Renal Physiology: Filling of the Urinary Bladder, Micturition, Physiologic Basis of some Renal Function Tests

Amelyn R. Rafael, MD
Functions of the Urinary Bladder

- 1. storage of urine
 - 150 cc 1st urge to void
- 2. voiding of urine
 - 300 – 400 cc marked sense of fullness

- Passive diffusion of water and solute can occur in the ureters and UB. Therefore, urine can be modified after it leaves the kidneys
Filling of the Bladder

- Urine collected in the pelvis of the kidney passes to the ureters to the bladder by
 - 1. the forces of gravity in erect position
 - 2. contractions of muscle layers of the ureter
 - Necessary in order to develop sufficient pressure to overcome the gradually increasing tension in UB as urine accumulates
 - Regular peristaltic contractions 1.5x/min
 - Urine enters the bladder in spurts synchronous with each peristaltic wave
 - Enhanced by parasympathetic stimulation, inhibited by sympathetic

Ureteral Reflux

- Ureteral sphincters are not present
- Prevented by:
 - Mucosal flap formed by ureters passing obliquely through the bladder wall
 - Ureters pass under the lining of the bladder for a few centimeters before entering, so full bladder compresses the ureters
Transport of urine from the kidney through the ureters and into the bladder

- No significant changes in composition as urine flows through renal calices, ureters to the bladder
- Urine flowing from the CD into the renal calices stretches the renal calices and increases their inherent pacemaker activity → peristaltic contractions that spread to the renal pelvis and then downward along the length of the ureter, forcing urine from the renal pelvis toward the bladder

Ureter

- Wall: smooth muscle
- Innervation:
 - Sympathetic
 - Parasympathetic
 - Intramural plexus of neurons and nerve fibers that extends along the entire length of the ureters
- Enter the bladder through detrusor muscle in the trigone
- Course obliquely for several cms
- Compressed by normal tone of detrusor in the bladder wall
Vesicoureteral reflux

- The distance that the ureter courses through the bladder wall is less than normal
- Contraction of the bladder during micturition does not always lead to complete occlusion of the ureter
- Some of the urine is propelled backward into the ureter
- Can lead to enlargement of the ureters
- Can increase the pressure in the renal calices and structures of the renal medulla causing damage

Ureterorenal reflex

- Ureters are well supplied with pain nerve fibers
- Blockage causes intense reflex constriction associated with severe pain
- Pain impulses cause a sympathetic reflex back to the kidney to constrict the renal arterioles, decreasing urine output from the kidney
- Important for preventing excessive flow of fluid into the pelvis of the kidney with blocked ureter
Emptying the Bladder

• Anatomic considerations
 – Urinary bladder
 • Body – major part, where urine collects
 • Neck/posterior urethra – funnel shape, connects with urethra
 – Detrusor muscle –
 • Where ureters enter the bladder
 • In the trigone layer of the bladder
 • Smooth muscle, fibers run in all direction
 • Thick, 3 layers
 • Can increase pressure in bladder 40-60 mmHg which major step for emptying

Anatomic considerations

• Internal urethral sphincter
 – extension of detrusor muscle passing on either side of the urethra
 – Natural tone normally keeps the bladder neck and posterior urethra empty of urine
 – Prevents emptying of the bladder until the pressure in the main part of the bladder rises above a critical threshold
External urethral sphincter

- Area of urogenital diaphragm
- Voluntary skeletal muscle
- Under voluntary control of the nervous system
- Can be used to consciously prevent urination even when involuntary controls are attempting to empty the bladder

Innervation of the Bladder

- Pelvic nerves – principal nerve supply
- Sensory nerve fibers – detect the degree of stretch in the bladder wall
 - Stretch signals from the posterior urethra are strong and are mainly responsible for initiating the reflexes that cause bladder emptying
- Motor nerves – parasympathetic fibers
- Somatic nerve fibers – control the voluntary skeletal muscle of the sphincter
- Sympathetic fibers through the hypogastric nerves
Micturition

• The process by which the UB empties when it becomes filled
• 2 main steps:
 – Bladder fills progressively until the tension in its walls rises above a threshold level
 – Micturition reflex – a nervous reflex that empties the bladder
 • If it fails, at least causes a conscious desire to urinate
 • Autonomic spinal cord reflex; can be inhibited or facilitated by centers in the cerebral cortex or brain stem

Reflex control of micturition

• Stimulus
 – Vesicular pressure at about 18 cmH2O
 – Urine volume of about 300-400 cc (150 cc first urge to void is felt; 400 cc marked sense of fullness)
• Receptors – stretch and tension receptors in the bladder wall
 – Excited by threshold stimulus
 – Afferent impulses from receptors are responsible for the sensations of distention and the desire to urinate; can also cause the act of micturition when spinal reflexes are released from cerebral control
• Afferent limb – fibers in pelvic nerves
• Center – sacral cord
• Efferent limb – pelvic nerves
Micturition reflex

- As the bladder fills, many superimposed micturition contractions begin to appear
 - Initiated by sensory stretch receptors in the bladder wall
 - Sensory signals → sacral segments of the cord through the pelvic nerves → back to bladder through the parasympathetic nerve fibers by way these same nerves

Micturition reflex

- Bladder is only partially filled
 - MC usually relax spontaneously after a fraction of a minute
 - Detrusor muscle stop contracting
 - Pressure falls back to the baseline
- As bladder continues to fill
 - Micturition reflexes become more frequent, greater contractions of detrusor muscle
- Once it begins, it is self-regenerative
MR is a single complete cycle of:

- 1. progressive and rapid increase of pressure
- 2. a period of sustained pressure
- 3. return of the pressure to the basal tone of the bladder

Higher control of micturition

- It is normally a voluntary act
 - Voluntary control can be exerted until the vesicular pressure increases to about 100 cmH2O at which point involuntary micturition begins
- Afferent nerves: pelvic nerves, hypogastric and pudendal nerves
 - Enter the SC at sacral levels III and IV → hypothalamus and cortex where voluntary control resides
Higher control

- Facilitory areas
 - Pontine region
 - Posterior hypothalamus
 - Cerebral cortex

- Inhibitory areas
 - Midbrain
 - Cerebral cortex

- The micturition reflex is the basic cause of micturition, but the higher centers normally exert final control as follows:
 - The higher centers keep the MR partially inhibited except when micturition is desired
 - The higher centers can prevent micturition, even if the MR does occur, by continual tonic contraction of the external bladder sphincter until a convenient time presents itself
 - When it is time to urinate, the cortical centers can facilitate the sacral micturition centers to help initiate a MR and at the same time inhibit the external urinary sphincter so that urination can occur
Voluntary urination

- A person voluntarily contracts his abdominal muscles, which increases the pressure in the bladder and allows extra urine to enter the bladder neck and posterior urethra under pressure, stretching their walls
- Stimulates the stretch receptors
- Excites the MR
- Inhibits the external urethral sphincter
- 5-10 ml left in the bladder

Abnormalities of Micturition

- Three major types of bladder dysfunction due to neural lesions
 - Types due to interruption of the afferent nerves from the bladder
 - The atonic bladder caused by destruction of sensory nerve fibers
 - MR contraction cannot occur
 - Lose of bladder control despite intact efferent fibers from the cord and intact neurogenic connections from the brain
 - Bladder fills to capacity and overflows a few drops at a time (overflow incontinence)
 - Cause: crush injury to the sacral segment; certain diseases like syphilis
– Types due to interruption of both afferent nerves and efferent nerves
 • Automatic bladder caused by SC damage above the sacral region
 – Sacral cord segments still intact, MR can still occur but no longer controlled by the brain
 – 1st few days to several weeks after damage, MR are suppressed because of state of spinal shock caused by sudden loss of facilitory impulses
 – If bladder is emptied periodically by catheterization to prevent bladder injury, MR gradually increases

– Types due to interruption of facilitory and inhibitory pathways descending from the brain
 • The uninhibited bladder caused by lack of inhibitory signals from the brain
 – Frequent and uncontrolled micturition
 – Partial damage in SC or brain stem that interrupts most of the inhibitory signals
 – Facilitory impulses passing continually down the cord keep the sacral centers so excitable that even a small quantity of urine will elicit an uncontrollable MR, and thereby promote frequent urination
Abnormal Renal Function

• Effects of Disordered Renal Function
 – If the kidneys do not function normally, the constancy of the ECF is not maintained
 – Generalized edema resulting from water retention
 – Acidosis resulting from failure of the kidneys to get rid of normal acidic products
 – High potassium concentration resulting from failure of potassium excretion
 • Uremia

• Uremia – results from high concentrations of normal urinary excretory products that collect in the body fluids
• Uremic coma – after a week or more of renal shutdown, patient’s sensorium becomes clouded → progresses into coma → respiratory attempt to compensate for metabolic acidosis
 – Last day before death, ABP falls progressively, then rapidly. Death when pH falls about 7
• High concentrations of NPN (urea) resulting from failure of the body to excrete the metabolic end products
Renal Function Tests

- Renal function can be appraised in various ways
 - Chemical and Physical analysis of urine
 - Urinalysis (leucocytes, protein, casts, etc.)
 - Urine specific gravity
 - Normal: hypertonic
 - If water is withheld urine becomes even more concentrated
 - Kidney diseases, loss of concentrating and diluting ability
 - Measurement of substances in the blood that are normally excreted by the kidneys
 - BUN, Creatinine – increases in renal insufficiency
 - Easy to perform, can tell how seriously the internal environment has been impaired
 - Normal 26 mg/100 cc urea, can rise to as much as 200 mg%
 - Normal Crea 1.3 mg%, can rise to as much as ten-fold
 - Bicarbonate ion content – used to determine the degree of net acidosis resulting from renal dysfunction
Determination of renal clearance

- IV Pyelography
 - Several substances containing large quantities of iodine in their molecules are excreted into the urine either by glomerular filtration or by active tubular secretion
 - The concentration in the urine becomes very high within a few minutes after IV injection
 - Iodine in the compounds makes renal pelvis, ureters, UB relatively opaque
 - A sufficient quantity is excreted within 5 minutes after injection to give good shadows of the kidney pelvis. Failure indicates hypofunction

Volume of urine

- Acute renal shutdown – urine volume can fail to zero
- Severe renal insufficiency – urine volume diminished
- Moderate renal insufficiency – urine volume actually increase output because of overfunction of the remaining nephrons when the majority has been destroyed