PHYSIOLOGY OF RESPIRATION

Exchange and Transport of Respiratory Gases Respiratory Exchange Ratio Aviation, Space and Deep Sea Diving

Rodolfo T. Rafael,M.D

2

Exchange and Transport of $\rm O_2$ and $\rm CO_2$

- Physical Principles of Gaseous Exchange
- Diffusion of Gases through the respiratory membrane
- Transport of Oxygen in the Blood
- Transport of Carbon Dioxide

Description of the principles of Gaseous Exchange I constant the constant in a chamber pressure is with pressure gours is with pressure gours is with pressure gours. Pressure x volume = constant; Y = K P

Physical Principles of Gaseous Exchange

• Gas Law

- Combining Boyle's Law and Gay Lussac's Law
- PV=nRT
- P= pressure
- V= volume
- n= quantity of gas
- R= constant depending on the units of measure
- T= temperature

Physical Principles of Gaseous Exchange

- Vapor Pressure of Water
 - indirect contact with water
 - saturated with water vapor
 - Vaporization mass, pressure
 vapor pressure of water depends temp of water and gas.
 - the higher the temp:
 - the greater the activity of molecules
 - the greater the likelihood to escape from surface of water to gaseous phase
 - vapor pressure at 37C= 47mmHg

6

Physical Principles of Gaseous Exchange

- Solution of Gases in Water
 - Influence by Two Factors
 - 1. The pressure of the gas surrounding the water
 - 2. The solubility coefficient of the gas in water at the temperature of water

Volume= Pressure X Solubility coefficient

- When volume is expressed in volume of gas dissolved in each volume of water at 0C, pressure in atmosphere,
- solubility coefficient gases at body temp are the following:
 - O2-----0.024

•

- CO2-----0.57
- N-----0.012
- He-----0.008

Physical Principles of Gaseous Exchange

Partial pressure of GasesPartial Pressure (mmHg)

 Gas mixture----pressure exerted by each gas is in proportion to the conc. of molecules, w/o regard to the conc. of the other component gases.
 Total pressure= sum of all partial pressure of component gases (Oxygen 20% of atmosphere, 760mmHg atmospheric pressure: partial pressure_?

	Oxygen	Carbon Dioxide
Atmospheric air	152	0.304
Alveolar air	105	40.0
Arterial Blood	100	40.0
Venous Blood	40	46.0
Tissues	30	50.0

7

8

9

Physical Principles of Gaseous Exchange

· Gas is Independent

- ability to dissolve in liquid
 - CO₂ dissolve in the blood does not physically affect the quantity of oxygen that can be dissolve in the fluid

Physical Principles of Gaseous

• Diffusion of Gases

- kinetic energy of matter
- move from area of higher conc. towards lower conc. hence the gases always diffuse from area of high pressure to areas of low
- <u>pressure.</u>
 Net Flow is proportional to the pressure difference (pressure gradient or diffusion gradient)

10

DIFFUSION OF GASES THROUGH THE RESPIRATORY MEMBRANE

- Exchange of gas—Diffusion
- interchange of gases--- thin membrane (1/2 to 4 microns thick)
- respiratory exchange- rapidly because thinness and wide surface area (50-100 square meter)
- Diffusion through tissues is described by FICK'S LAW
 - rate of transfer of gas through a sheet of tissue is
 - proportional to the tissue area and the difference in
 - partial pressures of the gas between the two sidesinversely proportional to the tissue thickness

11

DIFFUSION OF GASES THROUGH THE RESPIRATORY MEMBRANE

- Factors Influencing Gaseous Diffusion Through the Pulmonary Membrane
- Diffusing Capacity of the Respiratory Membrane
- Oxygen Diffusion
- Carbon Dioxide Diffusion

DIFFUSION OF GASES THROUGH THE RESPIRATORY MEMBRANE

- Factors Influencing Gaseous Diffusion Through the Pulmonary Membrane
 - Thickness of the membrane · inversely proportional
 - edema, fibrosis
 - Surface area of the respiratory membrane
 - removal of the lung, cancer, pneumonia, PTB • 1/3, 1/4 impedes the exchange
 - The Diffusion Coefficient
 - depends on the solubility of the gas and its molecular weight
 CO₂ 20x O₂ 2x Nitrogen
 - The Pressure Gradient
 - difference between the partial pressure in the alveoli and blood

13

14

15

DIFFUSION OF GASES THROUGH THE RESPIRATORY MEMBRANE

- Diffusing Capacity of the Respiratory Membrane
 - Diffusing capacity for oxygen • average young adult 21ml/min
 - Diffusing capacity for carbon dioxide
 - not measured yet
 - 400-500ml/min under resting condition

DIFFUSION OF GASES THROUGH THE RESPIRATORY MEMBRANE

- Oxygen Diffusion
 - Uptake of Oxygen
 - 40mmHg- venous blood entering pulmonary capillary
 - 104mmHg- alveolus

DIFFUSION OF GASES THROUGH THE RESPIRATORY MEMBRANE

- Oxygen Diffusion
 - Uptake of Oxygen
 - small amount of blood (1 to 2 % CO) fails to pass through the pulmonary capillaries- shunted through the non-aerated vessels
 - Venous admixture
 - capillaries of the lung 104mmHg pO2
 - arterial tree 95mmHg pO2

$Hb + O_2 \iff HbO_2$

- Reversible
- Shift to the RIGHT
- Shift to the LEFT
- Oxygen dissociation curve

CARBON DIOXIDE TRANSPORT (Three Ways)

Dissolved CO2:

- CO2 solubility is ~ 25-fold more than O2, so about 10% (7%) of the CO2 unloaded in the lung derives from dissolved CO2. Hydrated CO2:

 - This reaction only occurs to an appreciable extent in the red cell containing the enzyme, carbonic anhydrase.
 The permeability of red cells to anions is high so HCO3- diffuses into the plasma, with CI- diffusing inward to maintain electrical neutrality (Chioride shift).
 The H+ ions are buffered, mainly by the imidazole groups of hemoglobin-histidine, so there is only a slight pH drop.
 About 60% (70%) of the CO2 eliminated in the lungs is transported as HCO3-.

 - Formation of carbamino compounds: The H+ produced is buffered by Hb.
 - About 30% (23%) of the CO2 eliminated is transported as HbBHCOO-.

25

Chloride Shift

- As HCO_3 is formed it diffuses out of the red cell.
- · CI- diffuses into the red cell to maintain electroneutrality. This is the Chloride Shift or Hamburger Shift.
 - 1. The chloride shift is rapid and is complete before the cells exit the capillary.
 - 2. The osmotic effect of the extra HCO₃ and Clin venous red cells causes the venous RBC volume to increase slightly. For this reason venous hematocrit slightly exceeds arterial hematocrit.

26

TRANSPORT OF CARBON DIOXIDE

· Forms in which carbon dioxide is transported

- Dissolve carbon dioxide
- Carbon dioxide combined with water to form carbonic acid in the plasma
- Bicarbonate ions resulting from dissociation of the carbonic acid within the red cells
- Carbamino compounds resulting mainly from combination of carbon dioxide with hemoglobin

TRANSPORT OF CARBON DIOXIDE

- Carbamino compounds resulting mainly from combination of carbon dioxide with hemoglobin
- CO2 + hgb→ Carbamino hgb
 - Reversible
 - 30% of total quantity transported (1.5ml/100ml of blood)

Define

- Bohr Effect
 - When Carbon dioxide is bound with hemoglobin, slightly less oxygen Can combine with the same hemoglobin solution for a given pO2.
- Haldane Effect
 - When oxygen binds with hemoglobin, this Causes hemoglobin to bind very poorly with Carbon dioxide.

33

THE RESPIRATORY EXCHANGE RATIO

Oxygen

- lungs→ tissue
- each diciliter of blood= 5ml O₂
- 5ml/dl

Carbon Dioxide

- tissue→ LUNGS
- each diciliter of blood= 4ml CO₂
- 4ml/dl

34

$R = \frac{\text{Rate of carbon dioxide output}}{R}$

- Rate of oxygen uptake
- Respiratory Exchange Ratio
- 80%Carbo
 - Carbohydrates for body metabolism→ R=1.00 - 1 molecule of CO2 for each O2 molecule consumed
- Fats for body metabolism → R=0.7

 when oxygen reacts with fats → O2 combines with hydrogen atoms from the fats to form water instead of CO2
- Normal Diet (CHO,CHON, Fats)→ R= 0.825

37

38

PHYSIOLOGY OF AVIATION AND SPACE

EFFECTS OF LOW OXYGEN PRESSURE ON THE BODY

- Alveolar PO2 at Different Elevations
- Effects of Breathing Pure Oxygen on Alveolar PO2 at Different Altitudes
- Acclimatization to low PO2

EFFECTS OF LOW OXYGEN PRESSURE ON THE BODY

- Alveolar PO2 at Different Elevations
 - Carbon Dioxide and Water Vapor Decrease the Alveolar Oxygen
 - Alveolar PO2 at Different Altitudes
 - Saturation of Hemoglobin with Oxygen at Different Altitudes

EFFECTS OF LOW OXYGEN PRESSURE ON THE BODY

- · Effects of Breathing Pure Oxygen on Alveolar PO2 at Different Altitudes
 - space occupied by nitrogen now occupied by oxygen

Acclimatization to low PO2

```
    person remain at high altitudes (days, weeks, months,
or years) → fewer deleterious effects, possible for the
person to work harder w/o hypoxic effects
```

- The FIVE Principal Means by which Acclimatization comes about are:

 Increased Pulmonary Ventilation
 Increase in Red Blood Cells and Hemoglobin During

 - Acclimatization
 - Increased Diffucing Capacity After Acclimatization
 Circulatory System in Acclimatization- Increased Capillarity

 - Cellular Acclimatization

PHYSIOLOGY OF DEEP SEA DIVING

EFFECTS OF HIGH PARTIAL PRESSURES OF GASES ON THE BODY

- Nitrogen Narcosis at High Nitrogen
 Pressures
- Oxygen Toxicity at High Pressures
- Carbon Dioxide Toxicity at Great Depths in the Sea
- "Saturation Diving" and Use of Helium-Oxygen Mixtures in Deep Dives

EFFECTS OF HIGH PARTIAL PRESSURES OF GASES ON THE BODY

Nitrogen Narcosis at High Nitrogen Pressures

- 4/5 of the air
- sea level- no known effect
- high pressure- narcosis
- DIVER→ compressed air→120 ft (mild narcosis)→ 150-200 feet (drowsy)→ 250 feet (strength wanes)→ beyond (useless)
- Nitrogen Narcosis (alcoholic intoxication) "raptures of the depths"
 - MECHANISM same as gas anesthetics- dissolves freely in the fats of the body, dissolves freely in the membrane of the neurons.

49

EFFECTS OF HIGH PARTIAL PRESSURES OF GASES ON THE BODY

Oxygen Toxicity at High Pressures

– epileptic convulsions→ coma

 REASON: increase concentration of oxidizing free radicals (O₂⁻) → destroy essential elements of the cell → damage the metabolic system of the cells.

52

53

EFFECTS OF HIGH PARTIAL PRESSURES OF GASES ON THE BODY • Carbon Dioxide Toxicity at Great Depths in the Sea

- depth alone does not increase carbon dioxide partial pressure in the alveoli
- continues to breathe a normal tidal volume
- continue to expire the carbon dioxide as it is formed

<u>"Maintain the CO2 Partial Pressure at a normal</u> value of almost 40mmHg"

EFFECTS OF HIGH PARTIAL PRESSURES OF GASES ON THE BODY

 Carbon Dioxide Toxicity at Great Depths in the Sea

 Alveolar CO2 beyond 80mmHg→respiratory center depressed→ respiration fail→ respiratory acidosis, lethargy, and narcosis→ Anesthesia

EFFECTS OF HIGH PARTIAL PRESSURES OF GASES ON THE BODY

- "Saturation Diving" and Use of Helium Oygen Mixtures in Deep Dives
 - Very deep dives, HELIUM is usually used in the gas mixture.
 - it has only about 1/5 the narcotic effect of nitrogen
 - only about half as much as volume of helium dissolves in the body tissue as nitrogen
 - the low density of helium (1/7 the density of nitrogen) keeps the airway resistance for breathing at a minimum

