Lesson 6 (July 21, 2005)

Contents

Procedures and Function (value arguments and var arguments), array
Value Parameters

In the previous programs, when variables are passed to procedures, the procedures work with a copy of the original variable. The value of the original variables which are passed to the procedure are not changed.

The copy that the procedure makes can be altered by the procedure, but this does not alter the value of the original. When procedures work with copies of variables, they are known as value parameters.

Sample Program

program Value_Parameters (output);

procedure Nochange (letter : char; number : integer);

begin

 writeln(letter);

 writeln(number);

 letter := 'A'; {this does not alter mainletter}

 number := 32; {this does not alter mainnumber}

 writeln(letter);

 writeln(number)

end;

var mainletter : char; {these variables known only from here on}

 mainnumber : integer;

begin

 mainletter := 'B';

 mainnumber := 12;

 writeln(mainletter);

 writeln(mainnumber);

 Nochange(mainletter, mainnumber);

 writeln(mainletter);

 writeln(mainnumber)

end.

Variable parameters

Procedures can also be implemented to change the value of original variables which are accepted by the procedure. To illustrate this, we will develop a little procedure called swap. This procedure accepts two integer values, swapping them over.

Previous procedures which accept value parameters cannot do this, as they only work with a copy of the original values. To force the procedure to use variable parameters, preceed the declaration of the variables (inside the parenthesis after the function name) with the keyword var.

This has the effect of using the original variables, rather than a copy of them.

Sample Program

program Variable_Parameters (output);

procedure SWAP (var value1, value2 : integer);

var temp : integer;

begin

 temp := value1;

 value1 := value2; {value1 is actually number1}

 value2 := temp {value2 is actually number2}

end;

var number1, number2 : integer;

begin

 number1 := 10;

 number2 := 33;

 writeln('Number1 = ', number1,' Number2 = ', number2);

 SWAP(number1, number2);

 writeln('Number1 = ', number1,' Number2 = ', number2)

end.

When this program is run, it prints out :

Number1 = 10 Number2 = 33

Number1 = 33 Number2 = 10

FUNCTIONS - A PROCEDURE WHICH RETURNS A VALUE

Procedures accept data or variables when they are executed. Functions also accept data, but have the ability to return a value to the procedure or program which requests it. Functions are used to perform mathematical tasks like factorial calculations.

The actual heading of a function differs slightly than that of a procedure. Its format is,

 function Function_name (variable declarations) : return_data_type;

Calling the function would require a variable of return_data_type to store the return value. An example would be result := ADD_TWO(10, 20);
ARRAYS

An array is a structure which holds many variables, all of the same data type. The array consists of so many elements, each element of the array capable of storing one piece of data (ie, a variable).

An array is defined as follows,

type array_name = ARRAY [lower..upper] of data_type;

Lower and Upper define the boundaries for the array. Data_type is the type of variable which the array will store, eg, type int, char etc.
To create the variable of the array type, one would use var var_name:array_name;
to assign a value into one element of the array, one would use array_name[x]:=value;
where x is a number within the lower and upper bound and value is of type data_type
An example would be the String variable which can be declared like so,

VAR MESSAGE : STRING[8];
For this string array, however, there is no checking how long the actual MESSAGE will be, one way to limit the number of characters in a string is to use packed string.

Packed arrays of characters are initialized by equating the array to a text string enclosed by single quotes, eg,

type string = PACKED ARRAY [1..15] of char;

var message : string;

 message := 'Good morning! '; {must be fifteen characters long}
MULTIDIMENSIONED ARRAYS

The following statement creates a type definition for an integer array called multi of 10 by 10 elements (100 in all). Remember that arrays are split up into row and columns. The first index is the row, the second index is the column.
type multi = ARRAY [1..10, 1..10] of integer;

begin work : multi;

To print out each of the various elements of work, consider

for row := 1 to 10 do

for column := 1 to 10 do

writeln('Multi[',row,',',column,'] is ',multi[row,column];

there can be more dimensions for arrays, to accomplish that, on would add another upper..lower boundary, and another for loop will be required to print each elements in the array.
