Political Culture and Per Pupil Spending For Education:
Daniel Elazar Revisited

P. Edward French, PH.D.
University of Tennessee-Knoxville

Rodney E. Stanley, PH.D.
Tennessee State University

ABSTRACT

Literature: The term political culture has been utilized as one possible explanation for policy diffusion and resource allocation among the states. Purpose: The purpose of this research project is to demonstrate that political culture is still relevant for understanding per pupil spending for education across America. Data: The unit of analysis is state level data over a period of thirty-years. Methods: Pooled time series cross-sectional regression analysis is the methodological mechanism employed to test the data in this study. Findings: The findings suggest that significant differences exist across the states in spending per pupil. Limitations: One limitation of this research is its failure to offer explanations for removing funding disparities across the states. Future Studies: Additional studies are needed in order to determine how these funding differences in per pupil spending for education should be eradicated.
INTRODUCTION

The term political culture, as defined by Daniel Elazar, is a concept attempting to explain the differences in socio-demographic characteristics of the American states. Since its conceptualization, various scholars have utilized Elazar’s measure, as well as criticized the utility of this variable, in efforts to explain the policy differences among the American states. For instance, education spending is the largest expense for state governments in America (Picus, 1995). However, when the data is viewed from a regional basis, the southern region of the United States, along with its traditionalistic counterparts (Elazar’s term describing one culture found in states like Arizona, Utah and New Mexico), tend to spend less on education compared to moralistic and individualistic states. Although spending differences among states on social programs such as education is nothing new to the academic literature. What is new are empirically based formal models that offer explanations as to why these differences may exist. The purpose of this research project is to use the policy arena of education spending per pupil to demonstrate that Elazar’s concept of political culture is still a valid explanation for funding discrepancies since it was first coined almost fifty years ago. The research question driving this project is as follows: Do traditionalistic states tend to spend less on education when compared to moralistic and individualistic states? Following is a thorough review of the literature framing the argument used in this study, along with the hypotheses, data and research methods utilized to test the data. The later sections of this manuscript display the findings, discussion and policy implications of the study.

Political Culture

Numerous studies have attempted to explain the differences seen among states’ public policies. Many have evaluated the conditions and characteristics that propel
certain states to adopt specific expenditures or innovations regarding education, welfare, and transportation. Researchers have found that political party competition; interest groups, gubernatorial power, public opinion, and political culture may help explain many of the dissimilarities seen in state government policies (Key, 1949; Sharkansky, 1969; Elazar, 1984; Savage, 1981; Black and Black, 1987; Gray, 1973; Erekson, Platt, Whistler and Ziegert, 1992).

One of the most noted essays concerning state political systems is the analysis of Southern politics presented by V. O. Key, Jr. Key, Jr. (1949) points out that the nature of the South’s political system has been shaped by this region’s problems with racial relations, an agrarian economy, and the tendency of its residents to remain non-participatory in political matters. He also notes that “custom, the organization of the economic system, and now and then, private violence have a role in determining who governs and who gets what” (Key, Jr., 1949, p. 4).

Daniel Elazar (1984) also describes the influence of political culture on state political systems and the legislation these systems promote. He identifies three major subcultures existing across the United States, which were brought to this country by the early American settlers. Elazar (1984) notes that these tendencies are often found among politicians and the general public, and they serve to shape each individual’s understanding of government and ultimately its purposes and outcomes. This author points out that the individualistic subculture emphasizes the market place and a limited role of government. The moralistic subculture promotes the commonwealth and expects government to advance the interest of the public. The third subculture identified by Elazar is the traditionalistic political culture. Traditionalists expect government to
maintain the existing social and economic hierarchy and governance remains an
obligation of the elite rather than the ordinary citizen (Elazar, 1984). Elazar utilizes the
early American settlement patterns to identify the dominant political subcultures existing
in each of the fifty states. States in the extreme north, the northeast, and those located on
the pacific coast are dominated by the moralistic subculture. States across the mid-
section of the United States are classified as individualistic, and those states in the south
are generally seen as traditionalistic (Elazar, 1984).

Ira Sharkansky (1969) reanalyzes Elazar’s classifications to create a nine point
linear scale, which allows for comparative state analysis in empirical terms. Each of the
fifty states is given a political culture score, and these scores are correlated with twenty-
three variables reflecting political participation, government size, government
prerequisites, and government program implementation. He concludes that political
culture can be related to several state traits regarding politics and public service.

Other authors in the political field have been critical of Elazar’s topography due
to its lack of empirical evidence. Clynch (1972) argues that the interval scale developed
by Sharkansky does not exhibit the same relationships with the dependent variables when
regionalism is included. He notes that the impact of political culture can be seen intra-
regionally rather than nationally. In a secondary analysis of the data from the 13 states
originally conducted by the Comparative States Elections Project, Schlitz and Rainey
(1978) conclude that very little statistical evidence exists to support Elazar’s
classifications.

Robert Savage (1981) however, points out several flaws in the research analysis
conducted by Schlitz and Rainey. He notes that these two authors fail to address several
ambiguities found in the survey. He also argues that they form hypotheses, which are loosely construed from Elazar’s work. Savage questions their statistical analyses and the “rummage sale approach” that Schiltz and Rainey utilize in their political culture study (Savage, 1981, p. 331). He argues that Elazar’s theory has been proven valuable to political research. Savage (1981) points out that this normative scale is “the one political measure that compares favorably with traditional socioeconomic indicators in explaining policy variations among the states” (Savage, 1981, p. 336).

Nardulli (1990) also examines the utility of Elazar’s typology in order to determine whether or not its assumptions concerning citizens and politics are correct. Nardulli questions whether the citizens categorized in Elazar’s political subcultures exhibit the characteristics required in these classifications. This author finds that many individuals in the survey did not adhere to the belief system in each subculture identified by Elazar (Nardulli, 1990). Nardulli concludes that failure of Elazar to operationalize his scheme for categorizing geographic locales “makes it difficult to rebut the implication that his classifications measure little more than sectional differences” (Nardulli, 1990, p. 304).

Education Finance

Education, according to the National Center for Education Statistics, accounts for the single largest cost in most state and local government operating budgets (U.S. Department of Education, 1998). Generally, the money comes from a combination of local and state taxes, federal grants-in-aid programs, and sales taxes, but the balance between these sources has shifted considerably over the years. Local tax revenues consist almost entirely of property taxes and sales taxes; and, despite their regressiveness, these
taxes have maintained continued popularity as revenue generating devices (U.S.
Department of Education, 1998). As a result of educational incongruity, however, local
taxation for generating educational revenue began receiving immense criticism in the
1970’s and 1980’s. During this time period state governments began assuming a greater
role in funding educational programs. The state share of total educational funding
increased from 41 percent in 1968 to about 50 percent in 1986, while local funding
decreased from about 50 percent to 43 percent during this same time period (Wong,
1989).

The characterization of school financing as a conflict between local control ideals
and equal opportunity correctly summarizes the traditional discourse revolving around
this issue (Robertson & Judd, 1889). A wide range of disparity between school districts
exists within many states because of taxable wealth (gross state product) and tax rates.
Some states possess capacious gross state products, while other states exhibit feeble
levels of wealth (Hanushek, 1994). Further exacerbation of wealth disparity between
school districts exists because of imbalances in the distribution of commercial, industrial,
utility, public, tax-free, and residential property, as well as, an uneven distribution of
school-aged children. Consequently, those children living in poor neighborhoods receive
a lower standard of education than children from wealthier communities (Peters, 1996).
As a result, children from less affluent communities entering the job market or post-
secondary educational institutions often find themselves deficient in the necessary skills
to adequately compete. Thus, more affluent individuals receive better jobs and
educations as compared to individuals who originate from less affluent households
(Grissmer, Flanagan, and Williamson, 1997).
Statistical evidence provided by the Department of Education certifies numerous accounts of educational disparity across the American states. In most states, the average spending disparity between affluent and less affluent school districts ranges from two and five times more. Numerous court challenges to the constitutionality of property based education finance have occurred in almost every state over the last ten years, and the supreme courts in seventeen states have declared the current systems of education finance in these states unconstitutional (Dee, 2004). Despite pious efforts toward eradicating these financial disparities, the fact remains that within virtually every state; funding levels for some children’s education are several times greater than those of other children (Renchler, 1992).

The perennial social problem of educational expenditure disparity is often attributed to the failure of elected officials to adopt legislation to confront this issue. Historically, reports demonstrate that Republican governors tend to support less spending on education compared to Democratic governors. However, many Republican governors are witnessing the desperate need to enhance America’s educational system, especially since the U.S. is aggressively competing in a global economy (Beyle, 1996). Governors recognize that raising taxes in an effort to cover the educational expense of states is politically counter productive. Therefore, governors representing both parties are searching for ways to increase revenue allotments for public education without increasing taxes (Picas, 1995). One of the mechanisms often explored by governors to cover these social expenses is the use of a lottery. Governors, especially during election years, find the lottery quite appealing because it allows them to spend more on social programs, such as education, without embracing a tax increase for these expenditures. In theory, this
demonstrates to the public that their particular chief political functionary possesses the characteristics of a thrifty, egalitarian leader. Often, the success of the gubernatorial reelection campaign depends on the populace’s perception of the governor (Beyle, 1996).

Rationale For This Political Culture Study

The previously discussed literature regarding political culture and spending on education suggests that traditionalistic states tend to spend less per pupil compared to moralistic and individualistic states. In addition to the political culture literature, various socio-demographic variables identified also may explain per pupil spending on education across the fifty states. In order to test the assumption that traditionalistic states spend less on education than moralistic and individualistic states, the following hypotheses were generated to test the data.

Hypotheses:

H1: States with higher levels of poverty tend to spend the same per pupil compared to states with lower levels of poverty.

H2: States with higher student/teacher ratios tend to spend similar resources per pupil compared to states with lower student/teacher ratios.

H3: States with higher per capita incomes tend to spend similar resources per pupil compared to states with lower gross state products.

H4: States with higher populations tend to spend similar resources per pupil compared to states with lower population levels.

H5: States with higher numbers of high school graduates tend to spend similar resources per pupil compared to states with lower numbers of high school graduates.

H6: States with higher levels of unemployment tend to spend the same per pupil compared to states with lower unemployment levels.

H7: States tend to spend the same per pupil during presidential election years compared to non-presidential election years.
H₈: States tend to spend the same per pupil during gubernatorial election years compared to non-gubernatorial election years.

H₉: Traditionalistic states tend to spend the same per pupil compared to moralistic states.

H₁₀: Traditionalistic states tend to spend the same per pupil compared to individualistic states.

H₁₁: States tend to spend the same per pupil during Democratic presidential appointments compared to Republican presidential appointments.

H₁₂: States tend to spend the same per pupil during Democratic gubernatorial appointments compared to Republican gubernatorial appointments.

H₁₃: States receiving larger portions of federal dollars for education tend to spend the same per pupil compared to states receiving smaller portions of federal dollars for education.

Unit of Analysis

The unit of analysis in the study is state level data from 1970 to the year 2000 (Thirty-year time period). A thirty-year time period was chosen due to the empirical method used to test the data. For time series studies thirty-years is the suggested time necessary to get a reliable analysis of the data (Babbie, 2004).

DATA & METHODOLOGY

DATA

Conceptual and Operational Definitions

PERPUPILSPENDING (dependent variable) – The total amount of per pupil spending by each state. The data was collected from the Digest of Education Statistics published by the Federal Department of Education.

FEDSPEDU – The total amount of federal spending for education received by the states. The data was collected from the Digest of Education Statistics published by the Federal Department of Education.

INCOME – The per capita income of each state adjusted for inflationary factors. The data was collected from the Bureau of Economic analysis, which is a branch of the Department of the Census.

POPULATION – The number of residence in a particular state. The data was collect from the Statistical Abstracts of the United States published by the Department of the Census.

GOVPARTY - The political party affiliation of the governor of each state. The variable is coded as a dummy variable with 0 = Democrat and 1 = Republican. The data was collected from the Statistical Abstracts of the United States published by the Department of the Census.

GOVELECT – The election year of the governor of each state. The variable is coded as a dummy variable with 0 = election year and 1 = non-election year. The data was collected from the Statistical Abstracts of the United States published by the Department of the Census.

UNEMPLOYMENT – The percentage rate of unemployment in each state. The data was collected from the Statistical Abstracts of the United States published by the Department of the Census.

INDIVIDUALISTIC, MORALISTIC, TRADITIONALISTIC - Daniel Elazar’s classifications of the American states. Three distinct dummy variables were generated categorizing each state according to Elazar’s political culture ranking.

PRESIDENT’S PARTY AFFILIATION – The president’s party coded as a dummy variable (0 = Democrat; 1 = Republican). The data was collected from the Statistical Abstracts of the United States published by the Department of the Census.

PRESIDENTIAL ELECT - The election year for the president of the United States. The variable is coded as a dummy variable with 0 = election year and 1 = non-election year. The data was collected from the Statistical Abstracts of the United States published by the Department of the Census.

STUDENT/TEACHER RATIO – The ratio of students to teachers in each state. The data was collected from the Digest of Education Statistics published by the Federal Department of Education.

GRADUATION – The ratio of high school graduates each year by state. The data was collected from the Digest of Education Statistics published by the Federal Department of Education.

The estimated regression equation is written as follows:

\[
Y (\text{PERPUPILSPENDING}) = a + (B_1) \text{STUDENT/TEACHER RATIO}_1 + (B_2) \text{INCOME}_2 + (B_3) \text{POVERTY}_3 + (B_4) \text{UNEMPLOYMENT}_4 + (B_5) \text{INDIVIDUALISTIC}_5 + (B_6) \text{MORALISTIC}_6 + (B_7) \text{PRESIDENTIAL PARTY}_7 + (B_8) \text{GOVPARTY}_8 + (B_9) \text{FEDERALSPEDU}_9 + (B_{10}) \text{POPULATION}_{10} + (B_{11}) \text{PRESIDENTIAL ELECT}_{11} + (B_{12}) \text{GOVELECT}_{12} + (B_{13}) \text{GRADUATION}_{13} + E
\]
METHODOLOGY

This research project uses “pooled time series cross-sectional data analysis” as the measuring device for the previously stated hypotheses (Beck and Katz, 1996: 1). One of the most promising advantages of using pooled time series cross sectional analysis is its usefulness in offering explanations of the past, while simultaneously predicting the future behavior of exogenous variables in relation to endogenous variables. Pooled time series cross sectional analysis allows the researcher to focus on more than one case in predicting social phenomenon, whereas simple time series analysis deals strictly with specific cases at different time points, causing data management complications, and compromises the generalizability of the project. Furthermore, ARIMA time-series methods of data analysis place a relatively greater emphasis on controlling for autocorrelation and heteroskedasticity to ensure data dependability than on discovering and explaining social phenomenon. Autocorrelation and heteroskedasticity do pose threats to data analysis, however, according to Beck and Katz (1996) they are more of a “nuisance” than a real threat (p. 3).

Despite the numerous advantages of pooled time series analysis using N (number of cases) at T (time points) for predicting the future of a particular social intervention program, a number of methodological disadvantages limit the usage of this data measuring device. The basic assumptions underlying traditional Ordinary Least Squares (OLS) regressions are violated in a pooled model, and such departures may exhibit severe consequences for the reliability of the estimators (Stimson, 1985). For instance, the following assumptions are usually made in regards to the error term in pooled time series regression:

1) The error term has a mean of zero;
2) The error term has a constant variance over all observations;
3) The error terms corresponding to different points in time are not correlated (Ostrom, 1978).

The accuracy of the regression model is inevitably measured by the error term. Hence, if the standard error is small, then all of the sample estimates based on the sample size tend to be similar and considered representative of the population parameters. The exact opposite is true if the error term is large, then the statistics fail to represent the population parameters. Of the previously mentioned assumptions, the error term corresponding to different points in time failing to correlate is the most important assumption violation. When the observations from different points in time are correlated, one of the assumptions is violated, usually the latter one. When this violation occurs autocorrelation is present, creating estimators that negates true representation of social phenomenon. Autocorrelation violates an assumption of the regression model that the residuals are independent of one another. Its presence affects the accuracy of the error term, which biases the model’s t-ratios, and the confidence limit. Autocorrelation may be eliminated from a research project by identifying and including an independent variable that explains part of the unexplained variance. Beck and Katz (1996) a contend that lagging the endogenous variable(s) will assist in controlling for serial correlation. A lagged regression model relates a current endogenous variable \(\text{PERPUPILSPENDING} \) to past values of the exogenous and endogenous variables, reducing the risk of autocorrelation.

A second major methodological problem with pooled time series cross-sectional data analysis is heteroskedasticity. In pooled data, some units for a variety of reasons are inherently more variable than others at all times. Such differential variability is usually of modest concern in unpooleed data because it affects only a single case at a time. In
pooled data, however, it is likely to inflict a larger amount of harm to data sets. For instance, basic size differences between units are one such endemic source of heterogeneity. On the reasonable assumption that variation is roughly a fixed proportion of size, analysis of units of substantially different sizes induces heteroskedasticity in any regression. But the problem can take on considerable proportion and become a cause for concern when each cross section consists of \(T \) cases in time. Therefore, the size problem can be reduced by standardizing the data (Beck and Katz, 1995).\(^1\)

FINDINGS & DISCUSSION

Exhibit I: Per Pupil Spending For Education

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>t-test</th>
<th>p.<</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRADUATION</td>
<td>-.0139</td>
<td>-.127</td>
<td>.899</td>
</tr>
<tr>
<td>ST/RATIO</td>
<td>-28.835</td>
<td>-5.758</td>
<td>.001***</td>
</tr>
<tr>
<td>INCOME</td>
<td>.0125</td>
<td>5.064</td>
<td>.001***</td>
</tr>
<tr>
<td>POVERTY</td>
<td>-8.605</td>
<td>-3.046</td>
<td>.002**</td>
</tr>
<tr>
<td>UNEMPLOYMENT</td>
<td>17.780</td>
<td>3.213</td>
<td>.001***</td>
</tr>
<tr>
<td>INDIVIDUALISTIC</td>
<td>80.350</td>
<td>2.749</td>
<td>.006**</td>
</tr>
<tr>
<td>MORALISTIC</td>
<td>27.564</td>
<td>.997</td>
<td>.319</td>
</tr>
<tr>
<td>PRESIDENTIAL P</td>
<td>60.366</td>
<td>2.447</td>
<td>.015**</td>
</tr>
<tr>
<td>GOVERNORS P</td>
<td>-4.219</td>
<td>-.212</td>
<td>.832</td>
</tr>
<tr>
<td>FEDSPEDU</td>
<td>.01689</td>
<td>1.006</td>
<td>.312</td>
</tr>
<tr>
<td>POPULATION</td>
<td>.0246</td>
<td>.943</td>
<td>.346</td>
</tr>
<tr>
<td>PRESELECT</td>
<td>3.708</td>
<td>.149</td>
<td>.881</td>
</tr>
<tr>
<td>GOVELECT</td>
<td>21.873</td>
<td>.928</td>
<td>.354</td>
</tr>
<tr>
<td>Constant</td>
<td>-1044.902</td>
<td>7.403</td>
<td>.001</td>
</tr>
</tbody>
</table>

\[R = .970 \]
\[R^2 = .940 \]
\[AdjR^2 = .939 \]
\[Df = 13 \]
\[F = 1765.333 \]
\[F(sig) = .001 \]
\[N = 1382 \]

\(^1\) Multicollinearity was checked by using the VIF and tolerance levels displayed by the SPSS program. Multicollinearity was not a problem in the two models presented in the manuscript. All variables displayed VIF statistics of less than 5.6. In addition, autocorrelation and Heteroskedasticity (using White’s test) were not a problems in the data set.
Exhibit I displays an adjusted R^2 value of 939, which shows that almost 94 percent of the variance is being explained in model one. The data suggests that for every unit increase in ST/RATIO, an increase of –28.835 will occur in per pupil spending for education. The significance of the t-test in the regression model (-5.758; p<.001) allows for the rejection of the null hypothesis between the variables student/teacher ratio and per pupil spending for education.

The unemployment variable also displays a statistical significance suggesting that for every unit increase in unemployment, an increase of 17.780 will occur in per pupil spending for education. The significance of the t-test in the regression model (3.213; p<.001) allows for the rejection of the null hypothesis between the variables unemployment and per pupil spending for education.

In reference to Elazar’s political culture variables, the individualistic variable accounts for a statistically significant coefficient in the model. Individualistic culture displays a p<.05 suggesting that for every unit increase in individualistic culture an increase of 80.350 will occur in per pupil spending for education. The significance of the t-test in the regression model (2.749; p<.05) allows for the rejection of the null hypothesis between the variables individualistic culture and per pupil spending for education.

The constant represents the results of traditionalistic states in the model. The coefficient for traditionalistic states implies that for every unit increase in traditionalism a decrease of -1044.902 will occur in per pupil spending for education. The t-test of 7.403
allows for the rejection of the null hypothesis between traditionalistic states and per pupil spending for education.

Another statistically significant variable is president’s party. President’s party states that for every unit increase in presidential party affiliation an increase of 60.366 will occur in per pupil spending for education. The significance of the t-test in the regression model (2.447; p<.05) allows for the rejection of the null hypothesis between the variables presidential party and per pupil spending for education.

Two measures of state wealth also provide explanations within the model. They are per capita income and the poverty level. Per capita income implies that for every unit increase in the amount of income an increase of .0125 will occur in per pupil spending for education. The t-test score (5.064; p<.001) allows for the rejection of the null hypothesis between per capita incomes and per pupil spending for education. Secondly, the poverty variable suggests that for every unit increase in poverty a decrease of –8.605 will occur in spending per pupil. The t-test score (-3.046; p<.05) allows for the rejection of the null hypothesis between poverty and per pupil spending for education.

In addition to per pupil spending for education, the author’s employed a second dependent variable to further support the notion of Daniel Elazar’s political culture variable-capital spending for education. Exhibit II displays the results of political culture and capital spending for education.
Exhibit II: Capital Spending For Education

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>t-test</th>
<th>p.<</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRADUATION</td>
<td>.0345</td>
<td>4.698</td>
<td>.001***</td>
</tr>
<tr>
<td>ST/RATIO</td>
<td>-8.631</td>
<td>-2.720</td>
<td>.007**</td>
</tr>
<tr>
<td>INCOME</td>
<td>.01253</td>
<td>8.638</td>
<td>.001***</td>
</tr>
<tr>
<td>POVERTY</td>
<td>-3.737</td>
<td>-2.036</td>
<td>.042**</td>
</tr>
<tr>
<td>UNEMPLOYMENT</td>
<td>10.019</td>
<td>2.773</td>
<td>.006**</td>
</tr>
<tr>
<td>INDIVIDUALISTIC</td>
<td>7.664</td>
<td>.401</td>
<td>.688</td>
</tr>
<tr>
<td>MORALISTIC</td>
<td>-24.530</td>
<td>-1.329</td>
<td>.184</td>
</tr>
<tr>
<td>PRESIDENTIAL P</td>
<td>-6.004</td>
<td>-3.64</td>
<td>.716</td>
</tr>
<tr>
<td>GOVERNORS P</td>
<td>-24.565</td>
<td>-1.838</td>
<td>.066</td>
</tr>
<tr>
<td>FEDSPEDU</td>
<td>-.01916</td>
<td>-1.797</td>
<td>.072</td>
</tr>
<tr>
<td>POPULATION</td>
<td>.02441</td>
<td>11.917</td>
<td>.001***</td>
</tr>
<tr>
<td>PRESELECT</td>
<td>-.0543</td>
<td>-.034</td>
<td>.762</td>
</tr>
<tr>
<td>GOVELECT</td>
<td>-13.284</td>
<td>-.842</td>
<td>.400</td>
</tr>
<tr>
<td>Constant</td>
<td>-260.637</td>
<td>-3.220</td>
<td>.001</td>
</tr>
</tbody>
</table>

R .846
R2 .715
AdjR2 .713
Df 13
F 283.524
F(sig) .001
N =

Note: *** significance at .001; **significance at .05

Exhibit II records an adjusted R² value of .713, which shows that 71 percent of the variance is being explained in model one. The data suggests that for every unit increase in ST/RATIO, a decrease of -8.631 will occur in per pupil spending for education. The significance of the t-test in the regression model (-.720; p<.05) allows for the rejection of the null hypothesis between the variables student/teacher ratio and per pupil spending for education.

The data also suggests that for every unit increase in unemployment, an increase of .10.019 will occur in per pupil spending for education. The significance of the t-test in
the regression model (2.773; p<.05) allows for the rejection of the null hypothesis between the variables unemployment and per pupil spending for education.

The graduation ratio variable states that for every unit increase in graduation an increase of .0345 will occur in the per pupil spending for education. The significance of the t-test in the regression model (4.698; p<.001) allows for the rejection of the null hypothesis between the variables graduation rate and per pupil spending for education.

In addition the two measures of state wealth (per capita income and the poverty level) also provide explanations within the model for capital spending for education. Per capita income implies that for every unit increase in the amount of income an increase of .0125 will occur in per pupil spending for education. The t-test score (8.638; p<.001) allows for the rejection of the null hypothesis between per capita incomes and capital spending for education. Secondly, the poverty variable suggests that for every unit increase in poverty a decrease of -3.737 will occur in capital spending for education. The t-test score (-2.036; p<.05) allows for the rejection of the null hypothesis between poverty and capital spending for education.

Finally, the data suggests that for every unit increase in population, an increase of .02441 will occur in per pupil spending for education. The significance of the t-test in the regression model (11.917; p<.001) allows for the rejection of the null hypothesis between the variables population and per pupil spending for education.

With the constant again representing the results of traditionalistic states in the model, the coefficient for traditionalistic states implies that for every unit increase in traditionalism a decrease of -260.637 will occur in per pupil spending for education. The
t-test of –3.220 allows for the rejection of the null hypothesis between traditionalistic states capital spending for education. So what have we learned from the study?

POLICY IMPLICATIONS AND LIMITATIONS

Ultimately, the purpose of this research was to revisit Daniel Elazar’s typology regarding how the political culture of a state may be one explanation as to why some states spend more on education than others. The findings of this project support Elazar’s typology by suggesting that traditionalistic states, over a thirty-year period have spent less per pupil and on capital projects when compared to moralistic and individualistic states. In addition, several other variables displayed possible explanations for these funding discrepancies as well. First per capita income suggests that a states wealth is one possible explanation for funding education. The wealthier the state the more they spend on education. Furthermore, states with higher poverty levels spend less on education compared to states with moderate to low poverty levels. States with high unemployment levels tend to spend more on education than, states with low unemployment levels was an unanticipated finding in the study, but not surprising. In reference to two education variables: graduation rate and student/teacher ratios, the model displayed mixed results. When regressed against the dependent variable per pupil spending for education the graduation rate was not significant but displayed a significance of .001 in Exhibit II (capital spending on education). This finding suggests that states with higher graduation rates tend to spend more on capital projects for education. The student/teacher ratio variables stipulates that states with higher numbers of students per teacher tend to spend less per pupil and less on capital projects for education. The party of the president in this study also provides one explanation for per pupil spending on education. The data tends
to suggest that Democratic presidents tend to spend more on education when compared to Republican presidents. However, this hypothesis is not true in terms of capital spending for education. Finally, in the capital spending model population showed a statistical significant value that suggests states with higher populations spend more on capital projects for education than states with lower population levels.

The researchers of this project support the notion first outlined by Daniel Elazar that traditionalistic states value education less than moralistic and individualistic states. This support rests on the data found in the regression models of this project. However, the authors do recognize some limitations of this study. Elazar’s typology fails to account for subcultures within the overriding cultures measured in this study. Ira Sharkansky attempts to measure these subcultures with a different political culture scale than Elazar. One future study should employ Sharkansky’s model with similar variables found with in this model to find possible differences. Such a study would suggest that subcultures maybe the driving force behind funding discrepancies in education instead of overriding generic cultures. Additionally, applying possible religious variables, such as the number of Baptists or Catholics in a state, may also provide some suggestions as to why traditionalistic states spend less on education than moralistic states.

The practical application of this research is for policymakers and political functionaries. This model suggests that traditionalistic states have lagged behind in spending for education in the past thirty years. For policymakers and political functionaries in traditionalistic states to eradicate these funding discrepancies among their states, alternative sources of funding should be consulted instead of relying on political figures to allocate more resources for education in budgetary committees. For instance,
much of the current research on gaming within the United States is measuring the impact of lotteries and casinos on funding education. Whatever policymakers and political functionaries decide to do, good luck because thirty-years of data suggests that increasing funding for education is highly unlikely in traditionalistic states.

REFERENCES

