
Compression of Large 3D Engineering Models using
Automatic Discovery of Repeating Geometric Features

Dinesh Shikhare, Sushil Bhakar and S. P. Mudur

National Centre for Software Technology
Gulmohar Cross Rd. 9, Juhu, Mumbai 400049, India
Email: fdinesh|sushil|mudurg@ncst.ernet.in

Abstract

In this paper, we present a new geometry compres-
sion technique particularly suitable for 3D mesh
models of engineering class – architectural models,
machine plants, factories, etc. We observe that such
models have a number of repeating features at var-
ious levels of granularity. In most of the widely
available models in this class, the geometric de-
scription of such features are also repeated.

A major distinctive aspect of our compression
technique is that repeating geometric features in the
geometric model are automatically discovered and
then compactly encoded. The proposed method dis-
covers repetition first at the connected component
level and then at the subcomponent level across
components and also at the aggregate component
level. The results from a straight forward imple-
mentation tried on large mesh models downloaded
from the net are extremely encouraging.

1 Introduction

Large 3D models like architectural designs, heritage
monuments, chemical plants and mechanical CAD
designs are increasingly being deployed in various
applications involving interactive visualization and
Internet-based access. To enable compact storage
and fast transmission of such models, compression
of geometric description of these models has been
an area of considerable interest [6, 9, 17, 19, 20].
However, the earlier efforts do not specifically ad-
dress engineering models.

We introduce a new geometry compression strat-
egy that exploits some common characteristics of
3D mesh models in engineering class. These mod-
els consist of many small to medium sized con-
nected components and have geometric features that
repeat in various positions, scales and orientations.

Although modeling tools (like 3DStudio MAX [8])
and file formats (like VRML) have facilities for spec-
ification and representation of repeating features, in
practice almost all the models we see have these
features repeatedly described.

Our research pioneers a new strategy for com-
pression of such models through the following new
contributions:
� a new algorithm for automatic discovery of re-
peating feature patterns in 3D polygon mesh mod-
els,
� compression of geometry of 3D polygon mesh
models by removing the redundancy in the repre-
sentation of repeating geometric feature patterns,
� a new scheme that can incorporate the best re-
sults achieved in the area of connectivity compres-
sion of polygon meshes, thereby always achieving
compression ratios at least as good as those reported
in the literature.

In fact for engineering models, our technique
gives large benefits which cannot be realised by us-
ing the connectivity compression algorithms alone.
We demonstrate the efficacy of this new strategy
through examples of large engineering models – in-
cluding some that are freely available on the net –
with excellent compression ratios. Figure 1 illus-
trates some examples. To the best of our knowl-
edge, ours is the first significant attempt to address
compression of engineering models.

2 Previous Work

Polygon mesh models: Polygon mesh models are
typically defined in terms of (a) geometry – the co-
ordinate values of vertices of the meshes making up
the model, (b) connectivity – the relationship among
the vertices which defines the polygonal faces of the
mesh (also called as topology of the mesh), and (c)
attributes - such as color, normal and texture co-

VMV 2001 Stuttgart, Germany, November 21–23, 2001

Capitol bldg Colosseum Diwan-i-Khaas Helicopter Taj Mahal

Figure 1: Architectural and engineering models with some examples of most frequently repeating features.

ordinates at the vertices. Other information such
as texture images and material properties are also
commonly present as a part of the model, usually
associated with meshes or groups of meshes. Vari-
ous compression algorithms have attempted to com-
press these different components of 3D models.

2.1 Geometry Compression Strategies

Most of the geometry compression strategies have
two distinct components: (a) compression of topol-
ogy or the connectivity information and (b) com-
pression of geometric data.
Connectivity Compression: Typically, the number
of triangles in a mesh is roughly twice the num-
ber of vertices and each vertex is referenced in 5
to 7 triangles, which indicates the scope for reduc-
ing redundancies in the description of connectiv-
ity among the vertices. Schemes that minimize re-
peated references to vertices result in compression.
Almost all of the connectivity compression tech-
niques [6, 9, 17, 19, 20] encode triangle/polygon
connectivity in a lossless manner. Recent tech-
niques [20, 6] construct spiraling triangle spanning
trees in which vertices are labeled in the order in
which they are first encountered in the triangle tree.
A small set of operators is used to encode the traver-
sal over the triangles. High compression ratios have
been achieved for connectivity encoding, typically
a few bits per vertex [17].
Geometric Data Compression: Deering [3] used
quantization of coordinate values from 32 bits to 16
bits, a 9-bit index into a global list of values for ver-
tex normals and a 15-bit representation of color val-
ues.
Use of Predictors: Quantization of coordinates and
color values leads to an indiscriminate truncation
of the accuracy regardless of the features in the
geometric models. Predictive encoders perform
much better by taking advantage of the coherence
in the data and known connectivity structure to pre-
dict the value of the next element in the sequence

[19, 20, 15].
Signal Processing Techniques: Signal processing
based techniques which have been in use for sur-
face fairing [18] and multiresolution analysis [7]
are based on the construction of a set of basis func-
tions for decomposition of a triangle mesh into sig-
nals. The low frequency components in the signals
correspond to smooth features and high frequency
components correspond to discontinuities such as
creases, folds and corners. Retaining just a few
frequency components suffices to capture the over-
all perceptual shape of the model. The spectral
compression effort of Karni and Gotsman [10] and
wavelet based technique of Khodakovsky et al [11]
are examples of this approach.
Large Engineering 3D Models: The graph traver-
sal techniques are best suited when very long traver-
sals are possible. Longer the traversal sequence,
smaller is the average cost of representation. How-
ever, engineering models have small components
leading to short traversals, hence somewhat higher
average costs.

Note that both predictive encoding and the signal
processing approach work best for smooth surfaces
with dense meshes of small triangles [11]. Large 3D
models of the engineering class usually have a large
number of meshes, with small numbers of large tri-
angles, often with arbitrary connectivity. The ar-
chitectural and mechanical CAD models typically
have many non-smooth meshes making these meth-
ods less suitable.

3 Discovery of Repeating Features for
Compression

3.1 Some Preliminary Definitions

A polygonal mesh model O consists of a set S
of polygon meshes and associated non-geometric
properties. A polygon mesh s 2 S consists of a
set V of vertices, a set E of edges and a set P of
polygons. Each vertex corresponds to a point posi-

234

(a) (b) (c)

Figure 2: Features repeat at different granularities: (a) component: part of an heritage model has 36 in-
stances of a feature having 68 vertices and 132 triangles, (b) sub-component: components of a mechanical
CAD model, and (c) aggregate: each structure adds up to 18 meshes, 1112 triangles and 560 vertices.

tion from the set X = fxi 2 R
3g. An edge e is

represented as a pair (v1; v2) of references into the
list of vertices. A polygon p is represented as a se-
quence (v1; v2; :::; vk) of references into the list of
vertices. A triangle mesh is a special case having
all triangular polygons.

In a mesh model O, we call two polygons
as neighbouring polygons if they share an edge.
There exists a path between polygons pi and pj
if there is a sequence of neighbouring polygons
pi; p1; p2; :::; pj . A subset Oc of the mesh model
O is called a connected component if there exists
a path between any two polygons in Oc. Note
that a given mesh model may have multiple con-
nected components. A mesh can be trivially decom-
posed into its connected components using a simple
breadth-first or depth-first traversal based labelling
algorithm of complexity �(n).

If U(O) and C(O) denote the number of bits for
the uncompressed and the compressed versions of
the model O respectively, then the compression ra-
tio is defined as CR = U(O)�C(O)

U(O)
.

3.2 Our Approach

The basic approach in our compression scheme is
to look for redundancy in the form of repeating ge-
ometric features in a given model. This redundancy
is then eliminated by suitably encoding the compo-
nent shapes and their repeating instances. Our al-
gorithm discovers repeating shape features at three
different levels of granularity:
I Connected components in polygon meshes: For
example, in a machine plant model, nuts, bolts, fas-
teners, etc. repeat many times; in architectural mod-
els it is common to see structures having many iden-
tical parts (see example in Figure 2(a)).
I Sub-component level structures: Often these

models have features repeating within or across
connected components. For example, in a mechan-
ical CAD model, a component representing a gear
has many teeth. Each tooth corresponds to a feature
of this kind. (See example in Figure 2(b)).
I Aggregates of repeating features: Groups of dis-
joint features are also found to repeat in many 3D
models. Our algorithm discovers such macro-level
aggregate features which may be composed from
features of the above two types. An example of such
macro-level features is illustrated in Figure 2(c).

Our algorithm automatically discovers compo-
nent sized and sub-component level features and
their aggregates that repeat with a rigid body trans-
formations within the model O. We also derive
the transformation for each repeating instance of a
feature to enable compact encoding in the form of
“master geometry – instance transform” hierarchy
and for later reconstruction. The master geome-
try itself can be compressed using the most suitable
geometry compression algorithm developed earlier
and thus our work is complementary to the earlier
work in this field.

3.3 Repeating Component-level Features

In a given 3D model, one does not know which
repeating feature patterns to expect. Hence, the
traditional approach of matching 3D objects [23,
2, 4, 14, 13] by maintaining a dictionary of fea-
tures/objects and then retrieving those features in
the given model is not applicable for our work. Our
goal is to automatically discover repeating feature
patterns in a polygon mesh models, without using a
knowledge base of known features.

In most engineering models there are a large
number of small to medium sized connected
components, each having upto a few hundred

235

polygons on an average. For the purpose of
compression, it is best to detect redundancies at as
large a granularity as possible. A good heuristic for
engineering models is to first carry out discovery of
repeated feature patterns at the level of connected
components. For achieving this goal, we carry out
the following steps:
(1) reorganize the total set of polygons in the source
model into a set of connected components.
(2) carry out discovery of repeating feature patterns
at the connected component level (described in
3.3.1), and build the “master geometry – instance
transform” hierarchy.

3.3.1 Detecting Repeating Components

Partial matching of polygonal shapes has been an
area of interest in the recent years [23, 2, 4, 14, 13].
Many sophisticated algorithms have been devel-
oped for robust matching and alignment of similar
shapes. In our implementation we have used a sim-
ple and efficient technique based on principal com-
ponent analysis (PCA) with suitable extensions to
overcome its limitations. While this is a very sim-
ple technique, it has given us very good results as
we will see later in this paper.
Normalized Orientation: We compute an or-
thonormal basis in 3-space that describes the ec-
centricities of the connected component using the
Hotelling transformation [5]. This basis is used as a
pure rotation matrix to bring a component to a nor-
malized (or canonical) orientation.

We take the list of vertices defining the mesh as
a cluster of points X = fx1; :::; xng to obtain the
mean m =

1

n

P
n

i=1
xi and the covariance matrix,

C = 1

n

P
n

i=1
xix

T

i �mmT . We then find eigen-
vectors and corresponding eigenvalues of C. The
eigenvectors are sorted in increasing order of eigen-
values. The three normalized eigenvectors are used
to construct a pure rotation matrix R. If T

�m rep-
resents a translation by vector �m, the transforma-
tion T

�mÆR places the mesh in a normalized orien-
tation at the origin. On obtaining an oriented basis
for a component, the extremal vertices along each of
the vectors in the basis give the size of the oriented
bounding box (OBB).
Matching Components: Let us denote the compo-
nents as Oc1, Oc2, their means as m1, m2 and the
orthogonal bases representing the respective eccen-
tricities asR1, R2. If the dimensions of the OBBs of
the two meshes do not match then no further match-

ing is attempted. Otherwise we carry out a fuzzy
comparison of positions of vertices across the com-
ponents. If the geometry so aligned matches in at
least 99% of the vertices, then we declare Oc2 to
be an instance of Oc1 and also record the transfor-
mation composited as T

�m1
Æ Rot ÆTm2

required to
reconstruct Oc2 from Oc1, where Rot= R2 ÆR

�1

1
.

Matching vertices implies matching their positions,
texture coordinates and vertex normals, if they are
defined for the given model.

Feature j

Geom + Conn + Attrib

Feature k

Geom + Conn + Attrib

T4

T3

T2

T1

T4

T5

T3 T3

T5

T3

T4

T6

Tp

Tm

Tn

Feature i

Geom + Conn + Attrib

Structure 1

Structure 2

Structure 3

DEF DEF DEF

USE

USE

USE

USE

USE

USE

USE

USE

USE

USE

USE

USE

USE

USE

USE

Feature Instance

Feature Instance

Feature Instance

Feature Instance

Feature Instance

Feature Instance

Feature Instance

Feature Instance

Feature Instance

Feature Instance

Feature Instance

Feature Instance

Feature Instance

Feature Instance

Feature Instance

First
Instance
Features

Duplicated
Feature

Figure 3: Equivalence classes: tagging of fea-
ture instances and identification of iso-transform in-
stances as repeating structures. Also note the iden-
tification of duplicated components.

On detecting similarity among the components in
the model, we partition the model into equivalence
classes. All near-identical components belong to a
single class. Figure 3 illustrates the construction
of equivalence classes of components having sim-
ilar geometries as USE-instances of the first occur-
rence of the geometry which is tagged as the DEF-
instance. A USE-instance is represented as a ref-
erence to the DEF-instance and the transformation
required to reconstruct the original component.
Overcoming limitations of PCA: While attempt-
ing to match two components using PCA, ambigu-
ity can arise when the components have a com-
pletely symmetrical mass distribution because the
eigenvectors will be similar. Examples of such a
case are: a cylinder, which has a symmetrical mass
distribution about an axis and a sphere, which has
symmetrical mass distribution about the centre of
mass. This limitation of PCA is overcome by a min-
imization procedure of Novotni and Klein [13] to

236

obtain the best rotation transformation for match-
ing of components. We consider all possible rota-
tions around the axis or centre point of symmetry
and choose the rotation corresponding to the max-
imum match. For a single axis of symmetry, R is
given by

R = max
R(�)

(M(R(�); Oc1; Oc2)j� 2 [0; 2�])

where � denotes the angle of rotation around
the axis of symmetry, R(�) the rotation and
M(R(�); Oc1; Oc2) the measure of match between
the aligned components Oc1 and Oc2. In case of
spherical symmetry, the best alignment is obtained
as

R = max
R(�;�;)

(M(R(�;�;); Oc1; Oc2))

where the angles (�; �;) denote Euler angles for
parameterization of three-dimensional rotations and
� 2 [0; 2�]; � 2 [0; �]; 2 [0; 2�] .

The rotation space is discretized uniformly. For
objects where the mass is symmetrical around one
of the principal axes (say, a cylinder), this is an effi-
cient approach. However in cases of spherical sym-
metry this approach is costly due to the large num-
ber of configurations.

3.3.2 Analysis and Acceleration

A naive implementation of the above scheme, in-
volving exhaustive pair wise matching among com-
ponents, for discovering identical connected com-
ponent level features in the model has a complexity
ofO(n2), where n is the number of connected com-
ponents in the given model. In most engineering
models, n tends to be large. We have accelerated
the algorithm by using geometric hashing [12, 22]
of components. To achieve hashing of components
such that candidates for detailed geometric match-
ing are put into the same bucket, we need some
invariant descriptors. In our implementation, we
carry out hashing using the number of vertices and
triangles as the key, and before performing detailed
matching we also check if the dimensions of the
OBBs match. While the worst case complexity even
after hashing isO(n2), for most practical situations
the benefit is substantial.

Matching two aligned components A and B,
each having m vertices, is a procedure of O(m)
complexity. Finding the correspondence between
the first pair of vertices across the components

needs O(m) effort. The correspondence between
the rest of the vertices is established by carrying out
identical spanning tree explorations in the connec-
tivities of the mesh components while verifying ge-
ometric match – another O(m) step.

3.4 Sub-component Feature Patterns

The problem of discovering repeating patterns
within and across polygon meshes representing
connected components is difficult. The difficulty
lies in automatic partitioning of the meshes to cut
out some parts that represent repeating patterns.
Our technique uses the strategy of “growing” pat-
terns bottom up from vertices. Bioinformatics com-
munity has been interested in automatic discovery
of repeating structural motifs in molecular struc-
tures [21, 16]. However, they limit the discovery
to a fixed class of structures.

To enable effective classification of vertices in a
given model, we associate a footprint1 with each
vertex in the model. To form a footprint we must se-
lect invariant properties I(f) over the features f 2
F in the model such that under a linear transforma-
tion X 0 = TX of coordinates, I(f) = I(T (f)).
In our implementation we have sought invariance to
rigid-body transformation.

Examples of invariant properties that can become
footprints for a vertex v in a polygon mesh are:
(a) Density: jNvj, the cardinality of Nv , the set of
vertices connected to v. The elements of Nv are
also called the neighbourhood of v, (b) Size: Lv ,
average of the lengths of the edges connected to v;
and (c) Curvature2: Dv , the average of the dihedral
angles of the faces meeting at the edges connected
to vertex v. In our implementation we use a vector
footprint consisting of jNv j, Lv , Dv and a second
order descriptor,D2

v , given by 1
jNvj

P
Dj , j 2 Nv .

A simple inner product distance measure has been
constructed for determining the similarity or dispar-
ity between two given features in the space defined
by the footprints. For engineering models this com-
posite footprint has performed very well.

We have chosen to associate the footprints with
vertices and not with higher order elements like
edges or polygons because in polygon meshes the

1We have borrowed the term Footprint from the work of Bare-
quet and Sharir on Partial Surface and Volume Matching in Three
Dimensions [2]. However our definition and use of footprints are
significantly different.

2This is only an approximate descriptor of the curvature.

237

number of polygons and the number of edges are in
multiples of the number of vertices.

We start discovering sub-component features
across the DEF-instance components obtained in the
earlier subsection (3.3). Below, we only give a
broad outline of our algorithm:
1. Initialization: Compute the footprints for each
vertex v in the model. Create equivalence classes of
vertices having near-identical footprints. The ver-
tices having identical footprints represent matching
local features and are likely to form good starting
points for the “growth” of identical patterns around
them.
2. Growth Phase: This phase attempts a simulta-
neous growth of the patterns around the vertices in
the equivalence classes (seeds). The connectivity in
the polygon mesh is considered as a graph with ver-
tices as the nodes of the graph and the sides of the
polygons connecting vertices making up the edges
in the graph. Considering one equivalence class at
a time, a breadth-first growth is carried out simulta-
neously around each seed (see Figure 4), while ge-
ometrically verifying (step 3) if the patterns match
after each step in traversal.

0

1

2

3

4

5

6

7

8

Pattern 2

0

1

2

3

4

5

6

7

Pattern 3

0

1

2

3

4

5

6

7

8

9

Pattern 1

Figure 4: Simultaneous breadth-first growth of re-
peating features: Patterns 2 and 3 partially match
with Pattern 1. Seeds of growth across the pattern
are highlighted. Vertices are numbered in order of
traversal.

3. Verification Step: This step has two purposes,
firstly verify geometric match between the two fea-
tures identified as similar based on their footprints
and connectivities, secondly determine the transfor-
mation. Given two patterns represented as two se-
quences of vertices having one to one correspon-
dence, the patterns tested for a match we select
some three non-collinear vertices from one pattern
and the corresponding set of three vertices from
the other pattern to determine the transformation
to align these two sets of vertices. The two pat-
terns then aligned using this transformation to ver-
ify whether the patterns match geometrically within

a tolerance.
This algorithm returns a set of patterns (sub-

graphs) which correspond to features that repeat in
the given model. Since the process of discovering
the repeating patterns uses mesh connectivity for
traversal, the matching patterns are identical in co-
ordinates of the vertices (in the sense of rigid-body
transformation) as well as the connectivity. This
“growth” algorithm enables us to discover partially
matching feature patterns within and across compo-
nents.

The discovered repeating features are also orga-
nized into a data-structure represented by Figure 3.
Thus the data structure now consists of repeating
features of component and sub-component types.
Compression of Vertex List: On obtaining the pat-
terns, we renumber the vertices and also the in-
dices in the polygon lists such that the sequences of
the vertices belonging to the repeating patterns are
grouped by the patterns and have a contiguous num-
bering within the groups. The vertex list for each
pattern forms a node that represents either the first
occurrence of the pattern or its repeated occurrence.
If the pattern node is the first occurrence then it con-
sists of an integer k indicating the number of ver-
tices in the pattern followed by 3k coordinates. If
it is a repeated occurrence, then it consists of an in-
teger reference to the first occurrence, a rigid-body
transformation to reconstruct the original position
and orientation and a bit-pattern indicating the el-
ements of this occurrence that match with the first
occurrence. The rotation component of the transfor-
mation is represented using a quaternion (4 floats).
Translation vector requires 3 floats.

Thus a repeated instance of a pattern having k

vertices requires three integers and seven floating
point numbers as opposed to 3k floating point num-
bers needed in the original vertex list. We note that
this scheme of encoding begins to yield compres-
sion for a repeating pattern of four or more vertices.

3.5 Aggregate Features

After carrying out feature instance detection, many
USE-instances of different meshes are found to
have identical rigid body transformations. This
iso-transformation set enables us to infer repeat-
ing macro-level structures. Figure 3 shows ag-
gregation of iso-transformation instances (drawn in
shaded envelopes) to identify macro structures in
the model. Note that these macro structures may

238

not always correspond to complete user identifiable
component aggregates, there may be gaps. These
gaps do not represent any shortcoming of this ap-
proach, since the goal is not to precisely reconstruct
the complete structures.

As a side benefit of considerable value, our
scheme also lets us automatically identify the com-
mon problem of erroneous replication of compo-
nents in large models. In Figure 3, we see that there
are two instances of Feature-k having the same rigid
body transformation associated with them. This is
an undesirable case of coinciding geometries in the
model. It is almost impossible to identify such cases
visually to heal the model to remove such artifacts.
It must also be noted that a USE-instance having an
identity transformation associated with it is also a
duplicate component, and must be removed.

4 Results and Discussion

We carried out our tests with highly encouraging re-
sults on a large number of 3D models that are avail-
able for download on the net. It is important to note
that this performance has been achieved without us-
ing any special techniques for connectivity encod-
ing of the DEF-meshes in the model.
Discovery of repeating component shapes: The
following table shows the results of our technique
for discovery repeating component shapes in five
models.

Model # comp.s # DEF # USE

in original comp.s comp.s

Capitol 2662 93 2569
Colosseum 1129 20 1109
D’-Khaas 3726 848 2878
Helicopter 976 480 496
Taj Mahal 375 45 330

The savings achieved in storing the data in terms
of actual amount of geometry and connectivity are
listed in the table below.

Model # verts # tris # verts # tris
(orig) (orig) (DEF) (DEF)

Capitol 52606 87258 10347 19944
Coloss 69868 135159 18912 38103
DIK 295695 162590 44363 46165
Helicopt 105079 187929 76231 136372
Taj M 65323 126453 28427 55238

Discovery of repeating sub-component features:
The sub-component level discovery of patterns
leads to additional savings in the storage require-
ments for the list of vertices. The following table

lists savings obtained by compressing the vertex list
of the DEF-components.

Model # verts # verts in %
in DEF repeating savings
comps patts

Capitol 10347 2145 20.73
Colosseum 18912 4203 22.22
D’-Khaas 44363 8945 20.18
Helicopter 76231 11334 14.86
Taj Mahal 28427 6532 22.97

Reduction in Storage Requirements: The follow-
ing table shows reduction in file sizes (in bytes)
from the original raw data to the compressed for-
mat.

Model orig orig cmpr cmpr CR
(gzip) (gzip) (%)

Capit 1.8M 875K 433K 211K 88
Colos 2.5M 2.1M 570K 402K 84
D’-Kh 10.1M 2.9M 1.9M 671K 93
Helic 4.9M 1.9M 1.7M 899K 82
Taj 2.3M 1.1M 757K 467K 80

The compression achieved here is by avoiding
detailed multiple descriptions of repeating features.
Only DEF-instances of features are written out in
detail. For the DEF-instance geometry encoding, we
have simply used gzip. This gives us an idea of the
minimum compression performance we can expect.
Clearly we can achieve even better performance by
using better connectivity compression schemes for
the DEF-components.

5 Conclusion

We have presented a new 3D compression scheme
particularly suited to very large engineering models
with automatic discovery of repeating features at its
core and test results from a our implementation of
this scheme on a number of large models including
those that are available on the net have shown ex-
cellent compression performance.

The fundamental contribution of automatically
discovering similar shape features in a large 3D
model has ample scope to be applied to the other
3D geometry handling processes of healing, simpli-
fication and progressive transmission.

Acknowledgements: For the test results reported
in this paper, the models of Capitol building,
Colosseum and Taj Mahal were downloaded from
www.3dcafe.com. Diwan-i-Khaas model [1] is

239

from Visions Multimedia Visualization Studio and
the Helicopter model was downloaded from the
Avalon 3D archive (avalon.viewpoint.com).

References

[1] Fatehpur Sikri: An Epic in Red Sandstone.
http://www.visions-net.com, Visions Multi-
media Visualization Studio, Mumbai, India.,
1999. (First public demonstration as a show-
case application during the launch of Intel PIII
processor in San Jose, USA.).

[2] Gill Barequet and Micha Sharir. Partial Sur-
face and Volume Matching in Three Dimen-
sions. IEEE PAMI, 19(9):929–948, 1997.

[3] M. Deering. Geometry Compression. In SIG-
GRAPH 95, pages 13–22, 1995.

[4] Chitra Dorai and Anil K. Jain. COSMOS
- a representation scheme for 3d free-form
objects. Transactions on Pattern Analysis
and Machine Intelligence, 19(10):1115–1130,
1997.

[5] R. Gonzalez and R. Woods. Digital Im-
age Processing. Addison-Wesley Publishing
Company, 1992.

[6] S. Gumhold and W. Strasser. Real-time Com-
pression of Triangle Mesh Connectivity. In
SIGGRAPH 98, pages 133–140, 1998.

[7] I. Guskov, W. Sweldens, and P. Schroeder.
Multiresolution Signal Processing for Meshes.
In SIGGRAPH 99, pages 325–334, 1999.

[8] Discreet (Autodesk Inc.). 3dstudio MAX R4.
http://www.discreet.com, 2000.

[9] M. Isenbueg and J. Snoeyink. Face Fixer:
Compressing Polygon Meshes with Proper-
ties. In SIGGRAPH 2000, pages 263–270,
2000.

[10] Z. Karni and C. Gotsman. Spectral Compres-
sion of Mesh Geometry. In SIGGRAPH 2000,
pages 279–286, 2000.

[11] A. Khodakovsky, P. Schroeder, and
W. Sweldens. Progressive Geometry
Compression. In SIGGRAPH 2000, pages
271–278, 2000.

[12] B. Lamiroy and P. Gros. Rapid object index-
ing and recognition using enhanced geometric
hashing. In Proceedings of the 4th European
Conference on Computer Vision, Cambridge,
England, volume 1, pages 59–70, April 1996.

[13] Marcin Novotni and Reinhard Klein. A Ge-
ometric Approach to 3D Object Compari-

son. In Proceedings of International Con-
ference on Shape Modelling and Applications
(SMI2001), May 2001.

[14] Robert Osada, Thomas Funkhouser, Bernard
Chazelle, and David Dobkin. Matching 3D
Models with Shape Distributions. In Proceed-
ings of International Conference on Shape
Modelling and Applications (SMI2001), May
2001.

[15] R. Pajarola and J. Rossignac. Compressed
Progressive Meshes. Technical Report GIT-
GVU-99-05, GVU Center, Georgia Tech., At-
lanta, USA, 1999.

[16] Xavier Pennec and Nicholas Ayache. A geo-
metric algorithm to find small but highly simi-
lar 3D substructures in proteins. Bioinformat-
ics, 14(6):516–522, 1998.

[17] J. Rossignac. Edgebreaker: Connectivity
Compression for Triangle Meshes. IEEE
Transactions on Visualization and Computer
Graphics, 5(1):47–61, January-March 1998.

[18] G. Taubin. A Signal Processing Approach to
Fair Surface Design. In SIGGRAPH 95, pages
351–358, 1995.

[19] G. Taubin and J. Rossignac. Geometry
Compression through Topological Surgery.
ACM Transactions on Graphics, 17(2):84–
115, April 1998.

[20] C. Touma and C. Gotsman. Triangle Mesh
Compression. In Proceeding of Graphics In-
terface 98, June 1998.

[21] Xiong Wang, Jason Wang, Dennis Shasha,
Bruce Shapiro, Sitaram Dikshitulu, Isidore,
and Kaizhong Zhang. Automated discovery of
active motifs in three dimensional molecules.
In Proceedings of the 3rd International Con-
ference on Knowledge Discovery and Data
Mining (KDD97), California, pages 89–95,
August 1997.

[22] Haim J. Wolfson and Isidore Rigoutsos. Geo-
metric Hashing: An Introduction. IEEE Com-
putational Science & Engineering, pages 10–
21, October-December 1997.

[23] Andrew Zisserman, David Forsyth, Joe
Mundy, Charlie Rothwell, Jane Liu, and Nic
Pillow. 3D Object Recognition using In-
variants. Technical Report OUEL 2027/94,
Robotics Research Group, University of Ox-
ford, November 1994.

240

