
Faraday’s law in textbooks

Faraday’s law of electromagnetic induction:

(1) ∮
L

E⋅d l =−
dB

d t
,

is considered as an experimental fact and as such is generally accepted as one of the 
cornerstones of electromagnetism. We will prove here that under a lean condition it is 
equivalent to the Hertzian form of the first Maxwell’s equation:

(2) rot E =−
d B
d t

.

However, as a rule in textbooks of electromagnetism, it is used as starting 
point for deduction of the Heaviside’s form of the first Maxwell’s equation:

(3) rot E =−
∂B
∂ t

,

claiming that they are equivalent. We will show here that this equation needs a more 
strict condition, namely static loops and corresponding surfaces to achieve the equiva-
lence.

To try to resolve the problem, we will perform “reverse engineering”, i.e. we 
will integrate equations (2) and (3) and compare the result with equation (1). At the 
second part of this paper, I will cite some passages from textbooks of electromag-
netism relating to the issue, and point where the mistake is performed. I must em-
phasize that my intention is not to point personally to anybody’s mistakes rather to 
try to break some, what I am convinced, globally accepted misconceptions.

Comparing equations

We will firstly disintegrate equation (1) using an identity from mathematical 
analysis (Smirnov,  [18], vol. 2, p. 346) stating that the rate of change of vector 
field flux B r , t   over a moving surface SL(t), is given by the expression:

(4)
dB

d t
=

d
d t ∫

SL t

B⋅dS = ∫
SL t

 ∂∂ t
B− rotvd×Bvd⋅div B ⋅d S .

Using the vector identity:
(5) rot v d×a  = v d⋅div a−grada  − a⋅div vd−grad vd ,
we get:

(6)
dB

d t
= ∫

SL t 
∂B

∂ t
v d⋅∇ Bdiv v d−grad v d⋅B⋅d S .

By this way, equation (1) finally becomes:

(7) ∮
L

E⋅d l = ∫
SL t

 ∂B

∂ t
v d⋅∇Bdiv vd−grad v d⋅B⋅d S .

Now, we will integrate equation (2) over a moving surface SL(t):



(8) ∫
SL

rot E⋅S =∮
L

E⋅l =−∫
SL

d B
d t

⋅S ,

where we used Stokes’ theorem on the left side. Now, using the expression for total de-
rivative:

(9)
d
d t

= ∂
∂ t

v x
∂
∂x

vy
∂
∂y

v z
∂
∂ z

= ∂
∂t

v⋅∇ ,

we get:

(10) ∮
L

E⋅d l = ∫
SL t


∂B
∂ t

v d⋅∇ B⋅dS .

The equation (3), on the other hand, after integration becomes:

(11) ∮
L

E⋅d l = ∫
SL t 

∂B
∂ t

⋅d S .

Now we can compare obtained results. It is evident that left sides of all three 
equations (7), (10) and (11) are the same, while there is a gradation of differences 
on the right side. On the first look, it is obvious that (10) resembles more to (7) 
then (11), for the last lacks the expression vd⋅∇ B . By this way, we may say that 
the equivalence of the first Maxwell’s equation (3 and 11) with the Faraday’s law 
(eq. 1 and 7) is confined to stationary surfaces (i.e. vdr , t  |S=0 ), so that it is suit-
able for analysis of stationary devices such as transformers. However, it is useless 
for the consideration of machines with moving fields, such as electro-motors and 
electro-generators.

Furthermore, being that the velocity vd  represents the velocity of surface el-
ements ∆SL(t) at r∈SLt  , that means that it must be treated as a vector field on 
the surface SL (i.e. that div vd  and grad v d  must be taken into the consideration). 
The expression grad v d  in (7) represents deformation of the moving surface SL(t), 
while the component div vd  represents special type of deformation named cubical  
dilatation. Due to the fact that every deformation consists of cubical dilatation and 
equivolume deformation[10], the condition that:
(12) div vdB−grad v⋅B=0 ,
should be related to  equivolume deformation solely (here I need help from a good 
mathematician who could articulate that condition). In general case, the shape of the 
surface SL(t) may be changed during the time t into whatever you wish. The above con-
dition means that the identity of equations (1) and (2) (i.e. (7) and (10)) is reduced to 
moving surfaces that does not undergo that (for me not yet strictly specified) kind of 
deformations.



(http://hyperphysics.phy-astr.gsu.edu/Hbase/magnetic/motdc.html).
Fig. 1. Simple electro-motor. No one uses Maxwell’s equations to explain the function-
ing of electric motors and generators, for they are useless for that purpose. Instead, 
Lorentz and magnetic force (i.e. Faraday’s law) are used 

Faraday’s law and first Maxwell’s equation in textbooks

Let’s now analyze some passage from textbooks relating to the issue. I will 
mention some textbooks I found on Internet (thanks to Dubinushka...), even though 
the way of deduction follows the main idea that Faraday’s law and first Maxwell’s 
equation should be identical at any cost.

For example in  Introduction to Electrodynamics [5], from Griffiths D. J., p. 
302 it looks like this:

Faraday had an ingenious inspiration:

A changing magnetic field induces an electric field.

It is this "induced" electric field that accounts for the emf in Experiment 2.6 
Indeed,  if  (as Faraday found empirically)  the emf is again equal to the rate of 
change of the flux,

ℰ =∮
L

E⋅d l =−
d
d t

(7.14)

then E is related to the change in B by the equation

∮E⋅d l =−∫ ∂B
∂ t

⋅d a (7.15)

http://hyperphysics.phy-astr.gsu.edu/Hbase/magnetic/motdc.html


This is Faraday's law, in integral form. We can convert it to differential form 
by applying Stokes' theorem:

∇×E =−
∂B
∂ t

(7.16)

In other words the writer states that equations (7.14) /i.e. 7/ and (7.15) /i.e. 
11/ are identical, what is incorrect.

In the book  Electromagnetic Field Theory [19] from Bo Thidé we find the 
same assertion:

It  has been established experimentally that  a nonconservative EMF field is 
produced in a closed circuit C if the magnetic flux through this circuit varies with 
time. This is formulated in Faraday’s law which, in Maxwell’s generalised form, 
reads

ℰ t , x  =∮C
d l⋅Et , x =−

d
d t

mt , x

=−
d
d t
∫S

dS⋅Bt , x  =∫S
dS⋅ ∂

∂t
Bt , x 

(1.31)

where Φm is the magnetic flux and S is the surface encircled by C which can be in-
terpreted as a generic stationary ‘loop’ and not necessarily as a conducting circuit.

...
Any change of the magnetic flux  Φm will  induce an EMF. Let us therefore 

consider the case, illustrated if Figure 1.4, that the ‘loop’ is moved in such a way 
that it links a magnetic field which varies during the movement. The  convective  
derivative is evaluated according to the well-known operator formula

d
d t

= ∂
∂ t

v⋅∇ (1.33)

which follows immediately from the rules of differentiation of an arbitrary differ-
entiable function f(t;x(t)). Applying this rule to Faraday’s law, Equation (1.31) on 
the preceding page, we obtain

ℰ t , x  =−
d
d t
∫S

dS⋅B =∫S
dS⋅ ∂

∂t
B−∫S

dS⋅v⋅∇B (1.34)

...(end of citation)
What follows is another complicate “derivation” even though equation (1.34) could 

be simply rewritten:

ℰ t , x  =−
d
d t
∫S

dS⋅B =∫S
dS⋅

d
d t

B (1.34’)

that agrees with  (2), and directly contradicts the last equal sign in (1.31). However, 
combining the first equality from (1.31) with (1.34’) one just confirms the equivalence 
between equations (2) and (3). Similar, but more “sophisticated” manipulation with dif-



ferent types of electric fields we find in Classical Electrodynamics [6] from Jackson, J. 
D.:

Let us now consider Faraday's  law for a moving circuit and see the conse-
quences of Galilean invariance. Expressing (6.3) in terms of the integrals over E' 
and B, we have

∮C
E '⋅d l =−k

d
d t
∫S

B⋅nda (6.4)

The induced electromotive force is proportional to the total time derivative of 
the  flux—the  flux  can  be  changed  by  changing  the  magnetic  induction  or  by 
changing the shape or orientation or position of the circuit. In form (6.4) we have a 
far-reaching generalization of Faraday's  law. The circuit С can be thought of as 
any closed geometrical path in space, not necessarily coincident with an electric 
circuit. Then (6.4) becomes a relation between the fields themselves. It is impor-
tant to note, however, that the electric field, E' is the electric field at dl in the coor-
dinate system or medium in which dl is at rest, since it is that field that causes cur-
rent to flow if a circuit is actually present.

If the circuit С is moving with a velocity v in some direction, as shown in Fig. 
6.2, the total time derivative in (6.4) must take into account this motion. The flux 
through the circuit may change because (a) the flux changes with time at a point, or 
(b) the translation of the circuit changes the location of the boundary. It is easy to 
show that the result for the total time derivative of flux through the moving circuit 
is

d
d t
∫S

B⋅n da =∫S

∂B
∂t

⋅n da∮C
B×v ⋅d l (6.5)

Equation (6.4) can now be written in the form,

∮C
[E '−k B×v ]⋅d l =−k∫S

∂B
∂ t

⋅nda (6.6)

This is an equivalent statement of Faraday's law applied to the moving circuit 
С. But we can choose to interpret it differently. We can think of the circuit С and 
surface S as instantaneously at a certain position in space in the laboratory. Apply-
ing Faraday's law (6.4) to that fixed circuit, we find

∮C
E⋅d l =−k∫S

∂B
∂ t

⋅nda -6.7

where E is now the electric field in the laboratory.
(end of citation)

Mr. Jackson is right admitting that electric field E' from Faraday’s law (6.4) is not 
the same electric field E from the first Maxwell’s equation (6.6). Furthermore, he ad-
mits that Lorentz force (as constituent B×v ) is actually part of the Faraday’s law.

In Electromagnetics [13] from Rothwell and Cloud one may find that equation (4) 
is simply named Faraday’s law. 

In Minkowski's form of Maxwell's equations, the mediating field is the elec-
tromagnetic field consisting of the set of four vector fields E(r, t), D(r, t), B(r, t), 



and H(r, t). The field equations are the four partial differential equations referred 
to as the Maxwell Minkowski equations:

∇×Er , t =− ∂
∂ t

Br , t  (2.1)

∇×H r , t=J  r , t− ∂
∂ t

D r , t (2.2)

∇⋅D r , t =r , t  (2.3)

∇×Br , t =0 , (2.4)

along with the continuity equation 

∇⋅J r , t = ∂
∂ t

r , t (2.5)

Here (2.1) is called Faraday's law, (2.2) is called Ampere's law, (2.3) is called 
Gauss's law, and (2.4) is called the magnetic Gauss's law. For brevity we shall of-
ten leave the dependence on r and t implicit, and refer to the Maxwell- Minkowski 
equations as simply the "Maxwell equations," or "Maxwell's equations."

(end of citation)

Commentary

As it is already mentioned, it is obvious even for undergraduate students that 
Faraday’s law can not be equated with the first Maxwell’s equation. However, a 
kind of hypnosis by authority is taking place. It seems that there is a strong psycho-
logical pyramidal pressure that creates a system of prohibitions upon subordinates, 
which may be an interesting theme for psychoanalysts.  To my opinion, it is the 
same kind of  pressure  that  was in the Middle Ages,  though in milder  manner. 
Then, the disobedient would have risk to be burnt on stake, but today, you risk not 
to pass exam, lose job, or to be ridiculed from the side of obedient ones. It seems 
that the civilization has evolved technically retaining old psychological patterns.
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