e., add /365.25 to the end of the numeric expression
• PASTE and run the syntax, then look at your data file

The syntax you generated should look something like this:

compute age = ctime.days(today-dob)/365.25.
exe.

And the data file should look like this:

 ID DOB TODAY AGE

 1 08-AUG-1936 17-SEP-2003 67.11
 2 09-AUG-1937 17-SEP-2003 66.11
 3 26-JAN-1957 17-SEP-2003 46.64
 4 18-MAY-1960 17-SEP-2003 43.33
 5 21-AUG-1963 17-SEP-2003 40.08
 6 12-AUG-1965 17-SEP-2003 38.10

As you can see, it is fairly easy to compute AGE in SPSS, once you know how.
Unfortunately, one of the SPSS manuals gives a very poor example of how to compute
AGE. It uses the YRMODA and XDATE functions, as follows:

COMPUTE age2 = (YRMODA(XDATE.YEAR(today),XDATE.MONTH(today)
 ,XDATE.MDAY(today))-YRMODA(XDATE.YEAR(dob),XDATE.MONTH(dob)
 ,XDATE.MDAY(dob))) / 365.25 .
EXECUTE .

If you copy and run this syntax, you will see that it gives essentially the same results as
the CTIME.DAYS method (the values of AGE and AGE2 are identical to 2 decimals in
most cases). But it is obviously a far more cumbersome method.

SPSS Tutorial 7: Various Topics Page 3 of 10

Bruce Weaver (29-Oct-2003)

How to Merge Files: Adding New Variables

Databases are often divided into several sections. For example, imagine a study
involving ICU patients. You might have one file that has some basic demographic data
(age, sex, SES, employment status, marital status, etc), another file with baseline health
status upon admission to the ICU, and yet another file with daily data. For a particular
analysis, you may need data from more than one of these files. SPSS can only have one
working data file open at a time. So the way you cope with a situation like this is by
merging files. In this section of the tutorial, we will see how to use the MATCH FILES
command, which allows you to add new variables (from other data files) to the current
working data file.

The three files we will use are taken from a study that examined the use of nitric oxide
(NO to prevent ischemia-reperfusion injury after lung transplantation. Here’s a brief
description of the files:

File name Description
ptinfo.sav Demographic and baseline health information about the patients
donor.sav Lung donor’s age and last PaO2
dailymods.sav Daily MODS for patients (MODS = multiple organ dysfunction

score)

Notice that all 3 of these files contain variable MRN (medical record number). MRN is a
key variable that we will use when merging files.

IMPORTANT: The records in all files you wish to merge must be sorted in ascending
order of the key variables. If they are not all sorted this way, the merge will not work.

To ensure that your 3 files are all sorted in ascending order of MRN, open each one in
turn, then run the following syntax, and save the file. (The (a) in the sort command is
for ascending order. You would use (d) for descending order.)

sort cases by mrn(a).

Merging two files that each have one record per patient

1. Open file ptinfo.sav (using PASTE rather than OKAY)
2. With the data editor active, click on Data Merge Files Add Variables
3. Select file donor.sav, then click Open
4. In the dialog box that appears (see below):

a. click on MRN in the Excluded variables box
b. put a check beside “Match cases on key variables…”
c. move MRN into the Key Variables box
d. click on PASTE
e. note the warning about sort order of Key Variables, and click Okay

SPSS Tutorial 7: Various Topics Page 4 of 10

Bruce Weaver (29-Oct-2003)

f. Click NO when prompted about saving the working data file
5. Run the MATCH FILES syntax that has been generated

Your data file should now contain 4 new variables that were not there previously:
morerec, moredon, agedonor, and lastpao2.

Adding variables from a file with multiple records per patient

Now let’s try adding the variables found in the Daily MODS file.

1. With the data editor active, click on Data Merge Files Add Variables
2. Select file dailymods.sav, and click Open
3. In the dialog box that appears, highlight MRN in the Excluded Variables box, put

a check beside “Match cases on key variables…”, and move MRN into the Key
Variables box

4. Click on PASTE, then click Okay when you see the warning about sort order for
key variables, and NO when prompted about saving the working data file

5. Run the syntax
6. Note the warning in the output window, and look at your data file

Your output window will now contain a warning message like this:

>Warning # 5132
>Duplicate key in a file. The BY variables do not uniquely identify
each
>case on the indicated file. Please check the results carefully.

SPSS Tutorial 7: Various Topics Page 5 of 10

Bruce Weaver (29-Oct-2003)

Why did this warning occur? Because we tried to merge a file with multiple records per
patient with a working file that had only one record per patient. Notice in your data file
that the variables from ptinfo.sav and donor.sav appear on only the first record for each
patient. On the other records, these variables contain the system missing indicator.

Now let’s try the merge in another way such that the variables from ptinfo.sav and
donor.sav appear on all records rather than just the first record.

Run the following syntax to return the working data file to the state it was in before we
attempted merging with dailymods.sav:

match files file = *
 /drop = date to mod.
select if not missing(more).
exe.

Your data file should once again have one record per patient (n=20) with all of the
variables from files ptinfo.sav and donor.sav.

Now attempt another merge with dailymods.sav as follows:

1. With the data editor active, click on Data Merge Files Add variables
2. Select file dailymods.sav, and click Open
3. Highlight variable MRN in the Excluded Variables box, put a check by “Match

cases on key variables…”, and move MRN into the Key Variables box
4. Click on the radio button beside “Working data file is keyed table”
5. Click on PASTE, and deal with the various warnings as before
6. Notice now the MATCH FILES syntax differs from the previous example (watch

for FILE versus TABLE in the syntax)
7. Run the syntax
8. Note the absence of a warning message, and look at the data file

Your file should now show complete data for all variables on all records (except for any
cases where there was missing data to start with, of course).

Let’s try one more merge, but this time with the Daily MODS file open first.

1. Paste the syntax to open file dailymods.sav, then run it
2. Paste the syntax to add variables from file ptinfo.sav, making sure to check the

radio button beside “External file is keyed table” this time
3. Notice how this MATCH FILES syntax differs from the previous example (FILE

versus TABLE)
4. Highlight and run the MATCH FILES syntax

SPSS Tutorial 7: Various Topics Page 6 of 10

Bruce Weaver (29-Oct-2003)

How to Merge Files: Adding New Cases

Suppose you had two or more data files that were all identical in structure, and you
wanted to stack them one on top of the other. This might arise, for example, if you had
data files from several centres in a multi-centred study. You can stack the files very
easily in SPSS using Data Merge Files Add Cases.

The ptinfo.sav file we have been using has a variable CENTRE. I split ptinfo.sav into 3
files, one for each centre. We will use files ptinfo1.sav, ptinfo2.sav, and ptinfo3.sav to
see how file stacking works.

1. Paste and run syntax to open file ptinfo1.sav
2. With the data editor active, click on Data Merge Files Add Cases
3. Select file ptinfo2.sav, and click Paste
4. With the data editor active, click on Data Merge Files Add Cases
5. Select file ptinfo3.sav, and click Paste
6. In your syntax file, highlight the EXECUTE line from the first ADD FILES

command, and the ADD FILES line of the 2nd ADD FILES command, and delete
those rows;

7. This should leave you with one ADD FILES command with two /FILE lines;
IMPORTANT: You must delete the period from the end of the first /FILE line

8. Highlight and run the ADD FILES line and the EXECUTE that follows it

You should now have a file with records from all 3 centres (i.e., the same as file
ptinfo.sav).

How to flag the First and Last Records in a Group of Records

It is often necessary to flag the first or last record in a group of records (e.g., the first or
last record for a patient in a daily data file). This is easy to do using either MATCH
FILES or ADD FILES. Here’s how it works:

Paste and run syntax to open file dailymods.sav
Paste the following syntax into your syntax window and run it

match files file = *
 /by mrn
 /first = firstrec
 /last = lastrec.
exe.

Your working data file should now have two new variables FIRSTREC and LASTREC.
FIRSTREC = 1 on the first record for each unique medical record number, and 0
otherwise. LASTTREC = 1 on the last record for each unique medical record number,
and 0 otherwise. Also, you could have used ADD FILES instead of MATCH FILES to
produce exactly the same result.

SPSS Tutorial 7: Various Topics Page 7 of 10

Bruce Weaver (29-Oct-2003)

How to use the AGGREGATE command

The following is from the SPSS help files:

Aggregate Data combines groups of cases into single summary cases and creates a new aggregated data
file. Cases are aggregated based on the value of one or more grouping variables. The new data file contains
one case for each group. For example, you could aggregate county data by state and create a new data file
in which state is the unit of analysis.

Break Variable(s). Cases are grouped together based on the values of the break variables. Each unique
combination of break variable values defines a group and generates one case in the new aggregated file. All
break variables are saved in the new file with their existing names and dictionary information. The break
variable can be either numeric or string format.

Aggregate Variable(s). Variables are used with aggregate functions to create the new variables for the
aggregated file. By default, Aggregate Data creates new aggregate variable names using the first several
characters of the source variable name followed by an underscore and a sequential two-digit number. The
aggregate variable name is followed by an optional variable label in quotes, the name of the aggregate
function, and the source variable name in parentheses. Source variables for aggregate functions must be
numeric.

You can override the default aggregate variable names with new variable names, provide descriptive
variable labels, and change the functions used to compute the aggregated data values. You can also create a
variable that contains the number of cases in each break group.

Let’s use the Daily MODS file to see how it works.

1. Paste and run syntax to open file dailymods.sav
2. With the data editor active, click on Data Aggregate
3. In the dialog box that appears:
4. Move variable MRN into the Break Variable(s) box
5. Move variable DAILYMOD into the Aggregate Variable(s) box, then:

a. Click on Name & Label
b. Change the variable name to dm.mean
c. Add the variable label Mean daily MOD

6. Move variable DAILYMOD into the Aggregate Variable(s) box again, then:
a. Click on Name & Label
b. Change the variable name to dm.sd
c. Add the variable label Daily MOD SD, then click Continue
d. Click on Function, and select Standard Deviation

7. Move variable DAILYMOD into the Aggregate Variable(s) box again, then:
a. Click on Name & Label
b. Change the variable name to dm.min
c. Add the variable label Minimum daily MOD, then click Continue
d. Click on Function, and select Minimum

8. Move variable DAILYMOD into the Aggregate Variable(s) box again, then:
a. Click on Name & Label
b. Change the variable name to dm.max
c. Add the variable label Maximum daily MOD, then click Continue

SPSS Tutorial 7: Various Topics Page 8 of 10

Bruce Weaver (29-Oct-2003)

d. Click on Function, and select Maximum
9. Put a check by “Save number of cases…”
10. Select the “Replace working data file” radio button
11. Paste and run the AGGREGATE syntax

Your AGGREGATE syntax should look something like this (I cleaned it up a bit to make
it more readable):

AGGREGATE /OUTFILE=*
 /BREAK=mrn
 /dm.mean 'Mean daily MOD' = MEAN(dailymod)
 /dm.sd 'Daily MOD SD' = SD(dailymod)
 /dm.min 'Minimum daily MOD' = MIN(dailymod)
 /dm.max 'Maximum daily MOD' = MAX(dailymod)
 /N_BREAK=N.

The working data file should now have one record per patient (n=19 patients) with only
the 6 variables mentioned in the AGGREGATE command. Note that this example uses
only a fraction of the functions that are available under AGGREGATE.

How to Restructure a Data File

It may be necessary on occasion to restructure your data file from so-called WIDE format
(i.e., one row per person with multiple columns) to LONG format (i.e., several rows per
person), or vice versa (e.g., the usual approach to repeated measures ANOVA requires
WIDE format, but Mixed Linear Models, which could be used to analyze the same data
requires LONG format). Recent versions of SPSS have a Data Restructure wizard that
makes the job of restructuring your data a lot easier. In this section, we will look at some
simple examples of how it words.

First, run the following syntax to create a WIDE format data file:

* Read in some data in WIDE format .

DATA LIST LIST /id (f2.0) a.1 b.1 c.1 a.2 b.2 c.2 a.3 b.3 c.3 (9f2.0).
BEGIN DATA.
1 1 2 3 4 5 6 7 8 9
2 3 2 1 5 3 4 . . .
3 1 1 1 . . . 3 3 3
4 1 2 3
5 9 8 7 4 5 6 3 2 1
END DATA.

list all.

* There will be some warnings in the output window due
* to the missing values for some variables, but these
* are not important.

SPSS Tutorial 7: Various Topics Page 9 of 10

Bruce Weaver (29-Oct-2003)

Now do the following:

1. With the data editor active, click on Data Restructure
2. When prompted to save the working file, click NO
3. In the dialog box that appears, check the top radio button (Restructure selected

variables into cases), then click Next
4. In the next dialog box, click the bottom radio button (More than one), and change

the number from 2 to 3 (beside “How many?”); then click Next
5. In the next dialog box:

a. Under Case group identification, select Use selected variable from the
pull-down list, then move variable ID into Variable box

b. Hold down the CTRL key and click on variables A.1, A.2, and A.3 (while
holding down CTRL key)

c. Release the CTRL key and move variables A.1 to A.3 into the Variables
to be transposed box

d. Click on trans1 to highlight it, and type the letter ‘a’ (to name the target
variable a)

e. Select trans2 from the pull-down list, and rename it to b
f. Click on B.1, B.2, and B.3 while holding down the CTRL key, then move

them into the Variables to be transposed box
g. Select trans3 from the pull-down list, and rename it to c
h. Click on C.1, C.2, and C.3 while holding down the CTRL key, then move

them into the Variables to be transposed box
i. Click Next

6. Click the top radio button (beside One), then click Next, Next and Next
7. In the Finish dialog box, click the bottom radio to Paste the syntax, then click

Finish

The syntax you generated should look something like this:

VARSTOCASES
 /MAKE a FROM a.1 a.2 a.3
 /MAKE b FROM b.1 b.2 b.3
 /MAKE c FROM c.1 c.2 c.3
 /INDEX = Index1(3)
 /KEEP = id
 /NULL = KEEP.

Run the syntax, and observe what happens to your data file. There are now 3 rows per
person instead of 1 row per person.

Now let’s see if we can use the Restructure Wizard to go in the opposite direction—i.e.,
to change the data format from LONG to WIDE.

1. With the data editor active, click on Data Restructure
2. Click NO when prompted to save working data file
3. Click the middle radio button (Restructure selected cases into variables)
4. Move variable ID into the Identifier variable(s) box

SPSS Tutorial 7: Various Topics Page 10 of 10

Bruce Weaver (29-Oct-2003)

5. Move variable index1 into the Index variable(s) box
6. Click Next, and Next again
7. Select the Group by index radio button, then click Next
8. Click the Paste syntax radio button, then Finish

Your syntax should look like this:

CASESTOVARS
 /ID = id
 /INDEX = index1
 /GROUPBY = INDEX .

Run the syntax, and observe that the data file has been restored to it’s original (WIDE)
format.

ID A.1 B.1 C.1 A.2 B.2 C.2 A.3 B.3 C.3

 1 1 2 3 4 5 6 7 8 9
 2 3 2 1 5 3 4 . . .
 3 1 1 1 . . . 3 3 3
 4 1 2 3
 5 9 8 7 4 5 6 3 2 1

These are just two simple examples of how to use VarsToCases and CasesToVars.

Save your syntax

That’s the end of the tutorial. Save your syntax for future reference.

