Chapter 6
The Skeletal System: Bone Tissue

- Dynamic and ever-changing throughout life
- Skeleton composed of many different tissues
 - cartilage, bone tissue, epithelium, nerve, blood forming tissue, adipose, and dense connective tissue

Functions of Bone

- Supporting & protecting soft tissues
- Attachment site for muscles making movement possible
- Storage of the minerals, calcium & phosphate -- mineral homeostasis
- Blood cell production occurs in red bone marrow (hemopoiesis)
- Energy storage in yellow bone marrow

Anatomy of a Long Bone

- Diaphysis = shaft
- Epiphysis = one end of a long bone
- Metaphysis = growth plate region
- Articular cartilage over joint surfaces acts as friction & shock absorber
- Medullary cavity = marrow cavity
- Endosteum = lining of marrow cavity
- Periosteum = tough membrane covering bone but not the cartilage
 - fibrous layer = dense irregular CT
 - osteogenic layer = bone cells & blood vessels that nourish or help with repairs
Histology of Bone

- A type of connective tissue as seen by widely spaced cells separated by matrix
- Matrix of 25% water, 25% collagen fibers & 50% crystalized mineral salts
- 4 types of cells in bone tissue

Cell Types of Bone

- Osteoprogenitor cells — undifferentiated cells
 - can divide to replace themselves & can become osteoblasts
 - found in inner layer of periosteum and endosteum
- Osteoblasts—form matrix & collagen fibers but can’t divide
- Osteocytes — mature cells that no longer secrete matrix
- Osteoclasts—huge cells from fused monocytes (WBC)
 - function in bone resorption at surfaces such as endosteum

Matrix of Bone

- Inorganic mineral salts provide bone’s hardness
 - hydroxyapatite (calcium phosphate) & calcium carbonate
- Organic collagen fibers provide bone’s flexibility
 - their tensile strength resists being stretched or torn
 - remove minerals with acid & rubbery structure results
- Mineralization (calcification) is hardening of tissue when mineral crystals deposit around collagen fibers
- Bone is not completely solid since it has small spaces for vessels and red bone marrow
 - spongy bone has many such spaces
 - compact bone has very few
Compact or Dense Bone

- Looks like solid hard layer of bone
- Makes up the shaft of long bones and the external layer of all bones
- Resists stresses produced by weight and movement

Histology of Compact Bone

- Osteon is concentric rings (lamellae) of calcified matrix surrounding a vertically oriented blood vessel
- Osteocytes found in spaces called lacunae
- Osteocytes communicate through canaliculi filled with extracellular fluid that connect one cell to the next cell
- Interstitial lamellae represent older osteons that have been partially removed during tissue remodeling

The Trabeculae of Spongy Bone

- Latticework of thin plates of bone called trabeculae oriented along lines of stress
- Spaces in between these struts are filled with red marrow where blood cells develop
- Found in ends of long bones and inside flat bones such as the hipbones, sternum, sides of skull, and ribs.
Bone Scan

- Radioactive tracer is given intravenously
- Amount of uptake is related to amount of blood flow to the bone
- “Hot spots” are areas of increased metabolic activity that may indicate cancer, abnormal healing or growth
- “Cold spots” indicate decreased metabolism of decalcified bone, fracture or bone infection

Blood and Nerve Supply of Bone

- Periosteal arteries
 - supply periosteum
- Nutrient arteries
 - enter through nutrient foramen
 - supplies compact bone of diaphysis & red marrow
- Metaphyseal & epiphyseal aa.
 - supply red marrow & bone tissue of epiphyses

Bone Formation or Ossification

- All embryonic connective tissue begins as mesenchyme.
- Intramembranous bone formation = formation of bone directly from mesenchymal cells.
- Endochondral ossification = formation of bone within hyaline cartilage.
Intramembranous Bone Formation

- Mesenchymal cells become osteoprogenitor cells then osteoblasts.
- Osteoblasts surround themselves with matrix to become osteocytes.
- Matrix calcifies into trabeculae with spaces holding red bone marrow.
- Mesenchyme condenses as peristomeum at the bone surface.
- Superficial layers of spongy bone are replaced with compact bone.

Endochondral Bone Formation (1)

- Development of Cartilage model
 - Mesenchymal cells form a cartilage model of the bone during development
- Growth of Cartilage model
 - in length by chondrocyte cell division and matrix formation (interstitial growth)
 - in width by formation of new matrix on the periphery by new chondroblasts from the perichondrium (appositional growth)
 - cells in midregion burst and change pH triggering calcification and chondrocyte death

Endochondral Bone Formation (2)

- Development of Primary Ossification Center
 - perichondrium lays down periosteal bone collar
 - nutrient artery penetrates center of cartilage model
 - periosteal bud brings osteoblasts and osteoclasts to center of cartilage model
 - osteoblasts deposit bone matrix over calcified cartilage forming spongy bone trabeculae
 - osteoclasts form medullary cavity
Endochondral Bone Formation (3)

- Development of Secondary Ossification Center
 - blood vessels enter the epiphyses around time of birth
 - spongy bone is formed but no medullary cavity
- Formation of Articular Cartilage
 - cartilage on ends of bone remains as articular cartilage.

Bone Growth in Length

- Epiphyseal plate or cartilage growth plate
 - cartilage cells are produced by mitosis on epiphyseal side of plate
 - cartilage cells are destroyed and replaced by bone on diaphyseal side of plate
- Between ages 18 to 25, epiphyseal plates close.
 - cartilage cells stop dividing and bone replaces the cartilage (epiphyseal line)
- Growth in length stops at age 25

Zones of Growth in Epiphyseal Plate

- Zone of resting cartilage
 - anchors growth plate to bone
- Zone of proliferating cartilage
 - rapid cell division (stacked coins)
- Zone of hypertrophic cartilage
 - cells enlarged & remain in columns
- Zone of calcified cartilage
 - thin zone, cells mostly dead since matrix calcified
 - osteoclasts removing matrix
 - osteoblasts & capillaries move in to create bone over calcified cartilage
Bone Growth in Width

- Only by appositional growth at the bone’s surface
- Periosteal cells differentiate into osteoblasts and form bony ridges and then a tunnel around periosteal blood vessel.
- Concentric lamellae fill in the tunnel to form an osteon.

Factors Affecting Bone Growth

- Nutrition
 - adequate levels of minerals and vitamins
 - calcium and phosphorus for bone growth
 - vitamin C for collagen formation
 - vitamins K and B12 for protein synthesis
- Sufficient levels of specific hormones
 - during childhood need insulinlike growth factor
 - promotes cell division at epiphyseal plate
 - need hGH (growth), thyroid (T3 &T4) and insulin
 - sex steroids at puberty
 - growth spurt and closure of the epiphyseal growth plate
 - estrogens promote female changes – wider pelvis

Hormonal Abnormalities

- Oversecretion of hGH during childhood produces gigantism
- Undersecretion of hGH or thyroid hormone during childhood produces short stature
- Both men or women that lack estrogen receptors on cells grow taller than normal
 - estrogen responsible for closure of growth plate
Bone Remodeling

- Ongoing since osteoclasts carve out small tunnels and osteoblasts rebuild osteons.
 - osteoclasts form leak-proof seal around cell edges
 - secrete enzymes and acids beneath themselves
 - release calcium and phosphorus into interstitial fluid
 - osteoblasts take over bone rebuilding
- Continual redistribution of bone matrix along lines of mechanical stress
 - distal femur is fully remodeled every 4 months

Fracture & Repair of Bone

- Fracture is break in a bone
- Healing is faster in bone than in cartilage due to lack of blood vessels in cartilage
- Healing of bone is still slow process due to vessel damage
- Clinical treatment
 - closed reduction = restore pieces to normal position by manipulation
 - open reduction = surgery

Fractures

- Named for shape or position of fracture line
- Common types of fracture
 - closed -- no break in skin
 - open fracture -- skin broken
 - comminuted -- broken ends of bones are fragmented
 - greenstick -- partial fracture
 - impacted -- one side of fracture driven into the interior of other side
 - Pott’s -- distal fibular fracture
 - Colles’s -- distal radial fracture
 - stress fracture -- microscopic fissures from repeated strenuous activities
Repair of a Fracture (1)

- Formation of fracture hematoma
 - damaged blood vessels produce clot in 6-8 hours, bone cells die
 - inflammation brings in phagocytic cells for clean-up duty
 - new capillaries grow into damaged area
- Formation of fibrocartilagenous callus formation
 - fibroblasts invade the procallus & lay down collagen fibers
 - chondroblasts produce fibrocartilage to span the broken ends of the bone

Repair of a Fracture (2)

- Formation of bony callus
 - osteoblasts secrete spongy bone that joins 2 broken ends of bone
 - lasts 3-4 months
- Bone remodeling
 - compact bone replaces the spongy in the bony callus
 - surface is remodeled back to normal shape

Calcium Homeostasis & Bone Tissue

- Skeleton is reservoir of Calcium & Phosphate
- Calcium ions involved with many body systems
 - nerve & muscle cell function
 - blood clotting
 - enzyme function in many biochemical reactions
- Small changes in blood levels of Ca+2 can be deadly (plasma level maintained 9-11mg/100mL)
 - cardiac arrest if too high
 - respiratory arrest if too low
Hormonal Influences

- Parathyroid hormone (PTH) is secreted if Ca+2 levels falls
 - PTH gene is turned on & more
 - osteoclast activity increased, kidney retains Ca+2 and produces calcitriol
- Calcitonin hormone is secreted from parafollicular cells in thyroid if Ca+2 blood levels get too high
 - inhibits osteoclast activity
 - increases bone formation by osteoblasts

Exercise & Bone Tissue

- Pull on bone by skeletal muscle and gravity is mechanical stress.
- Stress increases deposition of mineral salts & production of collagen (calcitonin prevents bone loss)
- Lack of mechanical stress results in bone loss
 - reduced activity while in a cast
 - astronauts in weightlessness
 - bedridden person
- Weight-bearing exercises build bone mass
 (walking or weight-lifting)

Development of Bone Tissue

- Both types of bone formation begin with mesenchymal cells
- Mesenchymal cells transform into chondroblasts which form cartilage
- OR
- Mesenchymal cells become osteoblasts which form bone
Developmental Anatomy

5th Week = limb bud appears as mesoderm covered with ectoderm
6th Week = constriction produces hand or foot plate and skeleton now totally cartilaginous
7th Week = endochondral ossification begins
8th Week = upper & lower limbs appropriately named

Aging & Bone Tissue

- Bone is being built through adolescence, holds its own in young adults, but is gradually lost in aged.
- Demineralization = loss of minerals
 - very rapid in women 40-45 as estrogens levels decrease
 - in males, begins after age 60
- Decrease in protein synthesis
 - decrease in growth hormone
 - decrease in collagen production which gives bone its tensile strength
 - bone becomes brittle & susceptible to fracture

Osteoporosis

- Decreased bone mass resulting in porous bones
- Those at risk
 - white, thin menopausal, smoking, drinking female with family history
 - athletes who are not menstruating due to decreased body fat & decreased estrogen levels
 - people allergic to milk or with eating disorders whose intake of calcium is too low
- Prevention or decrease in severity
 - adequate diet, weight-bearing exercise, & estrogen replacement therapy (for menopausal women)
 - behavior when young may be most important factor,
Disorders of Bone Ossification

• Rickets
 • calcium salts are not deposited properly
 • bones of growing children are soft
 • bowed legs, skull, rib cage, and pelvic deformities result

• Osteomalacia
 • new adult bone produced during remodeling fails to ossify
 • hip fractures are common