Lesson 3 (Aug 4, 2005)

Contents

If conditions, and/or/not, precedence of and/or/not, cases
Sample Program

Program DEMO(input,output);

Var p:integer;

 K:Boolean;

Begin

 P:=0;

 Readln(p);

 If (p<4) then

 begin

 Writeln(‘ok’);
 end

 Else

 Writeln(‘Not ok’);

END.
If conditions

If loops can be used to limit out cases and do simple eliminations. If starts out with the word IF to indicate it’s the beginning of a if statement, the next component is a Boolean expression which is included in parenthesis. Following is the word then which mark the beginning of the block which will run when the Boolean expression in the parenthesis returns true. The begin and end encompass the block which will run when the expression is true. Similarly, ELSE has the same structure except the ELSE block runs whenever the expression in the parenthesis returns false. (Note: the statement just before the word ELSE do not require a semicolon in contradict to other statements) (Note: when only one statement is in the block ie the else block, begin and end are not necessary)
The format for the IF THEN Pascal statement is,

if condition_is_true then

execute_this_program_statement;

Boolean expressions

Boolean expressions are expressions that return true or false only. The basic comparative symbol used in Boolean expressions are >(greater than), <(less than), =(equal), <>(Not equal), and >=(greater than and equal), <=(less than and equal). Usually a Boolean expression requires a left side comparing to the right side using the relational operators (comparative symbols above).
AND/OR/NOT
And, or, not are three Boolean operators that can be used to chain Boolean expressions into compound Boolean expressions. This way two or more conditions can be checked together within one if statement. The operator AND means that all conditions have to be true for the compound expression to return true; the operator OR means that any condition that return true will cause the compound expression to return true; NOT simply reverse whatever is returned from the expression, so true would become false and vice versa.
 AND The statement is executed only if BOTH conditions are true,

 if (A = 1) AND (B = 2) then writeln('Bingo!');

 OR The statement is executed if EITHER argument is true,

 if (A = 1) OR (B = 2) then writeln('Hurray!');

 NOT Converts TRUE to FALSE and vice versa

 if NOT ((A = 1) AND (B = 2)) then writeln('Wow, really heavy man!');

The precedence

The precedence between the Boolean operators are : NOT > AND > OR

The precedence for the relational operators are lowest below the Boolean operators and mathematical operators.
Case
The CASE construct is used to deal with multiple alternatives, such as the user menu options. It takes the general form:
CASE expression OF

 Label-1:statement-1;

 Label-2:statement-2;

 Label-n:statement-n;

ELSE

 Statement-else
END;

Label-1 to label-n are the labels that represent the different possible values of the expression. ELSE here would mean all other possible values. (Note: the statement before END has no semicolon at the end but the statement before ELSE has a semicolon) Cases can be done by using multiple IF statements, but for efficiency and memory saving purpose, CASE construct is preferred to handle multiple alternatives.
