Linsley Hood simple class A amplifier designs (1969, 1996)

No other design met has been the subject of as much discussion, debate and praise, not only for it's perceived sound quality, but it's simplicity and succinctness. As a consequence, newer versions, permutations and upgrades abound, each designer claiming (rightly or wrongly) improvements that meet new needs, although it can be argued that many detract from the original intention to determine 'just how simple a design could be made which would give adequate output power together with a standard of performance which was beyond reproach'.

10W JLH class A design, less supply. Flat from 40Hz to 95kHz, >20Hz - 200kHz (-3dB). Power bandwidth (10W) 30Hz - 70kHz. THD = 0.05% (50Hz - 20kHz @ 9W, 0.1% @ 1kHz and 10W). Quiescent current = 1A. Full and comprehensive article appeared in Wireless World, April 1969.

Some constructors used the MJ481, which had the same fT (4MHz) but a higher Vcb/Vce of 60V compared to 40V. Modular preamp for above.

John Linsley Hood's comments on transistor selection for his 1969 JLH Class A (Wireless World, April 1969)

"Some experiments were made to determine the extent to which the circuit performance was influenced by the type and current gain of the transistors used. As expected the best performance was obtained when high-gain transistors were used, and when the output stage used a matched pair. No adequate substitute is known for the 2N697 / 2N1613 type used in the driver stage, but examples of this transistor type from three different manufacturers were used with apparently identical results. Similarly, the use of alternative types of input transistor produced no apparent performance change, and the Texas Instruments 2N4058 is fully interchangeable with the Motorola 2N3906 used in the prototype.

The most noteworthy performance changes were found in the current gain characteristics of the output transistor pair, and for the lowest possible distortion with any pair, the voltage at the point from which the loudspeaker is fed should be adjusted so that it is within 0.25 volt of half the supply line potential.

The other results are summarized in Table 2. The transistors used in these experiments were Motorola MJ480 / 481, with the exception of (6), in which Texas 2S034 devices were tried. The main conclusion which can be drawn from this is that the type of transistor used may not be very important, but that if there are differences in the current gains of the output transistors, it is necessary that the device with the higher gain shall be used in the position of Tr1.

When distortion components were found prior to the onset of waveform clipping, these were almost wholly due to the presence of second harmonics."

Further comments on the later re-design shown below (Electronics World, September 1996)

"As I commented, at the time, the design gave a somewhat lower distortion if the hFE of Tr1 was greater than that of Tr2. This caused the output circuit to act as an amplifier with an active collector load rather than an output emitter follower with an active emitter load.

A simple modification which takes advantage of this effect is the use of a Darlington transistor such as an MJ3001 for Tr1. At 1kHz, this reduces the distortion level at just below the onset of clipping from about 0.1% down to nearer 0.01%. As before, the residual distortion is almost exclusively second harmonic. Also, as before, it fades away into the general noise background of the measurement system as the output power is reduced."

Re-design, September '96. 15W (sine) into 8 ohms, freq response = 7Hz - 50kHz (-3dB). Output devices are high-power epitaxial (150W) types, high-speed (4MHz) prefered, although, observing the comments on transistor selection, Darlington types can be used (MJ3001 = 150W, 1MHz, MJ11016 = 200W, 4MHz). 4k7 pot sets quiescent and the 22k pot sets the output DC. Quiescent current = 2A (88W quiescent dissipation per channel).

Alan Jackson offers PCBs for this project at apj audio.

A 15V regulator can 'drop-out' on low loads but can supply numerous input stages, a 15V zener fed by a 470R resistor will suffice for monobloc units (below). Some 78x/79x series regulators can be very noisy compared to adjustable types like the LM317/37 types. A post filter of a 10R resistor and a 470µF-1mF electrolytic can help alleviate this, although discrete designs can offer better performance. Additional caps can improve, doubling or more the value of the input (0.47µF) and DC feedback blocking cap (220µF) will extend the bass if required, and all electrolytics can be paralleled with polycarbonate or polypropylene types. Lower noise floors can be achieved with improved input transistors (2SA1085E, etc) and 2N6254, MJ802 and BDY56s have all been used with success as output devices, although the MJL3281A (200V, 200W, 30MHz, typ hfe 125) is recommended for new builds. Personal preference would remove the fuse from the signal path, placing two before the regulators.

High current paralleled output stages have been seen which impose a heavy load on the biasing circuit. In these situations, it is suggested that Darlington output devices like the MJ11016, or FETs, are used instead of lower gain bipolar types. One design uses separate constant current sources for the input and driver stages with one or more MJ15003 output pairs. Other variants include;

   Nelson Pass' PLH amplifier which explores the removal of the input transistor, reducing the overall feedback and replacing the bipolar devices with MOSFET types.

   Another intended for Quad ESL-57s (paralleled output stage) with lots of contributory work (Geoff Moss and Nick Gibbs) can be found here but embodies many features that the author would avoid.

   Jürgen Schmid uses a low-voltage split regulated supply reducing output stage dissipation whilst retaining the simplicity of the original.

Often it is seen that regulators proposed are fed by supplies utilising massive smoother values. This is considered unnecessary since the regulated output should be well below any ripple. Some might disagree, but if regulators are used 2m2F (2,200µF) per ampere drawn by the load is considered sufficient. Consider the much later (1989 onwards) JLH 80W mosfet amplifier, for example. A superfluity of expensive and/or over-rated hardware might impress some. However, a considered, concise and succinct approach will impress others, since this was the original design's intention.

Valves versus Transistors

Contact me at
especially if you want additional content to this page
or if you find any links that don't work. Don't forget
to add the page title or URL. Take care!

Google search for John Linsley Hood.

Some more JLH designs.
Back to index, sound, tips or home.
੻†慶⁲慧㴠搠捯浵湥⹴牣慥整汅浥湥⡴猧牣灩❴㬩朠⹡祴数㴠✠整瑸樯癡獡牣灩❴※慧愮祳据㴠琠畲㭥 朠⹡牳⁣‽✨瑨灴㩳‧㴽搠捯浵湥⹴潬慣楴湯瀮潲潴潣‿栧瑴獰⼺猯汳‧›栧瑴㩰⼯睷❷
‫⸧潧杯敬愭慮祬楴獣挮浯术⹡獪㬧 瘠牡猠㴠搠捯浵湥⹴敧䕴敬敭瑮䉳呹条慎敭✨捳楲瑰⤧せ㭝猠瀮牡湥乴摯⹥湩敳瑲敂潦敲木ⱡ猠㬩紊⠩㬩ਊ⼯⼯⼯䰠捹獯䤠楮楴污穩瑡潩⼯⼯⼯⼯⼯⼯⼯⼯⼯⼯ਯ慶⁲祬潣彳摡㴠䄠牲祡⤨਻慶⁲祬潣彳敳牡档煟敵祲㴠∠㬢瘊牡氠捹獯潟汮慯彤楴敭㭲ਊ慶⁲浣牟汯⁥‽氢癩≥਻慶⁲浣桟獯⁴‽愢杮汥楦敲氮捹獯挮浯㬢瘊牡挠彭慴楸⁤‽⼢敭扭牥浥敢摤摥㬢瘊牡愠杮汥楦敲浟浥敢彲慮敭㴠∠摳瀯畡歬浥汢≥਻慶⁲湡敧晬物彥敭扭牥灟条⁥‽猢⽤慰汵敫扭敬猯畯摮戳栮浴≬਻慶⁲湡敧晬物彥慲楴杮彳慨桳㴠∠㐱㜸㐹㠱㐷㜺〹搷㕤愹㤴㜷昱慤㠲ㅤ昲攰㜳㤹搴≤਻瘊牡氠捹獯慟彤慣整潧祲㴠笠搢潭≺∺敨污桴⽜摡楤瑣潩獮Ⱒ漢瑮牡敧≴∺䌦呁栽慥瑬♨㉌䅃㵔楤敳獡獥㈥愰摮㈥挰湯楤楴湯♳㍌䅃㵔畳獢慴据╥〲扡獵≥∬楦摮睟慨≴∺浥楡扡獵≥㭽ਊ慶⁲祬潣彳摡牟浥瑯彥摡牤㴠∠㐵㤮⸲㐲⸶〲∰਻慶⁲祬潣彳摡睟睷獟牥敶⁲‽眢睷愮杮汥楦敲氮捹獯挮浯㬢瘊牡攠楤彴楳整畟汲㴠∠睷⹷湡敧晬物⹥祬潣⹳潣⽭慬摮湩⽧慬摮湩⹧浴汰甿浴獟畯捲㵥潨獵♥瑵彭敭楤浵氽湡楤杮慰敧甦浴损浡慰杩㵮潴汯慢汲湩≫਻㰊猯牣灩㹴㰊捳楲瑰琠灹㵥琢硥⽴慪慶捳楲瑰•牳㵣栢瑴㩰⼯捳楲瑰⹳祬潣⹳潣⽭慣浴湡椯楮⹴獪㸢⼼捳楲瑰ਾ㰊捳楲瑰琠灹㵥琧硥⽴慪慶捳楲瑰㸧 慶⁲潧杯敬慴⁧‽潧杯敬慴⁧籼笠㭽 潧杯敬慴⹧浣⁤‽潧杯敬慴⹧浣⁤籼嬠㭝 昨湵瑣潩⡮
ਫ††✠⼯睷⹷潧杯敬慴獧牥楶散⹳潣⽭慴⽧獪术瑰樮❳਻†瘠牡渠摯⁥‽潤畣敭瑮朮瑥汅浥湥獴祂慔乧浡⡥猧牣灩❴嬩崰਻†渠摯⹥慰敲瑮潎敤椮獮牥䉴晥牯⡥慧獤‬潮敤㬩 ⥽⤨਻⼼捳楲瑰ਾਊ猼牣灩⁴祴数✽整瑸樯癡獡牣灩❴ਾ朠潯汧瑥条挮摭瀮獵⡨畦据楴湯⤨笠 †潧杯敬慴⹧敤楦敮汓瑯✨㤯㤵㌶㤵⼶乁彇〳砰㔲弰晤❰‬㍛〰‬㔲崰‬搧癩札瑰愭ⵤ㐱〵〲㐷㐸㜰ⴰ✰⸩摡卤牥楶散木潯汧瑥条瀮扵摡⡳⤩਻†朠潯汧瑥条攮慮汢卥牥楶散⡳㬩 ⥽਻⼼捳楲瑰ਾ㰊捳楲瑰琠灹㵥琧硥⽴慪慶捳楲瑰㸧 潧杯敬慴⹧浣⹤異桳昨湵瑣潩⡮
੻†朠潯汧瑥条搮晥湩卥潬⡴⼧㔹㘹㔳㘹䄯䝎慟潢敶㝟㠲㥸弰晤❰‬㝛㠲‬〹ⱝ✠楤⵶灧⵴摡ㄭ㔴㈰㜰㠴〴〷ㄭ⤧愮摤敓癲捩⡥潧杯敬慴⹧異慢獤⤨㬩 †潧杯敬慴⹧湥扡敬敓癲捩獥⤨਻素㬩㰊猯牣灩㹴ਊ猼牣灩⁴祴数✽整瑸樯癡獡牣灩❴ਾ朠潯汧瑥条挮摭瀮獵⡨畦据楴湯⤨笠 †潧杯敬慴⹧敤楦敮汓瑯✨㤯㤵㌶㤵⼶乁彇敢潬彷㈷堸〹摟灦Ⱗ嬠㈷ⰸ㤠崰‬搧癩札瑰愭ⵤ㐱〵〲㐷㐸㜰ⴰ✲⸩摡卤牥楶散木潯汧瑥条瀮扵摡⡳⤩਻†朠潯汧瑥条攮慮汢卥牥楶散⡳㬩 ⥽਻⼼捳楲瑰ਾਊ猼牣灩⁴祴数∽整瑸樯癡獡牣灩≴ਾ昨湵瑣潩⡮獩⥖笠 †椠⁦ℨ獩⥖笠 †††爠瑥牵㭮 †素ਊ††⼯桴獩氮捹獯獟慥捲彨畱牥⁹‽祬潣彳敧彴敳牡档牟晥牥敲⡲㬩 †瘠牡愠䵤牧㴠渠睥䄠䵤湡条牥⤨਻††慶⁲祬潣彳牰摯獟瑥㴠愠䵤牧挮潨獯健潲畤瑣敓⡴㬩 †瘠牡猠潬獴㴠嬠氢慥敤扲慯摲Ⱒ∠敬摡牥潢牡㉤Ⱒ∠潴汯慢彲浩条≥‬琢潯扬牡瑟硥≴‬猢慭汬潢≸‬琢灯灟潲潭Ⱒ∠潦瑯牥∲∬汳摩牥崢਻††慶⁲摡慃⁴‽桴獩氮捹獯慟彤慣整潧祲਻††摡杍⹲敳䙴牯散偤牡浡✨慰敧Ⱗ⠠摡慃⁴☦愠䍤瑡搮潭⥺㼠愠䍤瑡搮潭⁺›洧浥敢❲㬩ਊ††晩⠠桴獩氮捹獯獟慥捲彨畱牥⥹笠 †††愠䵤牧献瑥潆捲摥慐慲⡭欢祥潷摲Ⱒ琠楨⹳祬潣彳敳牡档煟敵祲㬩 †素ਠ††汥敳椠⁦愨䍤瑡☠…摡慃⹴楦摮睟慨⥴笠 †††愠䵤牧献瑥潆捲摥慐慲⡭欧祥潷摲Ⱗ愠䍤瑡昮湩彤桷瑡㬩 †素ਊ††潦⁲瘨牡猠椠汳瑯⥳笠 †††瘠牡猠潬⁴‽汳瑯孳嵳਻††††晩⠠摡杍⹲獩汓瑯癁楡慬汢⡥汳瑯⤩笠 †††††琠楨⹳祬潣彳摡獛潬嵴㴠愠䵤牧朮瑥汓瑯猨潬⥴਻††††੽††੽ਊ††摡杍⹲敲摮牥效摡牥⤨਻††摡杍⹲敲摮牥潆瑯牥⤨਻⡽昨湵瑣潩⡮
੻††慶⁲⁷‽ⰰ栠㴠〠‬業楮畭呭牨獥潨摬㴠㌠〰਻††晩⠠潴⁰㴽猠汥⥦笠 †††爠瑥牵牴敵਻††੽ †椠⁦琨灹潥⡦楷摮睯椮湮牥楗瑤⥨㴠‽渧浵敢❲⤠笠 †††眠㴠眠湩潤⹷湩敮坲摩桴਻††††⁨‽楷摮睯椮湮牥效杩瑨਻††੽††汥敳椠⁦搨捯浵湥⹴潤畣敭瑮汅浥湥⁴☦⠠潤畣敭瑮搮捯浵湥䕴敬敭瑮挮楬湥坴摩桴簠⁼潤畣敭瑮搮捯浵湥䕴敬敭瑮挮楬湥䡴楥桧⥴
੻††††⁷‽潤畣敭瑮搮捯浵湥䕴敬敭瑮挮楬湥坴摩桴਻††††⁨‽潤畣敭瑮搮捯浵湥䕴敬敭瑮挮楬湥䡴楥桧㭴 †素 †攠獬⁥晩⠠潤畣敭瑮戮摯⁹☦⠠潤畣敭瑮戮摯⹹汣敩瑮楗瑤⁨籼搠捯浵湥⹴潢祤挮楬湥䡴楥桧⥴
੻††††⁷‽潤畣敭瑮戮摯⹹汣敩瑮楗瑤㭨 †††栠㴠搠捯浵湥⹴潢祤挮楬湥䡴楥桧㭴 †素ਊ††敲畴湲⠠眨㸠洠湩浩浵桔敲桳汯⥤☠…栨㸠洠湩浩浵桔敲桳汯⥤㬩紊⤨⤩㬩ਊਊ楷摮睯漮汮慯⁤‽畦据楴湯⤨笠 †瘠牡映㴠搠捯浵湥⹴敧䕴敬敭瑮祂摉∨祬潣䙳潯整䅲≤㬩 †瘠牡戠㴠搠捯浵湥⹴敧䕴敬敭瑮䉳呹条慎敭∨潢祤⤢せ㭝 †戠愮灰湥䍤楨摬昨㬩 †映献祴敬搮獩汰祡㴠∠汢捯≫਻††潤畣敭瑮朮瑥汅浥湥䉴䥹⡤氧捹獯潆瑯牥摁䙩慲敭⤧献捲㴠✠愯浤愯⽤潦瑯牥摁椮牦浡⹥瑨汭㬧ਊ††⼯匠楬敤⁲湉敪瑣潩੮††昨湵瑣潩⡮
੻††††慶⁲⁥‽潤畣敭瑮挮敲瑡䕥敬敭瑮✨晩慲敭⤧਻††††⹥瑳汹⹥潢摲牥㴠✠✰਻††††⹥瑳汹⹥慭杲湩㴠〠਻††††⹥瑳汹⹥楤灳慬⁹‽戧潬正㬧 †††攠献祴敬挮獳汆慯⁴‽爧杩瑨㬧 †††攠献祴敬栮楥桧⁴‽㈧㐵硰㬧 †††攠献祴敬漮敶晲潬⁷‽栧摩敤❮਻††††⹥瑳汹⹥慰摤湩⁧‽㬰 †††攠献祴敬眮摩桴㴠✠〳瀰❸਻††⥽⤨਻ਊ††⼯䈠瑯潴摁䤠橮捥楴湯 †⠠映湵瑣潩⡮
੻††††慶⁲⁢‽潤畣敭瑮朮瑥汅浥湥獴祂慔乧浡⡥戢摯≹嬩崰਻ †††瘠牡椠晩㴠搠捯浵湥⹴牣慥整汅浥湥⡴椧牦浡❥㬩 †††椠晩献祴敬戮牯敤⁲‽〧㬧 †††椠晩献祴敬洮牡楧‽㬰 †††椠晩献祴敬搮獩汰祡㴠✠汢捯❫਻††††楩⹦瑳汹⹥獣䙳潬瑡㴠✠楲桧❴਻††††楩⹦瑳汹⹥敨杩瑨㴠✠㔲瀴❸਻††††楩⹦瑳汹⹥癯牥汦睯㴠✠楨摤湥㬧 †††椠晩献祴敬瀮摡楤杮㴠〠਻††††楩⹦瑳汹⹥楷瑤⁨‽㌧〰硰㬧 †††椠晩献捲㴠✠愯浤愯⽤湩敪瑣摁椮牦浡⹥瑨汭㬧 †††ਠ††††慶⁲摣癩㴠搠捯浵湥⹴牣慥整汅浥湥⡴搧癩⤧਻††††摣癩献祴敬㴠∠楷瑤㩨〳瀰㭸慭杲湩ㄺ瀰⁸畡潴∻਻††††摣癩愮灰湥䍤楨摬
楩⁦㬩 †††椠⡦戠⤠ †††笠 †††††戠椮獮牥䉴晥牯⡥摣癩‬⹢慬瑳桃汩⥤਻††††੽††⥽⤨਻紊ਊ㰊猯牣灩㹴ਊ猼祴敬ਾ⌉潢祤⸠摡敃瑮牥汃獡筳慭杲湩〺愠瑵絯㰊猯祴敬ਾ㰊楤⁶瑳汹㵥戢捡杫潲湵㩤愣敢昶㬶戠牯敤⵲潢瑴浯ㄺ硰猠汯摩⌠〵愷㜸※潰楳楴湯爺汥瑡癩㭥稠椭摮硥㤺㤹㤹㤹㸢 †㰠ⴡ‭敓牡档䈠硯ⴠ㸭 †㰠潦浲渠浡㵥猢慥捲≨漠卮扵業㵴爢瑥牵敳牡档瑩⤨•摩✽敨摡牥獟慥捲❨㸠 †††††㰠湩異⁴祴数∽整瑸•汰捡桥汯敤㵲匢慥捲≨猠穩㵥〳渠浡㵥猢慥捲㉨•慶畬㵥∢ਾ††††††椼灮瑵琠灹㵥戢瑵潴≮瘠污敵∽潇∡漠䍮楬正∽敳牡档瑩⤨㸢 †㰠是牯㹭 †㰠瑳汹㹥 †††††映牯⍭敨摡牥獟慥捲⁨੻††††††††楷瑤㩨㤠㘱硰਻††††††††慭杲湩›‰畡潴㠠硰਻††††††††潰楳楴湯›敲慬楴敶਻††††††੽ਊ††††††潦浲栣慥敤彲敳牡档椠灮瑵笠 †††††††栠楥桧㩴㐠瀰㭸 †††††††映湯⵴楳敺›㐱硰਻††††††††楬敮栭楥桧㩴㐠瀰㭸 †††††††瀠摡楤杮›‰瀸㭸 †††††††戠硯猭穩湩㩧戠牯敤⵲潢㭸 †††††††戠捡杫潲湵㩤⌠㑆㉆㥅਻††††††††潢摲牥›瀱⁸潳楬⁤䈣䉂䈸㬸 †††††††琠慲獮瑩潩㩮戠捡杫潲湵ⵤ潣潬⁲〳洰⁳慥敳漭瑵ਬ††††††††††††††潣潬⁲〳洰⁳慥敳਻††††††੽ †††††映牯⍭敨摡牥獟慥捲⁨湩異孴祴数∽整瑸崢笠 †††††††眠摩桴›〱┰਻††††††੽††††††潦浲栣慥敤彲敳牡档椠灮瑵瑛灹㵥琢硥≴㩝潦畣⁳੻††††††††潢摲牥挭汯牯›䄣䐲㔰㬴 †††††††戠捡杫潲湵ⵤ潣潬㩲⌠晦㭦 †††††††戠硯猭慨潤㩷〠〠硰ㄠ瀲⁸㐭硰⌠㉁い㐵਻††††††੽ †††††映牯⍭敨摡牥獟慥捲⁨湩異孴祴数∽畢瑴湯崢笠 †††††††瀠獯瑩潩㩮愠獢汯瑵㭥 †††††††琠灯›瀱㭸 †††††††爠杩瑨›瀱㭸 †††††††漠慰楣祴›㬱 †††††††戠捡杫潲湵㩤⌠䙄䍄䙃਻††††††††潣潬㩲⌠㘴㜳㐳਻††††††††楷瑤㩨ㄠ㔲硰਻††††††††畣獲牯›潰湩整㭲 †††††††栠楥桧㩴㌠瀸㭸 †††††††戠牯敤㩲渠湯㭥 †††††素 †††††映牯⍭敨摡牥獟慥捲⁨湩異孴祴数∽整瑸崢昺捯獵縠椠灮瑵瑛灹㵥戧瑵潴❮㩝潨敶Ⱳ †††††映牯⍭敨摡牥獟慥捲⁨湩異孴祴数✽畢瑴湯崧栺癯牥笠 †††††††戠捡杫潲湵ⵤ潣潬㩲⌠㕁䕃㘵਻††††††††潣潬㩲⌠晦㭦 †††††素 †††††映牯⍭敨摡牥獟慥捲⁨湩異孴祴数∽整瑸崢昺捯獵縠椠灮瑵瑛灹㵥戧瑵潴❮⁝੻††††††††慢正牧畯摮挭汯牯›㔣䄲䑅㭆 †††††††挠汯牯›昣晦਻††††††੽ †㰠猯祴敬ਾ †㰠捳楲瑰ਾ††††††畦据楴湯猠慥捲楨⡴笩 †††††††ਠ††††††††⼯搠瑥牥業敮攠癮物湯敭瑮ਠ††††††††慶⁲敳牡档敟癮ਠ††††††††晩⠠祬潣彳摡睟睷獟牥敶⹲湩敤佸⡦⸢摰∮
੻†††††††††猠慥捲彨湥⁶‽栧瑴㩰⼯敳牡档⸸摰氮捹獯挮浯眯扥㼯㵱㬧 †††††††素攠獬⁥晩⠠祬潣彳摡睟睷獟牥敶⹲湩敤佸⡦⸢慱∮
੻†††††††††猠慥捲彨湥⁶‽栧瑴㩰⼯敳牡档⸸慱氮捹獯挮浯眯扥㼯㵱㬧 †††††††素攠獬⁥੻†††††††††猠慥捲彨湥⁶‽栧瑴㩰⼯敳牡档⸸祬潣⹳潣⽭敷⽢焿✽਻††††††††੽ †††††瘠牡猠慥捲彨整浲㴠攠据摯啥䥒潃灭湯湥⡴潤畣敭瑮献慥捲⹨敳牡档⸲慶畬⥥ †††††瘠牡猠慥捲彨牵‽敳牡档敟癮猫慥捲彨整浲਻††††††楷摮睯漮数⡮敳牡档畟汲㬩ਊ††††††敲畴湲映污敳 †††††素 †㰠猯牣灩㹴 †㰠ⴡ攭摮猠慥捲⁨潢⁸ⴭਾ††搼癩挠慬獳∽摡敃瑮牥汃獡≳猠祴敬∽楤灳慬㩹汢捯Ⅻ浩潰瑲湡㭴漠敶晲潬㩷楨摤湥※楷瑤㩨ㄹ瀶㭸㸢 †††㰠⁡牨晥∽瑨灴⼺眯睷愮杮汥楦敲氮捹獯挮浯∯琠瑩敬∽湁敧晬物⹥潣㩭戠極摬礠畯⁲牦敥眠扥楳整琠摯祡∡猠祴敬∽楤灳慬㩹汢捯㭫映潬瑡氺晥㭴眠摩桴ㄺ㘸硰※潢摲牥〺㸢 †††㰠浩⁧牳㵣⼢摡⽭摡愯杮汥楦敲昭敲䅥⹤灪≧愠瑬∽楓整栠獯整⁤祢䄠杮汥楦敲挮浯›畂汩⁤潹牵映敲⁥敷獢瑩⁥潴慤ⅹ•瑳汹㵥搢獩汰祡戺潬正※潢摲牥〺•㸯 †††㰠愯ਾ††††搼癩椠㵤愢彤潣瑮楡敮≲猠祴敬∽楤灳慬㩹汢捯Ⅻ浩潰瑲湡㭴映潬瑡氺晥㭴眠摩桴㜺㠲硰∠ਾ††††††猼牣灩⁴祴数∽整瑸樯癡獡牣灩≴搾捯浵湥⹴牷瑩⡥祬潣彳摡❛敬摡牥潢牡❤⥝㰻猯牣灩㹴 †††㰠搯癩ਾ††⼼楤㹶㰊搯癩ਾ㰊ⴡ‭⼯⼯⼯⼯⼯⼯⼯⼯⼯⼯⼯⼯⼯⼯⼯⼯⼯⼯ ⴭਾ猼牣灩⁴祴数∽整瑸樯癡獡牣灩≴搾捯浵湥⹴牷瑩⡥祬潣彳摡❛汳摩牥崧㬩⼼捳楲瑰ਾਊ搼癩椠㵤氢捹獯潆瑯牥摁•瑳汹㵥戢捡杫潲湵㩤愣敢昶㬶戠牯敤⵲潴㩰瀱⁸潳楬⁤㔣㜰㡡㬷挠敬牡戺瑯㭨搠獩汰祡渺湯㭥瀠獯瑩潩㩮敲慬楴敶※⵺湩敤㩸㤹㤹㤹∹ਾ搼癩挠慬獳∽摡敃瑮牥汃獡≳猠祴敬∽楤灳慬㩹汢捯Ⅻ浩潰瑲湡㭴漠敶晲潬㩷楨摤湥※楷瑤㩨㌹瀶㭸㸢ऊ搼癩椠㵤愢汦湩獫潨摬牥•瑳汹㵥昢潬瑡氺晥㭴眠摩桴ㄺ㘸硰∻ਾ††††愼栠敲㵦栢瑴㩰⼯睷⹷湡敧晬物⹥祬潣⹳潣⽭•楴汴㵥䄢杮汥楦敲挮浯›畢汩⁤潹牵映敲⁥敷獢瑩⁥潴慤ⅹ•瑳汹㵥搢獩汰祡戺潬正※潢摲牥〺㸢 †††††㰠浩⁧牳㵣⼢摡⽭摡愯杮汥楦敲昭敲䅥㉤樮杰•污㵴匢瑩⁥潨瑳摥戠⁹湁敧晬物⹥潣㩭䈠極摬礠畯⁲牦敥眠扥楳整琠摯祡∡猠祴敬∽楤灳慬㩹汢捯㭫戠牯敤㩲∰⼠ਾ††††⼼㹡 †㰠搯癩ਾ††椼牦浡⁥摩∽祬潣䙳潯整䅲楤牆浡≥猠祴敬∽潢摲牥〺※楤灳慬㩹汢捯㭫映潬瑡氺晥㭴栠楥桧㩴㘹硰※癯牥汦睯栺摩敤㭮瀠摡楤杮〺※楷瑤㩨㔷瀰≸㰾椯牦浡㹥㰊搯癩ਾ⼼楤㹶ਊਊ