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Chapter 3:  Nonparametric Tests

3.1  Introduction
Nonparametric, or distribution free tests are so-called because the assumptions

underlying their use are “fewer and weaker than those associated with parametric tests” (Siegel
& Castellan, 1988, p. 34).  To put it another way, nonparametric tests require few if any
assumptions about the shapes of the underlying population distributions.  For this reason, they
are often used in place of parametric tests if/when one feels that the assumptions of the
parametric test have been too grossly violated (e.g., if the distributions are too severely skewed).
Discussion of some of the more common nonparametric tests follows.

3.2  The Sign test (for 2 repeated/correlated measures)
The sign test is one of the simplest nonparametric tests.  It is for use with 2 repeated (or

correlated) measures (see the example below), and measurement is assumed to be at least
ordinal.  For each subject, subtract the 2nd score from the 1st, and write down the sign of the
difference.  (That is write “-” if the difference score is negative, and “+” if it is positive.)  The
usual null hypothesis for this test is that there is no difference between the two treatments.  If this
is so, then the number of + signs (or - signs, for that matter) should have a binomial
distribution1 with p = .5, and N = the number of subjects.  In other words, the sign test is just a
binomial test with + and - in place of Head and Tail (or Success and Failure).

EXAMPLE

A physiologist wants to know if monkeys prefer stimulation of brain area A to stimulation of
brain area B.  In the experiment, 14 rhesus monkeys are taught to press two bars.  When a light
comes on, presses on Bar 1 always result in stimulation of area A; and presses on Bar 2 always
result in stimulation of area B.  After learning to press the bars, the monkeys are tested for 15
minutes, during which time the frequencies for the two bars are recorded.  The data are shown in
Table 3.1.

To carry out the sign test, we could let our statistic be the number of + signs, which is 3
in this case.  The researcher did not predict a particular outcome in this case, but wanted to know
if the two conditions differed.  Therefore, the alternative hypothesis is nondirectional.  That is,
the alternative hypothesis would be supported by an extreme number of + signs, be it small or
large.  A middling number of + signs would be consistent with the null.

The sampling distribution of the statistic is the binomial distribution with N = 14 and p =
.5.  With this distribution, we would find that the probability of 3 or fewer + signs is .0287.  But
because the alternative is nondirectional, or two-tailed, we must also take into account the
probability 11 or more + signs, which is also .0287.  Adding these together, we find that the
probability of (3 or fewer) or (11 or more) is .0574.  Therefore, if our pre-determined alpha was
set at .05, we would not have sufficient evidence to allow rejection of the null hypothesis.

                                                
1 The binomial distribution is discussed on pages 37-40 of Norman & Streiner (2nd ed.).  It is also
discussed in some detail in my chapter on “Probability and Hypothesis Testing” (in the file prob_hyp.pdf).
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Table 3.1  Number of bar-presses in brain stimulation experiment

Subject Bar 1 Bar 2 Difference
“Sign” of
Difference

1 20 40 -20 -
2 18 25 -7 -
3 24 38 -14 -
4 14 27 -13 -
5 5 31 -26 -
6 26 21 +5 +
7 15 32 -17 -
8 29 38 -9 -
9 15 25 -10 -
10 9 18 -9 -
11 25 32 -7 -
12 31 28 +3 +
13 35 33 +2 +
14 12 29 -17 -

Tied scores
If a subject has the same score in each condition, there will be no sign, because the

difference score is zero.  In the case of tied scores, some textbook authors recommend dropping
those subjects, and reducing N by the appropriate number.  This is not the best way to deal with
ties, however, because reduction of N can result in the loss of too much power.

A better approach would be as follows:  If there is only one subject with tied scores, drop
that subject, and reduce N by one.  If there are 2 subjects with tied scores, make one a + and one
a -.  In general, if there is an even number of subjects with tied scores, make half of them + signs,
and half - signs.  For an odd number of subjects (greater than 1), drop one randomly selected
subject, and then proceed as for an even number.

3.3  Wilcoxon Signed-Ranks Test (for 2 repeated/correlated measures)
One obvious problem with the sign test is that it discards a lot of information about the

data.  It takes into account the direction of the difference, but not the magnitude of the difference
between each pair of scores.  The Wilcoxon signed-ranks test is another nonparametric test that
can be used for 2 repeated (or correlated) measures when measurement is at least ordinal.  But
unlike the sign test, it does take into account (to some degree, at least) the magnitude of the
difference.  Let us return to the data used to illustrate the sign test.  The 14 difference scores
were:

-20, -7, -14, -13, -26, +5, -17, -9, -10, -9, -7, +3, +2, -17

If we sort these on the basis of their absolute values (i.e., disregarding the sign), we get the
results shown in Table 3.2. The statistic T is found by calculating the sum of the positive ranks,
and the sum of the negative ranks.  T is the smaller of these two sums.  In this case, therefore, T
= 6.
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If the null hypothesis is true, the sum of the positive ranks and the sum of the negative
ranks are expected to be roughly equal.  But if H0 is false, we expect one of the sums to be quite
small--and therefore T is expected to be quite small.  The most extreme outcome favourable to
rejection of H0 is T = 0.

Table 3.2  Difference scores ranked by absolute value

Score Rank
+2 1
+3 2
+5 3
-7 4.5 Sum of positive ranks = 6
-7 4.5
-9 6.5 Sum of negative ranks = 99
-9 6.5
-10 8 T = 6
-13 9
-14 10
-17 11.5
-17 11.5
-20 13
-26 14

If we wished to, we could generate the sampling distribution of T (i.e., the distribution of
T assuming that the null hypothesis is true), and see if the observed value of T is in the rejection
region. This is not necessary, however, because the sampling distribution of T can be found in
tables in most introductory level statistics textbooks.  When I consulted such a table, I found that
for N = 14, and α = .05 (2-tailed), the critical value of T = 21.  The rule is that if T is equal to or
less than Tcritical, we can reject the null hypothesis.  Therefore, in this example, we would reject
the null hypothesis.  That is, we would conclude that monkeys prefer stimulation in brain area B
to stimulation in area A.

This decision differs from our failure to reject H0 when we analysed the same data using
the sign test.  The reason for this difference is that the Wilcoxon signed-ranks test is more
powerful than the sign test.  Why is it more powerful?  Because it makes use of more information
than does the sign test.  But note that it too does discard some information by using ranks rather
than the scores themselves (like a paired t-test does, for example).

Tied scores
When ranking scores, it is customary to deal with tied ranks in the following manner:

Give the tied scores the mean of the ranks they would have if they were not tied.  For example, if
you have 2 tied scores that would occupy positions 3 and 4 if they were not tied, give each one a
rank of 3.5.  If you have 3 scores that would occupy positions 7, 8, and 9, give each one a rank of
8.  This procedure is preferred to any other for dealing with tied scores, because the sum of the
ranks for a fixed number of scores will be the same regardless of whether or not there are any
tied scores.



B. Weaver (15-Feb-2002)  Nonparametric Tests ...  4

If there are tied ranks in data you are analysing with the Wilcoxon signed-ranks test, the
statistic needs to be adjusted to compensate for the decreased variability of the sampling
distribution of T.  Siegel and Castellan (1988, p. 94) describe this adjustment, for those who are
interested. Note that if you are able to reject H0 without making the correction, then do not
bother, because the correction will increase your chances of rejecting H0.  Note as well that the
problem becomes more severe as the number of tied ranks increases.

3.4  Mann-Whitney U Test (for 2 independent samples)
The most basic independent groups design has two groups.  These are often called

Experimental and Control.  Subjects are randomly selected from the population and randomly
assigned to two groups.  There is no basis for pairing scores.  Nor is it necessary to have the
same number of scores in the two groups.

The Mann-Whitney U test is a nonparametric test that can be used to analyse data from a
two-group independent groups design when measurement is at least ordinal.  It analyses the
degree of separation (or the amount of overlap) between the Experimental and Control groups.

The null hypothesis assumes that the two sets of scores (E and C) are samples from the
same population; and therefore, because sampling was random, the two sets of scores do not
differ systematically from each other.

The alternative hypothesis, on the other hand, states that the two sets of scores do differ
systematically.  If the alternative is directional, or one-tailed, it further specifies the direction of
the difference (i.e., Group E scores are systematically higher or lower than Group C scores).

The statistic that is calculated is either U or U'.

U1 = the number of Es less than Cs
U2 = the number of Cs less than Es

U  = the smaller of the two values calculated above
U' = the larger of the two values calculated above

Calculating U directly
When the total number of scores is small, U can be calculated directly by counting the

number of Es less than Cs (or Cs less than Es).  Consider the following example:

Table 3.3  Data for two independent groups

Group E: 12 17 9 21
Group C: 8 18 26 15 23

It will be easier to count the number of Es less than Cs (and vice versa) if we rank the
data from lowest to highest, and rewrite it as shown in Table 3.4.
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Table 3.4  Illustration of direct calculation of the U statistic

Score Group Rank E<C C<E
8 C 1 0
9 E 2 1

12 E 3 1
15 C 4 2 U = 7
17 E 5 2 ′ U = 13
18 C 6 3
21 E 7 3
23 C 8 4
26 C 9 4

13 7

CHECK:
Note that U + U' = n1n2.  This will always be true, and can be used to check your

calculations.  In this case, U + U' = 7 + 13 = 20; and n1n2 = 4(5) = 20.

Calculating U with formulae
When the total number of scores is a bit larger, or if there are tied scores, it may be more

convenient to calculate U with the following formulae:

1 1
1 1 2 1

( 1)

2

n n
U n n R

+
= + − (3.1)

2 2
2 1 2 2

( 1)

2

n n
U n n R

+
= + − (3.2)

where n1 = # of scores in group 1
n2 = # of scores in group 2
R1 = sum of ranks for group 1
R2 = sum of ranks for group 2

As before, U  = smaller of U1 and U2, and U' = larger of U1 and U2.

For the data shown above, R1 = 2+3+5+7 = 17; and R2 = 1+4+6+8+9 = 28.  Substituting
into the formulae, we get:

1

4(4 1)
4(5) 17 13

2
U

+
= + − = (3.3)

2

5(5 1)
4(5) 28 7

2
U

+
= + − = (3.4)

Therefore, U = 7 and U'= 13.
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Making a decision
The next step is deciding whether to reject H0 or not.  In principle, we could generate a

probability distribution for U that is conditional on the null hypothesis being true--much like we
did when working with the binomial distribution earlier.  Fortunately, we do not have to do this,
because there are tables in the back of many statistics textbooks that give you the critical values
of U (or U') for different values of n1 and n2, and for various significance levels.

For the case we've been considering, n1 = 4 and n2 = 5.  For a two-tailed test with α = .05,
the critical value of U = 1.  In order to reject H0, the observed value of U would have to be equal
to or less than the critical value of U.  (Note that maximum separation of E and C scores is
indicated by U = 0.  As the E and C scores become more mixed, U becomes larger.  Therefore,
small values of U lead to rejection of H0.)  Therefore, we would decide that we cannot reject H0

in this case.

Tied scores
According to Siegel and Castellan (1988), any ties that involve observations in the same

group do not affect the values of U and U'.  (Note that Siegel and Castellan refer to this test as
the Wilcoxon-Mann-Whitney Test, and that the call the statistic W rather than U.)  But if two or
more tied ranks involve observations from both groups, then the values of U and U' are affected,
and a correction should be applied.  See Siegel & Castellan (1988, p. 134) should you ever need
more information on this, and note that the problem is particularly severe if you are dealing with
the large-sample version of the test, which we have not yet discussed.

3.5  Kruskal-Wallis H-test (for k independent samples)
The Kruskal-Wallis H-test goes by various names, including Kruskal-Wallis one-way

analysis of variance by ranks (e.g., in Siegel & Castellan, 1988).  It is for use with k independent
groups, where k is equal to or greater than 3, and measurement is at least ordinal.  (When k = 2,
you would use the Mann-Whitney U-test instead.)  Note that because the samples are
independent, they can be of different sizes.

The null hypothesis is that the k samples come from the same population, or from
populations with identical medians.  The alternative hypothesis states that not all population
medians are equal.  It is assumed that the underlying distributions are continuous; but only
ordinal measurement is required.

The statistic H (sometimes also called KW) can be calculated in one of two ways:

( )
2

1

12

( 1)

k

ii
i

H n R R
N N

•

=

 
= − + 

∑ (3.5)

or, the more common computational formula,

2

1

12
3( 1)
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k
i
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R
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 
= − + + 

∑ (3.6)
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where k = the number of independent samples
ni = the number of cases in the ith sample
N = the total number of cases
Ri = the sum of the ranks in the ith sample
Ri  = the mean of the ranks for the ith sample

R• = N +1

2
 = the mean of all ranks

Example

A student was interested in comparing the effects of four kinds of reinforcement on children's
performance on a test of reading comprehension.  The four reinforcements used were:  (a) praise
for correct responses; (b) a jelly bean for each correct response; (c) reproof for incorrect
responses; and (d) silence.  Four independent groups of children were tested, and each group
received only one kind of reinforcement.  The measure of performance given below is the number
of errors made during the course of testing.

Table 3.5  Data from 4 independent groups

a b c d
68 78 94 54
63 69 82 51
58 58 73 32
51 57 67 74
41 53 66 65

61 80

The first step in carrying out the Kruskal-Wallis H-test is to rank order all of the scores
from lowest to highest.  This can be quite laborious work if you try to do it by hand, but is fairly
easy if you use a spreadsheet program.  Enter all scores in a single column, and enter a group
code for each score one column over.  For example:

Group Score
a 68
a 63
a 58
a 51
a 41
b 78

etc.

When all the data are entered thus, sort the scores (and their codes) from lowest to highest.  Now
you can enter ranks from 1 to N (taking care to deal with tied scores appropriately).  After the
scores are ranked, you can sort the data the data by group code, and then calculate the sum and
mean of the ranks for each group.  I did this for the data shown above, and came up with the
following ranks:
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Table 3.6  Ranks of data from Table 3.5

a b c d
15 19 22 6
11 16 21 3.5
8.5 8.5 17 1
3.5 7 14 18

2 5 13 12
10 20

40.0 55.5 97.0 60.5 Sum of Ranks
8.0 11.1 16.2 10.1 Mean of Ranks

CHECK:  The sum of ranks from 1 to N will always be equal to [N(N+1)]/2.  We can use this to
check our work to this point.  We have 22 scores in total, so the sum of all ranks should be
[22(23)]/2 = 253.  Similarly, when we add the sum of ranks for each group, we get 40 + 55.5 +
97 + 60.5 = 253.  Therefore, the mean of ALL ranks = 253/22 =  11.5.

Now plugging into Equation 3.4 shown above, we get H = 4.856.  If the null hypothesis
is true, and the k samples are drawn from the same population (or populations with identical
medians), and if k > 3, and all samples have 5 or more scores, then the distribution of H closely
approximates the chi-squared distribution with df = k-1.  The critical value of chi-squared with
df=3 and α = .05 is 7.82.  In order to reject H0, the obtained value of H would have to be equal to
or greater than 7.82.  Because it is less, we cannot reject the null hypothesis.

Sampling distribution of H
As described above, when H0 is true, if k > 3, and all samples have 5 or more scores, then

the sampling distribution of H is closely approximated by the chi-squared distribution with df =
k-1.  If k = 3 and the number of scores in each sample is 5 or fewer, then the chi-squared
distribution should not be used.  In this case, one should use a table of critical values of H (e.g.,
Table O in Siegel & Castellan, 1988).

Tied observations
Tied scores are dealt with in the manner described previously (i.e., they are given the

mean of the ranks they would receive if they were not tied).  The presence of tied scores does
affect the variance of the sampling distribution of H.  Siegel and Castellan (1988) show a
correction that can be applied in the case of tied scores, but go on to observe that its effect is to
increase the value of H.  Therefore, if you are able to reject H0 without correcting for ties, there
is no need to do the correction.  It should only be contemplated when you have failed to reject
H0.
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Multiple comparisons
Rejection of H0 tells you that at least one of the k samples is drawn from a population

with a median different from the others.  But it does not tell you which one, or how many are
different.  There are procedures for conducting multiple comparisons between treatments, or
comparisons of a control condition to all other conditions in order to answer these kinds of
questions.  Should you ever need to use one of them, consult Siegel and Castellan (1988, pp.
213-215).

3.6  The Jonckheere test for ordered alternatives
The Jonckheere test for ordered alternatives is similar to the Kruskal-Wallis test, but has

a more specific alternative hypothesis.  The alternative hypothesis for the Kruskal-Wallis test
states that all population medians are not equal.  The more precise alternative hypothesis for the
Jonckheere test can be summarised as follows:

H1:  θ1 ≤ θ2 ... ≤ θk

where the θ‘s are the population medians.  This alternative is tested against a null hypothesis of
no systematic trend across treatments.

The test can be applied when you have data for k independent samples, when
measurement is at least ordinal, and when it is possible to specify a priori the ordering of the
groups.  Because the alternative hypothesis specifies the order of the medians, the test is one-
tailed.

Siegel and Castellan (1988) use J to symbolise the statistic that is calculated.  It is
sometimes also called the “Mann-Whitney count”.  As this name implies, J is based on the same
kind of counting and summing that we saw when calculating the U statistic via the direct
method.  The mechanics of it become somewhat complicated for the Jonckheere test, so we will
not go into it here.  (I hope you are not too disappointed!)  Should you ever need to perform this
test, see Program 5 in Appendix II of Siegel and Castellan (1988).  Siegel and Castellan also
provide a table of critical values of J (for small sample tests).

3.7  Friedman ANOVA
This test is sometimes called the Friedman two-way analysis of variance by ranks.  It is

for use with k repeated (or correlated) measures where measurement is at least ordinal.  The null
hypothesis states that all k samples are drawn from the same population, or from populations
with equal medians.

Example
The table on the left (below) shows reaction time data from 5 subjects, each of whom was

tested in 3 conditions (A, B, and C).  The Friedman ANOVA uses ranks, and so the first thing we
must do is rank order the k scores for each subject.  The results of this ranking are shown in the
table on the right, and the sum of the ranks ( iR∑ ) for each treatment is shown at the bottom.
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Table 3.7  RT data and ranks for 3 levels of a within-subjects variable

Subj A B C Subj A B C
1 386 411 454 1 1 2 3
2 542 563 556 2 1 3 2
3 662 667 665 3 1 3 2
4 453 502 574 4 1 2 3
5 548 546 575 5 2 1 3

iR∑ 6 11 13

It may be useful at this point to consider what kinds of outcomes are expected if H0 is
true.  H0 states that all of the samples (columns) are drawn from the same population, or from
populations with the same median.  If so, then the sums (or means) of the ranks for each of the
columns should all be roughly equal, because the ranks 1, 2, and 3 would be expected by chance
to appear equally often in each column.  In this example, the expected �R for each treatment
would be 10 if H0 is true.  (In general, the expected sum of ranks for each treatment is N(k
+1)/2.)  The Friedman ANOVA assesses the degree to which the observed �R's depart from the
expected �R's.  If the departure is too extreme (or not likely due to chance), one concludes by
rejecting H0.

The Fr statistic is calculated as follows:

2

1

12
3 ( 1)

( 1)

k

r i
i

F R N k
Nk k =

 
= − + + 

∑ (3.7)

where N = the number of subjects
k = the number of treatments
Ri = the sum of the ranks for the ith treatment

Critical values of Fr for various sample sizes and numbers of treatments can be found in
tables (e.g., Table M in Siegel & Castellan, 1988).  Note that when the number of treatments or
subjects is large, the sampling distribution of Fr is closely approximated by the chi-squared
distribution with df = k - 1.  (Generally, use a table of critical values for Fr if it provides a value
for your particular combination of k and N.  If either k or N are too large for the table of critical
values, then use the chi-squared distribution with df = k -1.)

For the example we've been looking at, the critical values of Fr are 6.40 for α = .05, and
8.40 for α = .01.  In order to reject H0, the obtained value of Fr must be equal to or greater than
the critical value.  Therefore, we would fail to reject H0 in this case.

Tied scores
If there are ties among the ranks, the Fr statistic must be corrected, because the sampling

distribution changes.  The formula that corrects for tied ranks is actually a general formula that
also works when there are no ties.  However, it is rather complicated, which is why the
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simplified version shown above is used when possible.  The general formula is not shown here,
but can be found in Siegel and Castellan (1988, p. 179), should you need it.

Multiple comparisons
Siegel and Castellan (1988) also give formulae to be use for conducting multiple

comparisons and/or comparisons of a control condition to each of the other conditions.

3.8  Large sample versions of nonparametric tests
You may have noticed that the tables of critical values for many nonparametric statistics

only go up to sample sizes of about 25-50.  If so, perhaps you have wondered what to do when
you have sample sizes larger than that, and want to carry out a nonparametric test.  Fortunately,
it turns out that the sampling distributions of many nonparametric statistics converge on the
normal distribution as sample size increases.  Because of that, it is possible to carry out a so-
called “large-sample” version of the test (which is really a z-test) if you know the mean and
variance of the sampling distribution for that particular statistic.

Common structure of all z- and t-tests
As I have mentioned before, all z- and t-tests have a common structure.  In general terms:

0statistic - (parameter | H  is true)
 (or ) =  

standard error of the statistic
z t (3.8)

When the sampling distribution of the statistic in the numerator is normal, then if the true
(population) standard error (SE) of the statistic is known, the computed ratio can be evaluated
against the standard normal (z) distribution.  If the true standard error of the statistic is not
known, then it must be estimated from the sample data, and the proper sampling distribution is a
t-distribution with some number of degrees of freedom.

Example:  Large-sample Mann-Whitney U test
The following facts are known about the sampling distribution of the U statistic used in

the Mann-Whitney U test:

1 2

2U

n n
µ = (3.9)

1 2 1 2( 1)

12U

n n n n
σ

+ +
= (3.10)

Furthermore, when both sample sizes are greater than about 20, the sampling distribution of U is
(for practical purposes) normal.  Therefore, under these conditions, one can perform a z-test as
follows:
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U
U

U

U
z

µ
σ
−

= (3.11)

The obtained value of zU can be evaluated against a table of the standard normal distribution
(e.g., Table A in Norman & Streiner, 2000).  Alternatively, one can use software to calculate the
p-value for a given z-score, e.g., StaTable from Cytel, which is available here:

http://www.cytel.com/statable/index.html

Example:  Large-sample Wilcoxon signed ranks test
The following are known to be true about the sampling distribution of T, the statistic used

in the Wilcoxon signed ranks test:

( 1)

4T

N N
µ

+
= (3.12)

( 1)(2 1)

24T

N N N
σ

+ +
= (3.13)

If N > 50, then the sampling distribution of T is for practical purposes normal.  And so, a z-ratio
can be computed as follows:

T
T

T

T
z

µ
σ
−

= (3.14)

The obtained value of zT can be evaluated against a table of the standard normal distribution, or
using software as described above.

Example:  Large-sample Jonckheere test for ordered alternatives
The mean and standard deviation of the sampling distribution of J are given by the

following:

2 2

1

4

k

i
i

J

N n
µ =

−
=

∑
(3.15)

2 2

1

1
(2 3) (2 3)

72

k

J i i
i

N N n nσ
=

 = + − +  
∑ (3.16)

http://www.cytel.com/statable/index.html
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where N = total number of observations
ni = the number of observations in the ith group
k = the number of independent groups

As sample sizes increase, the sampling distribution of J converges on the normal, and so
one can perform a z-test as follows:

J
J

J

J
z

µ
σ
−

= (3.17)

Example:  Large sample sign test
The sampling distribution used in carrying out the sign test is a binomial distribution with

p =q = .5.  The mean of a binomial distribution is equal to Np, and the variance is equal to Npq.
As N increases, the binomial distribution converges on the normal distribution (especially when
p = q = .5).  When N is large enough (i.e., greater than 30 or 50, depending on how conservative
one is), it is possible to carry out a z-test version of the sign test as follows:

X Np
z

Npq

−
= (3.18)

You may recall that z2 is equal to χ2 with df = 1.  Therefore,

2
2 2
1

( )X Np
z

Npq
χ

−
= = (3.19)

This formula can be expanded with what Howell (1997) calls “some not-so-obvious algebra” to
yield:

2 2
2
1

( ) ( )X Np N X Nq

Np Nq
χ

− − −
= + (3.20)

Note that X equals the observed number of p-events, and Np equals the expected number of p-
events under the null hypothesis.  Similarly, N-X equals the observed number of q-events, and
Nq = the expected number of q-events under the null hypothesis.  Therefore, we can rewrite
equation (3.20) in a more familiar looking format as follows:

2 2 2
2 1 1 2 2

1 2

( ) ( ) ( )O E O E O E

E E E
χ

− − −
= + = ∑ (3.21)
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Large-sample z-tests with small samples
Many computerised statistics packages automatically compute the large-sample (z-test)

version of nonparametric tests, even when the sample sizes are small.  Note however, that the z-
test is just an approximation that can be used when sample sizes are sufficiently large.  If the
sample sizes are small enough to allow use of a table of critical values for your particular
nonparametric statistic, you should always use it rather than a z-test.

3.9  Advantages of nonparametric tests
Siegel and Castellan (1988, p. 35) list the following advantages of nonparametric tests:

1.  If the sample size is very small, there may be no alternative to using a
nonparametric statistical test unless the nature of the population distribution is
known exactly.

2.  Nonparametric tests typically make fewer assumptions about the data and may
be more relevant to a particular situation.  In addition, the hypothesis tested by the
nonparametric test may be more appropriate for the research investigation.

3.  Nonparametric tests are available to analyze data which are inherently in ranks
as well as data whose seemingly numerical scores have the strength of ranks.
That is, the researcher may only be able to say of his or her subjects that one has
more or less of the characteristic than another, without being able to say how
much more or less.  For example, in studying such a variable as anxiety, we may
be able to state that subject A is more anxious than subject B without knowing at
all exactly how much more anxious A is.  If data are inherently in ranks, or even
if they can be categorized only as plus or minus (more or less, better or worse),
they can be treated by nonparametric methods, whereas they cannot be treated by
parametric methods unless precarious and, perhaps, unrealistic assumptions are
made about the underlying distributions.

4.  Nonparametric methods are available to treat data which are simply
classificatory or categorical, i.e., are measured in a nominal scale.  No parametric
technique applies to such data.

5.  There are suitable nonparametric statistical tests for treating samples made up
of observations from several different populations.  Parametric tests often cannot
handle such data without requiring us to make seemingly unrealistic assumptions
or requiring cumbersome computations.

6.  Nonparametric statistical tests are typically much easier to learn and to apply
than are parametric tests.  In addition, their interpretation often is more direct than
the interpretation of parametric tests.
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Note that the objection concerning “cumbersome computations” in point number 5 has
become less of an issue as computers and statistical software packages become more
sophisticated, and more available.

3.10  Disadvantages of nonparametric tests
In closing, I must point out that nonparametric tests do have at least two major

disadvantages in comparison to parametric tests.  First, nonparametric tests are less powerful.
Why?  Because parametric tests use more of the information available in a set of numbers.
Parametric tests make use of information consistent with interval scale measurement, whereas
parametric tests typically make use of ordinal information only.  As Siegel and Castellan (1988)
put it, “nonparametric statistical tests are wasteful.”

Second, parametric tests are much more flexible, and allow you to test a greater range of
hypotheses.  For example, factorial ANOVA designs allow you to test for interactions between
variables in a way that is not possible with nonparametric alternatives.  There are nonparametric
techniques to test for certain kinds of interactions under certain circumstances, but these are
much more limited than the corresponding parametric techniques.

Therefore, when the assumptions for a parametric test are met, it is generally (but not
necessarily always) preferable to use the parametric test rather than a nonparametric test.

---------------------------------------------------------------------
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Review Questions

1.  Which test is more powerful, the sign test, or the Wilcoxon signed ranks test?  Explain why.

2.  Which test is more powerful, the Wilcoxon signed ranks test, or the t-test for correlated
samples?  Explain why.

For the scenarios described in questions 3-5, identify the nonparametric test that ought
to be used.

3.  A single group of subjects is tested at 6 levels of an independent variable.  You would like to
do a repeated measures ANOVA, but cannot because you have violated the assumptions for that
analysis.  Your data are ordinal.

4.  You have 5 independent groups of subjects, with different numbers per group.  There is also
substantial departure from homogeneity of variance.  The null hypothesis states that there are no
differences between the groups.

5.  You have the same situation described in question 4; and in addition, the alternative
hypothesis states that when the mean ranks for the 5 groups are listed from smallest to largest,
they will appear in a particular pre-specified order.

6.  Explain the rationale underlying the large-sample z-test version of the Mann-Whitney U-test.

7.  Why should you not use the large-sample z-test version of a nonparametric test when you
have samples small enough to allow use of the small-sample version?

8.  Give two reasons why parametric tests are generally preferred to nonparametric tests.

9.  Describe the circumstances under which you might use the Kruskal-Wallis test.  Under what
circumstances would you use the Jonckheere test instead?  (HINT:  Think about how the
alternative hypotheses for these tests differ.)

---------------------------------------------------------------------
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Appendix

The following is an excerpt from the BMJ Statistics at Square One article on Rank Score Tests,
which can be downloaded here:

http://www.bmj.com/collections/statsbk/10.shtml

Do non-parametric tests compare medians?

It is a commonly held belief that a Mann-Whitney U test is in fact a test for differences in
medians. However, two groups could have the same median and yet have a significant Mann-
Whitney U test. Consider the following data for two groups, each with 100 observations.

Group 1: 98 (0), 1,2;
Group 2: 51 (0), 1, 48 (2).

The median in both cases is 0, but from the Mann-Whitney test P<0.000 1.

Only if we are prepared to make the additional assumption that the difference in the two groups
is simply a shift in location (that is, the distribution of the data in one group is simply shifted by
a fixed amount from the other) can we say that the test is a test of the difference in medians.
However, if the groups have the same distribution, then a shift in location will move medians
and means by the same amount and so the difference in medians is the same as the difference in
means. Thus the Mann-Whitney U test is also a test for the difference in means.

The entire series of Statistics at Square One chapters is listed here:

http://www.bmj.com/collections/statsbk/

http://www.bmj.com/collections/statsbk/10.shtml
http://www.bmj.com/collections/statsbk/

