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A well-understood fact of asset allocation is that the traditional portfolio optimization algorithm is too powerful for the quality of the inputs. Recently, a new concept called "resampled efficiency" has been introduced into the asset management world to deal with estimation error. The objective of this article is to describe this new technology, put it into the context of established procedures, and point to some peculiarities of the approach. Even though portfolio resampling is a thoughtful heuristic, some features make it difficult to interpret by the inexperienced. 

Portfolio optimization suffers from error maximization.1 Because inputs into the efficient frontier algorithm are measured with error, the optimizer tends to pick those assets with the most attractive features (high returns and low risks and/or low correlations) and to short or deselect those with the worst features. These extremes are exactly the cases in which estimation error is likely to be highest; hence, the process maximizes the impact of estimation error on portfolio weights. If, for example, assets have high correlations, they appear to the quadratic programming algorithm to be similar, but an algorithm that takes point estimates as inputs and treats them as if they were known with certainty will react to tiny return differences that are well within measurement error.2 In other words, the optimization algorithm is too powerful for the quality of the inputs. This problem does not necessarily stem from the mechanism itself; it calls for a refinement of inputs. To deal with the estimation error, a concept called "resampled efficiency" has recently been introduced.3 This article describes this new technology, puts it into the context of established procedures, and points out some peculiarities of the resampled efficiency approach. 

Visualizing Estimation Error 

Portfolio sampling allows an analyst to visualize the estimation error in traditional portfolio optimization methods. The estimated parameters used in asset allocation problems (typically point estimates of means, variances, and correlations) are calculated by using only one possible realization of return history. Even if stationarity (constant mean, non-time-dependent covariances) is assumed, only in very large samples can the point estimates for risk and return inputs equal the true distribution parameters. The effect of the resulting estimation error on optimal portfolios can be captured by the Monte Carlo procedure known as portfolio resampling.4 

Conclusion 

Portfolio resampling offers an intuitive way to develop tests for the statistical difference between two portfolios (weight vectors). Resampling will thus be the methodology of choice to test for the statistical significance of two portfolios. What is not clear, however, is why averaging over resampled portfolio weights should represent an optimal portfolio construction solution to deal with estimation error. In the case of long-short portfolios, use of averaged resampled portfolios provides no improvement over traditional Markowitz solutions (in fact, the solutions-that is, the frontiers-coincide). In the case of long-only constraints, resampled efficiency leads to more-diversified portfolios, which are well known to beat Markowitz portfolios in out-of-sample tests.15 Hence, the result presented by Michaud (1998) that resampled efficiency beats simple Markowitz portfolios out-of-sample is hardly surprising. 

What is unclear is the extent to which this result can be generalized, because portfolio resampling carries with it some unwanted features. Deteriorating Sharpe ratios (caused by higher volatility) lead to increased allocation of those assets in the high-return portfolios because favorable return draws lead to large allocations whereas unfavorable draws lead to zero allocations at most ("optionality"). Additionally, the efficient frontiers may exhibit turning points (a move from concave to convex). Also interesting is that at least three assets are needed for the resampling methodology to show the increased risk present in the case of estimation error. 

Finally, although the ultimate test of any portfolio construction methodology is out-of-sample performance, Markowitz efficiency is not the relevant benchmark for resampled efficiency. Bayesian alternatives, which have a strong foundation in decision theory, are. Therefore, a significant avenue for future research is how resampling compares with Bayesian alternatives. 

In short, although why resampled efficiency should be optimal is not clear, resampling remains an interesting heuristic to deal with the important problem of error maximization. 

Bernd Scherer is the European head of advanced applications at Deutsche Asset Management, Frankfurt am Main. 

Footnotes: 

1. Michaud (1989) and Nawrocki (1996) provide good descriptions of the problem. 

2. This problem has been extensively reported and empirically studied. Examples are Best and Grauer (1991), Chopra and Ziemba (1993), and Jobson and Korkie (1983). 

3. Michaud (1998) describes his methodology very lucidly in his book Efficient Asset Management. 

4. Jorion (1992) described portfolio resampling as one way to address sampling error (the true underlying parameters are stable, but there are not enough data to estimate them precisely). 

5. Note that resampling deals with sampling error only. In theory, sampling error in means that arises from not having enough data can be cured by lengthening the observation period (in the case of variance, increasing the frequency of observations would help). Because the involved distributions are likely to be nonstationary, however (i.e., the mean and covariance tend to vary over time), enlarging the data set in this way is not always appropriate. Scherer (2002) dealt with this trade-off. 

6. All calculations have been done in S-PLUS. Resampling code can be obtained from the author on request. 

7. All illustrations in the examples use the original data from Michaud (1998). For these data, T = 216 and k = 8. 

8. For standard mean-variance-efficient frontiers, see Markowitz (1987) or Sharpe (1970). 

9. The idea of this test statistic is that looking at weight differences only is obviously not enough. Small weight differences for highly correlated assets might be of higher significance than large weight differences for negatively correlated assets. 

10. In Excel, fill one column with l's and the others with excess returns, and then follow Excel instructions for multiple regressions. 

11. See also the exposition in Jobson and Korkie (their Equation 19). 

12. Britten-Jones (1999) took this route and showed additionally how this test can be interpreted in light of the wellknown Gibbons-Ross-Shanken (1989) procedure. 

13. Maddala (2001, p. 600) described how to bootstrap data rather than residuals. 

14. For a review of efficient-set mathematics, see Huang and Litzenberger (1988). 

15. See Jorion or Chopra, Hensel, and Turner (1993). 
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