
\qquad
\qquad
\qquad

Exchange and Transport of O_{2} and CO_{2}

- Physical Principles of Gaseous Exchange \qquad
- Diffusion of Gases through the respiratory membrane
- Transport of Oxygen in the Blood
- Transport of Carbon Dioxide

Physical Principles of Gaseous
Exchange

- Mass and Temperature
- if remain constant in a chamber-
pressure \rightarrow al with pressure (Boyle's Law)
\qquad
Pressure x volume $=$ constant; $\mathrm{V}=\frac{\mathrm{K}}{\mathrm{P}}$ \qquad
\qquad

Physical Principles of Gaseous
 Exchange

- Pressure
- remain constant- temperature varied; volume directly mp (Gay Lussac's Law) (Charles
Law)

\qquad
\qquad
\qquad
\qquad
\qquad

Physical Principles of Gaseous
 Exchange

- Gas Law
- Combining Boyle's Law and Gay Lussac's Law
$-P V=n R T$ \qquad
$\mathrm{P}=$ pressure
$\mathrm{V}=$ volume
$\mathrm{n}=$ quantity of gas
$\mathrm{R}=$ constant depending on the units of measure
$\mathrm{T}=$ temperature
\qquad
\qquad
\qquad
\qquad
\qquad

Physical Principles of Gaseous
 Exchange

- Vapor Pressure of Water \qquad
- indirect contact with water
- saturated with water vapor
- Vaporization mass, pressure
- vapor pressure of water depends temp of water and gas.
- the higher the temp:
- the greater the activity of molecules
- the greater the likelihood to escape from surface of water to gaseous phase
- vapor pressure at $37 \mathrm{C}=47 \mathrm{mmHg}$ \qquad

Physical Principles of Gaseous
 Exchange

- Solution of Gases in Water
- Influence by Two Factors
- 1. The pressure of the gas surrounding the water
- 2. The solubility coefficient of the gas in water at the temperature of water
Volume $=$ Pressure \times Solubility coefficient
- When volume is expressed in volume of gas dissolved in \qquad each volume of water at 0 C , pressure in atmosphere, solubility coefficient gases at body temp are the following:
- O2----------0.024
- CO2--------0.57
- N-----------0.012
- He----------0.008

Physical Principles of Gaseous
 Exchange

- Partial pressure of GasesPartian Pressure (mmilg
- Gas mixture----pressure exerted by each gas is in proportion to the by each gas is in proportion to the
conc. of molecules, w/o regard to the conc. of the other component gases.
- Total pressure= sum of all partial pressure of component gases (Oxygen 20\% of atmosphere, 760 mmHg atmospheric pressu partial pressure_?

	Oxygen	Carbon Dioxide
Atmospheric air	152	0.304
Alveolar air	105	40.0
Arterial Blood	100	40.0
Venous Blood	40	46.0
Tissues	30	50.0

Physical Principles of Gaseous
 Exchange

- Gas is Independent
- ability to dissolve in liquid
- CO_{2} dissolve in the blood does not physically affect the quantity of oxygen that can be dissolve in the fluid
$\left.\begin{array}{|l|}\hline \text { Physical Principles of Gaseous } \\ \text { Exchange } \\ \text { - Gas is Independent } \\ \text { - ability to dissolve in liquid } \\ \text { • } \mathrm{CO}_{2} \text { dissolve in the blood does not physically } \\ \text { affect the quantity of oxygen that can be dissolve } \\ \text { in the fluid }\end{array}\right]$

Physical Principles of Gaseous

Exchange

- Diffusion of Gases
- kinetic energy of matter
- move from area of higher conc. towards lower conc. hence the gases always diffuse from area of high pressure to areas of low pressure.
- Net Flow is proportional to the pressure difference (pressure gradient or diffusion gradient)

DIFFUSION OF GASES THROUGH THE RESPIRATORY MEMBRANE

- Exchange of gas—Diffusion
- interchange of gases--- thin membrane (1/2 to 4 microns thick)
- respiratory exchange- rapidly because thinness and wide surface area (50-100 square meter)
- Diffusion through tissues is described by FICK'S LAW
- rate of transfer of gas through a sheet of tissue is
- proportional to the tissue area and the difference in partial pressures of the gas between the two sides
- inversely proportional to the tissue thickness

DIFFUSION OF GASES THROUGH THE RESPIRATORY MEMBRANE

- Factors Influencing Gaseous Diffusion Through the Pulmonary Membrane
- Diffusing Capacity of the Respiratory Membrane
- Oxygen Diffusion
- Carbon Dioxide Diffusion \qquad
\qquad

DIFFUSION OF GASES THROUGH THE RESPIRATORY MEMBRANE

- Factors Influencing Gaseous Diffusion

Through the Pulmonary Membrane

- Thickness of the membrane
- inversely proportional
- edema, fibrosis
- Surface area of the respiratory membrane
- removal of the lung, cancer, pneumonia, PTB
- $1 / 3,1 / 4$ impedes the exchange
- The Diffusion Coefficient
- depends on the solubility of the gas and its molecular weight
- $\mathrm{CO}_{2} 20 \times \mathrm{O}_{2} 2 x$ Nitrogen
- The Pressure Gradient
- difference between the partial pressure in the alveoli and blood

DIFFUSION OF GASES THROUGH THE RESPIRATORY MEMBRANE

- Diffusing Capacity of the Respiratory Membrane
- Diffusing capacity for oxygen
- average young adult 21ml/min
- Diffusing capacity for carbon dioxide
- not measured yet
- $400-500 \mathrm{ml} / \mathrm{min}$ under resting condition

DIFFUSION OF GASES THROUGH THE RESPIRATORY MEMBRANE

- Oxygen Diffusion
- Uptake of Oxygen
- 40 mmHg - venous blood entering pulmonary capillary
- 104 mmHg - alveolus
- 64 mmHg - Pressure gradient

\qquad

DIFFUSION OF GASES THROUGH THE RESPIRATORY MEMBRANE

- Oxygen Diffusion
- Uptake of Oxygen
- small amount of blood (1 to $2 \% \mathrm{CO}$) fails to pass through the pulmonary capillaries- shunted through the non-aerated vessels
- Venous admixture
- capillaries of the lung 104 mmHg pO2
- arterial tree 95 mmHg pO 2

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

DIFFUSION OF GASES THROUGH THE RESPIRATORY MEMBRANE

- Carbon Dioxide Diffusion \qquad
- Removal of Carbon Dioxide

\qquad
\qquad
\qquad
\qquad

DIFFUSION OF GASES THROUGH THE RESPIRATORY MEMBRANE

- Carbon Dioxide Diffusion
- Release of Carbon Dioxide into the alveoli

TRANSPORT OF OXYGEN IN THE BLOOD

Oxygen is present in the blood in two forms
a. physically- plasma
b. chemically- hgb

- Transport of Oxygen in the Dissolved State
- 1-3 liters or 1.5%
- Transport of Oxygen in Combination with hemoglobin
- 14-15grams hgb per 100 ml blood
- 1gram hgb per 1.34ml oxygen
- 98.5\%

When the blood fully saturated with oxygen (20 vol percent of oxygen are present as oxyhemoglobin)

$$
\mathrm{Hb}+\mathrm{O}_{2} \xrightarrow{\longrightarrow} \mathrm{HbO}_{2}
$$

$\mathrm{Hb}+\mathrm{O}_{2} \longleftrightarrow \mathrm{HbO}_{2}$

- Reversible
- Shift to the RIGHT
- Shift to the LEFT
- Oxygen dissociation curve

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

TRANSPORT OF OXYGEN IN THE BLOOD

- The combination of Oxygen with

Hemoglobin (the oxygen absociation curve) is influenced by: \qquad

- Partial pressures of oxygen
- Hydrogen ion concentration or pH
- pH shift to the right (Bohr Effect) \qquad
- pH shift to the left
- Temperature
- temp favors the release of O_{2}
$-\uparrow$ 2-3 DPG in the red blood cells (2-3 bisphosphoglycerate)
- release of oxygen

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

CARBON DIOXIDE TRANSPORT (Three Ways)

- Dissolved CO2:

CO 2 solubility is -25 -fold more than O 2 , so about $10 \%(7 \%)$ of
the CO 2 unloaded in the lung derives from dissolved CO .

- Hydrated CO2:
- This reaction only occurs to an appreciable extent in the red cell containing the enzyme, carbonic anhydrase.
- The permeability of red cells to anions is high so Hcos-difuses
neutrality (Chloride shift).
- The $\mathrm{H}+$ ions are buffered, mainly by the imidazole groups of
hemoglobin- histidine, so there is only a slight pH drop.
- About $60 \%(70 \%)$ of the CO2 eliminated in the lungs is transported as HCO -
- Formation of carbamino compounds:
- The $\mathrm{H}+$ produced is buffered by Hb .
- About 30% (23\%) of the CO2 eliminated is transported as AbBHCOO--

Chloride Shift

- $\mathrm{As}_{\mathrm{HCO}_{3}}$ is formed it diffuses out of the red cell.
- Cl- diffuses into the red cell to maintain electroneutrality. This is the Chloride Shift or Hamburger Shift.
-1 . The chloride shift is rapid and is complete before the cells exit the capillary.
-2 .The osmotic effect of the extra HCO_{3} and Cl in venous red cells causes the venous RBC volume to increase slightly. For this reason venous hematocrit slightly exceeds arterial hematocrit.

TRANSPORT OF CARBON DIOXIDE

- Forms in which carbon dioxide is transported \qquad
- Dissolve carbon dioxide
- Carbon dioxide combined with water to form carbonic acid in the plasma
- Bicarbonate ions resulting from dissociation of the carbonic acid within the red cells \qquad
- Carbamino compounds resulting mainly from combination of carbon dioxide with hemoglobin \qquad
\qquad

TRANSPORT OF CARBON DIOXIDE

- Forms in which carbon dioxide is transported
- Dissolve carbon dioxide
- some remains in the blood in the dissolve state \rightarrow transported to the lungs
- 0.2 ml carbon dioxide $/ 100 \mathrm{ml}$ blood
- 10\%

TRANSPORT OF CARBON DIOXIDE

Bicarbonate ions resulting from
\qquad dissociation of the carbonic acid within the red cells
$-\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{H}_{2} \mathrm{CO}_{3} \leftrightarrow \mathrm{HCO}^{3}+\mathrm{H}^{+}$

- The dissociative products of carbonic acid accounts for the transport of approximately 60\% of all the $\mathrm{CO}_{2}(3 \mathrm{ml} / 100 \mathrm{ml}$ of blood)

Transport of carbon dioxide

- In tissue:

\qquad
\qquad
\qquad
\qquad
\qquad

Transport of carbon dioxide

- In lungs:

\qquad
\qquad
\qquad
\qquad
\qquad

TRANSPORT OF CARBON DIOXIDE

- Carbamino compounds resulting mainly
\qquad from combination of carbon dioxide with hemoglobin
- $\mathrm{CO} 2+\mathrm{hgb} \longleftrightarrow$ Carbamino hgb
- Reversible
- 30\% of total quantity transported ($1.5 \mathrm{ml} / 100 \mathrm{ml}$ of blood)
\qquad
\qquad
\qquad

Define

- Bohr Effect \qquad
- When Carbon dioxide is bound with hemoglobin, slightly less oxygen Can \qquad combine with the same hemoglobin solution for a given pO2. \qquad
- Haldane Effect
- When oxygen binds with hemoglobin, this \qquad causes hemoglobin to bind very poorly with carbon dioxide.

\qquad
\qquad

Oxygen

\qquad

- lungs \rightarrow tissue
\qquad
- each diciliter of blood $=5 \mathrm{ml} \mathrm{O} \mathrm{O}_{2}$
- $5 \mathrm{ml} / \mathrm{dl}$

Carbon Dioxide

- tissue \rightarrow LUNGS \qquad
- each diciliter of blood $=4 \mathrm{ml} \mathrm{CO} 2$
- $4 \mathrm{ml} / \mathrm{dl}$
\qquad
\qquad
\qquad
\qquad

$\mathrm{R}=\frac{\text { Rate of carbon dioxide output }}{\text { Rate of oxygen uptake }}$

- Respiratory Exchange Ratio
- 80\%
- Carbohydrates for body metabolism $\rightarrow \mathrm{R}=1.00$
- 1 molecule of CO2 for each O2 molecule consumed
- Fats for body metabolism $\rightarrow \mathrm{R}=0.7$
- when oxygen reacts with fats \rightarrow O2 combines with hydrogen atoms from the fats to form water instead of CO 2
- Normal Diet (CHO,CHON, Fats) $\rightarrow \mathrm{R}=0.825$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

EFFECTS OF LOW OXYGEN

 PRESSURE ON THE BODY- Alveolar PO2 at Different Elevations \qquad
- Effects of Breathing Pure Oxygen on Alveolar PO2 at Different Altitudes \qquad
- Acclimatization to low PO2 \qquad
\qquad
\qquad

EFFECTS OF LOW OXYGEN PRESSURE ON THE BODY

- Alveolar PO2 at Different Elevations \qquad
- Carbon Dioxide and Water Vapor Decrease the Alveolar Oxygen
- Alveolar PO2 at Different Altitudes
- Saturation of Hemoglobin with Oxygen at Different Altitudes

\qquad
\qquad
\qquad
\qquad
- Numbers in parentreeses are acclimusized vovien.
- Carbon Dioxide and Water Vapor Decrease the Alveolar Oxygen
- CO_{2} continually excreted, water vaporizes \rightarrow \qquad dilute the oxygen in the alveoli \rightarrow reduce oxygen concentration
- Water Vapor 47 mmHg
- high ALTITUDES $\rightarrow \mathrm{CO}_{2}$ falls from 40 mmHg \qquad
- Mount Everest 29,028 feet
- 253 mmHg
-47 mmHg - Water Vapor
- 206 mmHg
$-7 \mathrm{mmHg} \mathrm{CO}_{2}$
- 199 mmHg
-39.8 mmHg or 40 mmHg

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

EFFECTS OF LOW OXYGEN PRESSURE ON THE BODY

- Alveolar PO2 at Different Elevations \qquad
- Alveolar PO2 at Different Altitudes

\qquad
\qquad
\qquad
\qquad
- Alveolar PO2 at Different Elevations
- Saturation of Hemoglobin with Oxygen at Different Altitudes

Figure 43-1. Effect of high altitude on arterial oxygen saturation when one is breathing air and when breathing pure oxygen.

EFFECTS OF LOW OXYGEN PRESSURE ON THE BODY

- Effects of Breathing Pure Oxygen on Alveolar PO2 at Different Altitudes
- space occupied by nitrogen now occupied by oxygen

\qquad
\qquad
\qquad

EFFECTS OF LOW OXYGEN PRESSURE ON THE BODY

- Acclimatization to low PO2
- person remain at high altitudes (days, weeks, months, or years) \rightarrow fewer deleterious effects, possible for the person to work harder w/o hypoxic effects
- The FIVE Principal Means by which Acclimatization comes about are:
- Increased Pulmonary Ventilation
- Increase in Red Blood Cells and Hemoglobin During Acclimatization
- Increased Diffucing Capacity After Acclimatization
- Circulatory System in Acclimatization- Increased Capillarity
- Cellular Acclimatization

EFFECTS OF HIGH PARTIAL PRESSURES OF GASES ON THE BODY

- Nitrogen Narcosis at High Nitrogen Pressures
- Oxygen Toxicity at High Pressures
- Carbon Dioxide Toxicity at Great Depths in the Sea
- "Saturation Diving" and Use of HeliumOxygen Mixtures in Deep Dives

EFFECTS OF HIGH PARTIAL PRESSURES OF GASES ON THE BODY

- Nitrogen Narcosis at High Nitrogen Pressures \qquad - $4 / 5$ of the air
- sea level- no known effect
- high pressure- narcosis
- DIVER \rightarrow compressed air $\rightarrow 120 \mathrm{ft}$ (mild narcosis) \rightarrow 150-200 feet (drowsy) $\rightarrow 250$ feet (strength wanes) \rightarrow beyond (useless)
- Nitrogen Narcosis (alcoholic intoxication) "raptures of the depths"
- MECHANISM same as gas anesthetics- dissolves reely in the fats of the body, dissolves freely in the membrane of the neurons

EFFECTS OF HIGH PARTIAL PRESSURES OF GASES ON THE BODY

- Oxygen Toxicity at High Pressures
- epileptic convulsions \rightarrow coma
- REASON: increase concentration of oxidizing free radicals $\left(\mathrm{O}_{2}^{-}\right) \rightarrow$ destroy essential elements of the cell \rightarrow damage the metabolic system of the cells.

EFFECTS OF HIGH PARTIAL PRESSURES OF GASES ON THE BODY

- Carbon Dioxide Toxicity at Great Depths in the Sea
- depth alone does not increase carbon dioxide partial pressure in the alveoli
- continues to breathe a normal tidal volume
- continue to expire the carbon dioxide as it is formed
"Maintain the CO2 Partial Pressure at a normal value of almost $40 \mathrm{mmHg}^{\prime \prime}$

EFFECTS OF HIGH PARTIAL PRESSURES OF GASES ON THE BODY

- Carbon Dioxide Toxicity at Great Depths in \qquad the Sea
- Alveolar CO2 beyond $80 \mathrm{mmHg} \rightarrow$ respiratory center depressed \rightarrow respiration fail \rightarrow respiratory acidosis, lethargy, and narcosis \rightarrow Anesthesia
\qquad
\qquad -
\qquad
\qquad
\qquad

EFFECTS OF HIGH PARTIAL PRESSURES OF GASES ON THE BODY

- "Saturation Diving" and Use of Helium Qygen Mixtures in Deep Dives
- Very deep dives, HELIUM is usually used in the gas mixture.
- it has only about $1 / 5$ the narcotic effect of nitrogen
- only about half as much as volume of helium dissolves in the body tissue as nitrogen
- the low density of helium ($1 / 7$ the density of nitrogen) keeps the airway resistance for breathing at a minimum
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

