Schmidt Orthogonalisation Technique

Starting from a set of linearly independent eigenfunctions $\left\{f_{1}, f_{2}, \ldots ., f_{n}\right\}$ of a Hermitian operator with a degenerate eigenvalue, the application of the Schmidt Orthogonalization Technique gives a new set $\left\{F_{1}, F_{2}, \ldots ., F_{n}\right\}$ of eigenfunctions with the same eigenvalue, such that the new set is an orthogonal set.

According to this procedure, the first new function F_{1} is taken to be equal to $f_{1} . F_{2}$ is taken to be a linear combination of f_{2} and F_{1}, i.e., to be $f_{2}+c_{21} F_{1}$ (where c_{21} is a constant). Similarly, the other functions are defined. Thus we get:
$\mathrm{F}_{1}=\mathrm{f}_{1}, \quad \mathrm{~F}_{2}=\mathrm{f}_{2}+\mathrm{c}_{21} \mathrm{~F}_{1}, \quad \mathrm{~F}_{3}=\mathrm{f}_{3}+\mathrm{c}_{32} \mathrm{~F}_{2}+\mathrm{c}_{31} \mathrm{~F}_{1}$
..........
$\mathrm{F}_{\mathrm{j}}=\mathrm{f}_{\mathrm{j}}+{ }_{\mathrm{i}=1} \Sigma^{\mathrm{j}-1} \mathrm{c}_{\mathrm{ji}} \mathrm{F}_{\mathrm{i}}$,
$\mathrm{F}_{\mathrm{n}}=\mathrm{f}_{\mathrm{n}}+{ }_{\mathrm{i}=1} \Sigma^{\mathrm{n}-1} \mathrm{c}_{\mathrm{ni}} \mathrm{F}_{\mathrm{i}}$
Orthogonality of $\mathrm{F}_{1} \& \mathrm{~F}_{2}$ gives $<\mathrm{F}_{1} \mid \mathrm{F}_{2}>=0$, which means $<\mathrm{F}_{1}\left|\mathrm{f}_{2}>+\mathrm{c}_{21}<\mathrm{F}_{1}\right| \mathrm{F}_{1}>=0$, thus giving $\mathrm{c}_{21}=-<\mathrm{F}_{1}\left|\mathrm{f}_{2}>/<\mathrm{F}_{1}\right| \mathrm{F}_{1}>$
Orthogonality of $F_{1} \& F_{3}$ gives $\left\langle F_{1} \mid F_{3}\right\rangle=0$, which means
$<\mathrm{F}_{1}\left|\mathrm{f}_{3}>+\mathrm{c}_{32}<\mathrm{F}_{1}\right| \mathrm{F}_{2}>+\mathrm{c}_{31}<\mathrm{F}_{1} \mid \mathrm{F}_{1}>=0$, thus giving $\mathrm{c}_{31}=-<\mathrm{F}_{1}\left|\mathrm{f}_{3}>/<\mathrm{F}_{1}\right| \mathrm{F}_{1}>$
(as $<F_{1} \mid F_{2}>=0$ because of orthogonality of $F_{1} \& F_{2}$).
Similarly, $\left\langle\mathrm{F}_{2} \mid \mathrm{F}_{3}\right\rangle=0$ implies $\mathrm{c}_{32}=-\left\langle\mathrm{F}_{2} \mid \mathrm{f}_{3}\right\rangle /<\mathrm{F}_{2}\left|\mathrm{~F}_{2}\right\rangle$
Thus we arrive at a general formula for the coefficients c_{ji} (for $\mathrm{i}<\mathrm{j}$) as
$c_{j i}=\left\langle F_{i} \mid f_{j}\right\rangle /<F_{i} \mid F_{i}>$. As the new functions F_{j} gets defined (as $F_{j}=f_{j}+{ }_{i=1} \Sigma^{j-1} c_{j i} F_{i}$) when these coefficients are defined, the new orthogonal set of functions has been fully obtained.

Schwartz Inequality and Uncertainty Principle

For any two arbitrary well-behaved functions f and g the following relation is obeyed:
$4<\mathrm{f}|\mathrm{f}\rangle<\mathrm{g} \mid \mathrm{g}>\geq(<\mathrm{f} \mid \mathrm{g}>+\langle\mathrm{g}| \mathrm{f}>)^{2}$ This relation is known as the Schwartz inequality. Proof: Let $\mathrm{I}=<(\mathrm{f}+\mathrm{sg}) \mid(\mathrm{f}+\mathrm{sg})>$ where s is an arbitrary real parameter. In the integral I , the integrand $|(\mathrm{f}+\mathrm{sg})|^{2}$ is everywhere non-negative (i.e., positive or zero), and so I is positive, unless it happens that $\mathrm{f}=-\operatorname{sg}$ (in which case I is zero as the integrand becomes everywhere zero). So we have two possible cases: (1) $f=-s g$ in which case $I=0$ and (2) $f \neq-s g$ in which case $\mathrm{I}>0$. However, by expanding the expression for I , we get
$\left.\mathrm{I}=<\mathrm{f}|\mathrm{f}>+\mathrm{s}<\mathrm{f}| \mathrm{g}>+\mathrm{s}^{*}<\mathrm{g}\left|\mathrm{f}>+\mathrm{ss}^{*}<\mathrm{g}\right| \mathrm{g}>=<\mathrm{f} \mid \mathrm{f}>+\mathrm{s}(<\mathrm{f}|\mathrm{g}>+<\mathrm{g}| \mathrm{f}\rangle\right)+\mathrm{s}^{2}<\mathrm{g} \mid \mathrm{g}>$ (as s is by definition real). Calling $\langle\mathrm{g}| \mathrm{g}>=\mathrm{a},(<\mathrm{f}|\mathrm{g}\rangle+\langle\mathrm{g} \mid \mathrm{f}\rangle)=\mathrm{b}$ and $\langle\mathrm{f} \mid \mathrm{f}\rangle=\mathrm{c}$, we get $\mathrm{I}=$ $\mathrm{as}^{2}+\mathrm{bs}+\mathrm{c}$ with $\mathrm{a}, \mathrm{b}, \mathrm{c}$ being some constant integrals. Now considering the more general case (2) of $\mathrm{f} \neq-\mathrm{sg}$ and $\mathrm{I}>0$, we get $\mathrm{as}^{2}+\mathrm{bs}+\mathrm{c}>0$ where s is real. This means that no real root for s exists for the equation $\mathrm{as}^{2}+\mathrm{bs}+\mathrm{c}=0$, meaning that $\left(\mathrm{b}^{2}-4 \mathrm{ac}\right)$ is negative giving only nonreal complex roots for this quadratic equation. So we get, for $f \neq-s g, b^{2}-4 a c<0$ i.e., $4 a c>b^{2}$ i.e., $4<f|f\rangle<g \mid g \gg(<f|g>+<g| f>)^{2} \quad-------------$ (i)

For the more specific case (1) of $\mathrm{f}=-\mathrm{sg},<\mathrm{f}|\mathrm{f}>=<(-\mathrm{sg})|(-\mathrm{sg})>=\mathrm{s}^{2}<\mathrm{g} \mid \mathrm{g}>$ whereas $<\mathrm{f}\left|\mathrm{g}>=-\mathrm{s}^{*}<\mathrm{g}\right| \mathrm{g}>=-\mathrm{s}<\mathrm{g} \mid \mathrm{g}>$ and $<\mathrm{g}|\mathrm{f}>=-\mathrm{s}<\mathrm{g}| \mathrm{g}>$. These relations give:
$4<\mathrm{f}|\mathrm{f}><\mathrm{g}| \mathrm{g}\rangle=(<\mathrm{f}|\mathrm{g}>+<\mathrm{g}| \mathrm{f}\rangle)^{2}$
Thus, combining the two possible cases, we arrive at the Schwartz inequality:
$4<\mathrm{f}|\mathrm{f}><\mathrm{g}| \mathrm{g}>\geq(<\mathrm{f} \mid \mathrm{g}>+\langle\mathrm{g}| \mathrm{f}>)^{2}$
In the quantitative formulation of the (generalised) uncertainty principle stated as $\Delta \mathbf{A} . \Delta \mathbf{G} \geq 1 / 2|<\psi|[\hat{\mathbf{A}}, \hat{\mathbf{G}}]|\psi>|$, the stated uncertainties $\Delta \mathrm{A}$ and $\Delta \mathrm{G}$ are nothing but the standard deviations in measurement of the physical observables A \& G, where A \& \hat{G} are the corresponding Hermitian operators. This relation can be derived starting from the Schwartz inequality as follows:
From postulates of quantum mechanics, it is obvious that the standard deviations $\Delta \mathrm{A}$ is given by: $\Delta \mathrm{A}=\left(\langle\psi| \hat{\mathrm{A}}^{2} \mid \psi>-\langle\psi| \hat{\mathrm{A}} \mid \psi>^{2}\right)^{1 / 2}$ (square root of the difference between average of square and square of average). In the Schwartz inequality, let us choose the arbitrary functions f \& g as $\mathrm{f}=(\hat{\mathrm{A}}-<\hat{\mathrm{A}}>) \Psi$ and $\mathrm{g}=i(\hat{\mathrm{G}}-<\hat{\mathrm{G}}>) \Psi$, where $\mathrm{i}=\sqrt{ }(-1)$ and Ψ is the normalized system wavefunction (with $<\Psi \mid \Psi>=1$). Now
$<\mathrm{f}|\mathrm{f}>=<(\hat{\mathrm{A}}-<\hat{\mathrm{A}}>) \Psi|(\hat{\mathrm{A}}-<\hat{\mathrm{A}}>) \Psi>$
$=<\hat{\mathrm{A}} \Psi|\hat{\mathrm{A}} \Psi>-<\hat{\mathrm{A}} \Psi|<\hat{\mathrm{A}}>\Psi>-\ll \hat{\mathrm{A}}>\Psi|\hat{\mathrm{A}} \Psi>+\ll \hat{\mathrm{A}}>\Psi|<\hat{\mathrm{A}}>\Psi>$
$=<\Psi\left|\hat{\mathrm{A}}^{2} \Psi>-<\hat{\mathrm{A}}><\Psi\right| \hat{\mathrm{A}} \Psi>-<\hat{\mathrm{A}}>^{*}<\Psi\left|\hat{\mathrm{A}} \Psi>+<\hat{\mathrm{A}}><\hat{\mathrm{A}}>^{*}<\Psi\right| \Psi>\quad$ (as $\hat{\mathrm{A}}$ is
Hermitian)
$=<\Psi\left|\hat{\mathrm{A}}^{2}\right| \Psi>-<\hat{\mathrm{A}}><\Psi|\hat{\mathrm{A}} \Psi>-<\hat{\mathrm{A}}><\Psi| \hat{\mathrm{A}} \Psi>+<\hat{\mathrm{A}}><\hat{\mathrm{A}}>\quad$ (as $<\hat{\mathrm{A}}>^{*}=<\hat{\mathrm{A}}>$)
$=\langle\Psi| \hat{\mathrm{A}}^{2} \mid \Psi>-\langle\Psi| \hat{\mathrm{A}} \mid \Psi>^{2}=(\Delta \mathrm{A})^{2}$
while $\langle\mathrm{g}| \mathrm{g}>=<\mathrm{i}(\hat{\mathrm{G}}-<\hat{\mathrm{G}}>) \Psi \mid \mathrm{i}(\hat{\mathrm{G}}-<\hat{\mathrm{G}}>) \Psi>$
$=\mathrm{i}(-\mathrm{i})<(\hat{\mathrm{G}}-<\hat{\mathrm{G}}>) \Psi \mid(\hat{\mathrm{G}}-<\hat{\mathrm{G}}>) \Psi>$
$=<(\hat{\mathrm{G}}-<\hat{\mathrm{G}}>) \Psi \mid(\hat{\mathrm{G}}-<\hat{\mathrm{G}}>) \Psi>$
$=(\Delta \mathrm{G})^{2} \quad$ (similarly)
Combining, it gives $<\mathrm{f}|\mathrm{f}><\mathrm{g}| \mathrm{g}>=(\Delta \mathrm{A})^{2}(\Delta \mathrm{G})^{2}$. Now let us look for $\langle\mathrm{f}| \mathrm{g}>$ and
$<\mathrm{g} \mid \mathrm{f}>$:
$<\mathrm{f}|\mathrm{g}>=<(\hat{\mathrm{A}}-<\hat{\mathrm{A}}>) \Psi| \mathrm{i}(\hat{\mathrm{G}}-<\hat{\mathrm{G}}>) \Psi>$
$=\mathrm{i}<\hat{\mathrm{A}} \Psi|\hat{\mathrm{G}} \Psi>-\mathrm{i}<\hat{\mathrm{G}}><\hat{\mathrm{A}} \Psi| \Psi>-\mathrm{i}<\hat{\mathrm{A}}>^{*}<\Psi\left|\hat{\mathrm{G}} \Psi>+\mathrm{i}<\hat{\mathrm{A}}>^{*}<\hat{\mathrm{G}}\right\rangle<\Psi \mid \Psi>$
$=\mathrm{i}<\Psi|\hat{\mathrm{A}} \hat{\mathrm{G}}| \Psi>-\mathrm{i}<\hat{\mathrm{G}}><\Psi|\hat{\mathrm{A}}| \Psi>-\mathrm{i}<\hat{\mathrm{A}}>^{*}<\Psi|\hat{\mathrm{G}}| \Psi>+\mathrm{i}<\hat{\mathrm{A}}>^{*}<\hat{\mathrm{G}}><\Psi \mid \Psi>$ (as $\hat{\mathrm{A}}$,
G Hermitian)
$=\mathrm{i}<\Psi|\hat{\mathrm{A}} \hat{\mathrm{G}}| \Psi>-\mathrm{i}<\hat{\mathrm{A}}><\hat{\mathrm{G}}>\quad$ (as $<\hat{\mathrm{A}}>,<\hat{\mathrm{G}}>$ are real)
while $<\mathrm{g}|\mathrm{f}>=-\mathrm{i}<(\hat{\mathrm{G}}-<\hat{\mathrm{G}}>) \Psi|(\hat{\mathrm{A}}-<\hat{\mathrm{A}}>) \Psi>=(-1)(\mathrm{i}<\Psi|\hat{\mathrm{G}} \hat{\mathrm{A}}| \Psi>-\mathrm{i}<\hat{\mathrm{G}}><\hat{\mathrm{A}}>)$
(similarly)
So, adding them we get, $<\mathrm{f}|\mathrm{g}>+<\mathrm{g}| \mathrm{f}\rangle=\mathrm{i}<\Psi|\hat{\mathrm{A}} \hat{G}| \Psi>-\mathrm{i}<\Psi|\hat{\mathrm{G}} \hat{\mathrm{A}}| \Psi>$
$=\mathrm{i}<\Psi|(\hat{\mathrm{A}} \hat{\mathrm{G}}-\hat{\mathrm{G}} \hat{\mathrm{A}})| \Psi\rangle=\mathrm{i}<\Psi|[\hat{\mathrm{A}}, \hat{\mathrm{G}}]| \Psi\rangle$
Now application of the Schwartz inequality $4<\mathrm{f}|\mathrm{f}\rangle\langle\mathrm{g}| \mathrm{g}>\geq(<\mathrm{f}|\mathrm{g}\rangle+\langle\mathrm{g} \mid \mathrm{f}\rangle)^{2}$ gives
$4(\Delta \mathrm{~A})^{2}(\Delta \mathrm{G})^{2} \geq(\mathrm{i}<\Psi|[\hat{\mathrm{A}}, \hat{\mathrm{G}}]| \Psi>)^{2}$ i.e., $4(\Delta \mathrm{~A})^{2}(\Delta \mathrm{G})^{2} \geq-\langle\Psi|[\hat{\mathrm{A}}, \hat{\mathrm{G}}] \mid \Psi>^{2}$
Taking modulus of square root on both sides we get
$2(\Delta \mathrm{~A})(\Delta \mathrm{G}) \geq|\mathrm{i}<\Psi|[\hat{\mathrm{A}}, \hat{\mathrm{G}}]|\Psi>|$ or, $2(\Delta \mathrm{~A})(\Delta \mathrm{G}) \geq|<\Psi|[\hat{\mathrm{A}}, \hat{\mathrm{G}}]|\Psi>|$ i.e., $\Delta \mathrm{A} \Delta \mathrm{G} \geq 1 / 2|<\Psi|[\hat{\mathrm{A}}, \hat{\mathrm{G}}]|\Psi>|$, which is the (generalised) uncertainty principle.

For example, putting x in place of A and p_{x} in place of G, we get
$\Delta \mathrm{x} \Delta \mathrm{p}_{\mathrm{x}} \geq 1 / 2|<\Psi|\left[{ }^{\wedge} \mathrm{x},{ }^{\wedge} \mathrm{p}_{\mathrm{x}}\right]|\Psi>|$. Now we know that
$\left[{ }^{\wedge} \mathrm{x}, \wedge_{\mathrm{p}}\right] \Psi=\mathrm{x} .(-\mathrm{i} \hbar \partial / \partial \mathrm{x}) \Psi-(-\mathrm{i} \hbar \partial / \partial \mathrm{x})(\mathrm{x} \Psi)=-\mathrm{i} \hbar \mathrm{x} \partial \Psi / \partial \mathrm{x}+\mathrm{i} \hbar \partial / \partial \mathrm{x}(\mathrm{x} \Psi)$
$=-i \hbar x \partial \Psi / \partial x+i \hbar \Psi+i \hbar x \partial \Psi / \partial x=i \hbar \Psi$, so that
$<\Psi\left|\left[{ }^{\wedge} \mathrm{x},{ }^{\wedge} \mathrm{p}_{\mathrm{x}}\right]\right| \Psi>=<\Psi|\mathrm{i} \hbar \Psi>=\mathrm{i} \hbar<\Psi| \Psi>=\mathrm{i} \hbar$ (as Ψ is normalised).

This gives $|<\Psi|\left[{ }^{\wedge} \mathrm{x},{ }^{\wedge} \mathrm{p}_{\mathrm{x}}\right]\left|\Psi>\left|=|\mathrm{i} \hbar|=\hbar\right.\right.$, so that $\Delta \mathrm{x} \Delta \mathrm{p}_{\mathrm{x}} \geq 1 / 2 \hbar=\mathrm{h} /(4 \pi)$, the well-known relation. Note: the RHS of the last inequality is $\mathrm{h} /(4 \pi)$ i.e., $5.273 \times 10^{-35} \mathrm{~J} \mathrm{~s}$, not $\mathrm{h} /(2 \pi)$.

The above concept is formulated also in the form of compatible observables and incompatible observables. A pair of mutually compatible observables are such a pair of observables (e.g., x \& p_{y}) which can be simultaneously observed precisely, without any obstacle regarding the product of their uncertainties. For such a pair of observables, the commutator (e.g., $\left[\wedge x,{ }^{\wedge} \mathrm{p}_{\mathrm{y}}\right]$) of their corresponding quantum-mechanical operators is zero. The compatibility theorem states just this: "For a pair of mutually compatible observables, the commutator of their corresponding quantum-mechanical operators is zero". On the other hand, incompatible observables are such a pair of observables (e.g., x \& p_{x}) which can't be simultaneously observed precisely, with the product of their uncertainties (i.e., of standard deviations) can't be possible to become smaller than a certain minimum limit (this limit being the half of the modulus of the expectation value of the commutator of their corresponding quantummechanical operators, as per the generalised uncertainty principle mentioned above). For them the commutator of their corresponding quantum-mechanical operators is not zero.

