Lesson 8 (Aug 23, 2005)

Contents

Records (continued), sets
ARRAYS OF RECORDS

can also be created, in the same way as arrays of any of the four basic data types. The following statement declares a record called date.

type date = record

 month, day, year : integer

 end;

Lets now create an array of these records, called birthdays.

var birthdays : array[1..10] of date;

This creates an array of 10 elements. Each element consists of a record of type date, ie, each element consists of three integers, called month, day and year.
 Some examples of setting the values of each element of the array would be:

birthdays[1].month := 2;

birthdays[1].day := 12;

birthdays[1].year := 1983;

birthdays[1].year := birthdays[2].year;

RECORDS CONTAINING ARRAYS

Records can also contain arrays as a field. Consider the following example, which shows a record called month, whose element name is actually an array.

type monthname = packed array[1..4] of char;

 month = RECORD

 days : integer;

 name : monthname

 END;

var this_month : month;

 this_month.days := 31; this_month.name[0] := 'J';

 this_month.name[1] := 'a'; this_month.name[2] := 'n';

 this_month.name := 'Feb ';
RECORDS WITHIN RECORDS

Records can also contain other records as a field. Consider where both a date and time record are combined into a single record called date_time, eg,

type date = RECORD

 day, month, year : integer

 END;

 time = RECORD

 hours, minutes, seconds : integer

 END;

 date_time = RECORD

 sdate : date;

 stime : time

 END;
This defines a record whose elements consist of two other previously declared records. The statement

var today : date_time;
declares a working variable called today, which has the same composition as the record date_time. The statements

today.sdate.day := 11;

today.sdate.month := 2;

today.sdate.year := 1985;

today.stime.hours := 3;

today.stime.minutes := 3;

today.stime.seconds := 33;

with RECORDS

The with statement, in association with records, allows a quick and easy way of accessing each of the records members without using the dot notation.

Consider the following program example, where the variable student record is initialised. Note how the name of the record is associated with each of the initialised parts. Then look at the code that follows, and note the difference being the absence of the record name.

program withRecords(output);

type
Gender = (Male, Female);

Person = Record

Age : Integer;

Sex : Gender

end;

var Student : Person;

begin

Student.Age := 23;

Student.Sex := Male;

with Student do begin

Age := 19;

Sex := Female

end;

with Student do begin

Writeln('Age := ', Age);

case Sex of

Male : Writeln('Sex := Male');

Female : Writeln('Sex := Female')

end

end

end.

SETS

Sets exist in every day life. They are a way of classifying common types into groups. In Pascal, we think of sets as containing a range of limited values, from an initial value through to an ending value.

Consider the following set of integer values,

1, 2, 3, 4, 5, 6, 7, 8, 9, 10

This is a set of numbers (integers) whose set value ranges from 1 to 10. To define this as a set type in Pascal, we would use the following syntax.

program SetsOne(output);

 type numberset = set of 1..10;

 var mynumbers : numberset;

begin

end.

Assigning Values to a set: UNION

Set union is essentially the addition of sets, which also includes the initialisation or assigning of values to a set.

Consider the following statement which assigns values to a set

program SetsTWO(output);

 type numberset = set of 1..10;

 var mynumbers : numberset;

begin

mynumbers := [];

mynumbers := [2..6]

end.

The statement

mynumbers := [];

assigns an empty set to mynumbers. The statement

mynumbers := [2..6];

assigns a subset of values (integer 2 to 6 inclusive) from the range given for the set type numberset. Please NOTE that assigning values outside the range of the set type from which mynumbers is derived will generate an error, thus the statement

mynumbers := [6..32];

is illegal, because mynumbers is derived from the base type numberset, which is a set of integer values ranging from 1 to 10. Any values outside this range are considered illegal.

Determining if a value is in a set

Lets expand the above program example to demonstrate how we check to see if a value resides in a set. Consider the following program, which reads an integer from the keyboard and checks to see if its in the set.

program SetsTHREE(input, output);

type numberset = set of 1..10;

var mynumbers : numberset;

 value : integer;

begin

mynumbers := [2..6];

value := 1;

while(value <> 0) do

begin

writeln('Please enter an integer value, (0 to exit)');

readln(value);

if value <> 0 then

begin

if value IN mynumbers then

writeln('Its in the set')

else

writeln('Its not in the set')

end

end

end.

