Series solutions of Second Order Linear Equations: at Ordinary Point

Ok, this is where things become a little fuzzy and complicated. You must know power series very well to understand this, if you don’t you will still be able to follow the method of solving but won’t understand why it is done.

We will be considering methods for solving second order linear equations when the coefficients are functions of the independent variable and will always be looking at the homogeneous equation. Namely, a function in the form;
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We must first see if the function is ordinary, that is x0 is an ordinary point. This means that 
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Now we can look for a solution in the form;
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Well if we have an equation with y, y’ and y”, why not take the derivative of this sum and plug these equations back into our original formula
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From here we can factor P(x), Q(x), and R(x) into the sums and combine them. Note that it is best to rewrite P(x), Q(x), and R(x) into some form of (x-x0) to make the factoring easy. Them we can try to solve for 
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Let’s do a problem and clarify the process.

Find the series solution given 
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Starting with 
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Plug these back into the original equation, in this case only y and y”
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Factor in the x
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Now in order to combine these two sums into one, they must have the same degree and the same starting point. Since at the moment the first has a degree n-2 and the second n+1, lets use the dummy variable “m” to adjust this.

If we choose that in the first part 
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Now that we have the same degree we can combine them… wait, we messed up the starting points. Doh! This is an easy fix. Simply expand the sum(s) that have lower starting points until they are all equal, meaning, factor out the low n terms.
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The terms
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so this is left
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Combine the sums
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Since the coefficients of like powers of x be equal; 
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From this you can then find as many coefficients as you desire. Now, let’s try one where 
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Now we have to try and factor the outside terms in. If they involve an x, it is best to make it look like 
[image: image39.wmf]0

x

x

-

, as such;


[image: image40.wmf]0

)

1

(

3

)

1

(

]

2

)

1

[(

)

1

)(

1

(

]

1

)

1

(

2

)

1

[(

0

0

1

0

2

2

=

-

+

-

+

-

+

-

-

+

-

+

-

å

å

å

¥

=

¥

=

-

¥

=

-

n

n

n

n

n

n

n

n

n

x

a

x

n

a

x

x

n

n

a

x

x



[image: image41.wmf]0

)

1

(

3

)

1

(

2

)

1

(

)

1

(

)

1

)(

1

(

1

)

1

)(

1

(

)

1

(

2

)

1

)(

1

(

)

1

(

0

0

1

0

1

0

2

0

2

0

2

2

=

-

+

-

+

-

-

+

-

-

+

-

-

-

+

-

-

-

å

å

å

å

å

å

¥

=

¥

=

-

¥

=

-

¥

=

-

¥

=

-

¥

=

-

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

x

a

x

n

a

x

n

a

x

x

n

n

a

x

n

n

a

x

x

n

n

a

x



[image: image42.wmf]0

)

1

(

3

)

1

(

2

)

1

(

)

1

)(

1

(

)

1

)(

1

(

2

)

1

)(

1

(

0

0

1

0

0

2

0

1

0

=

-

+

-

+

-

+

-

-

+

-

-

+

-

-

å

å

å

å

å

å

¥

=

¥

=

-

¥

=

¥

=

-

¥

=

-

¥

=

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

x

a

x

n

a

x

n

a

x

n

n

a

x

n

n

a

x

n

n

a


Now make the degrees agree;
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Now, make all the starting points equal;
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Combine into one sum;
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For this equation to be true;
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