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Schmidt Orthogonalisation Technique 

Starting from a set of linearly independent eigenfunctions {f1, f2, ....., fn} of a Hermitian 
operator with a degenerate eigenvalue, the application of the Schmidt Orthogonalization 
Technique gives a new set {F1, F2, ....., Fn} of eigenfunctions with the same eigenvalue, such 
that the new set is an orthogonal set.  

According to this procedure, the first new function F1 is taken to be equal to f1. F2 is taken to be 
a linear combination of f2 and F1, i.e., to be f2 + c21F1 (where c21 is a constant). Similarly, the 
other functions are defined. Thus we get:  

F1 = f1 ,  F2 = f2 + c21F1 ,  F3 = f3 + c32F2 + c31F1  
.......... 
Fj = fj + i=1Σ

j–1 cji Fi  , 

.......... 
Fn = fn + i=1Σ

n–1 cni Fi  

Orthogonality of F1 & F2 gives <F1 | F2> = 0, which means <F1 | f2> + c21<F1 | F1> = 0, thus 
giving c21 =  – <F1 | f2> / <F1 | F1>  
Orthogonality of F1 & F3 gives <F1 | F3> = 0, which means  
<F1 | f3> + c32<F1 | F2> + c31<F1 | F1> = 0, thus giving c31 =  – <F1 | f3> / <F1 | F1>  
(as <F1 | F2> = 0 because of orthogonality of F1 & F2). 
Similarly, <F2 | F3> = 0 implies c32 =  – <F2 | f3> / <F2 | F2>  

Thus we arrive at a general formula for the coefficients cji (for i < j) as  
cji =  <Fi | fj> / <Fi | Fi>. As the new functions Fj gets defined (as Fj = fj + i=1Σ

j–1 cji Fi) when 
these coefficients are defined, the new orthogonal set of functions has been fully obtained. 
   

Schwartz Inequality and Uncertainty Principle 

For any two arbitrary well-behaved functions f and g the following relation is obeyed: 
4 <f | f><g | g>  ≥  (<f | g> + <g | f>)2  This relation is known as the Schwartz inequality. 
Proof: Let I = <(f + sg) | (f + sg)> where s is an arbitrary real parameter. In the integral I, the 
integrand |(f + sg)|2 is everywhere non-negative (i.e., positive or zero), and so I is positive, 
unless it happens that f = – sg (in which case I is zero as the integrand becomes everywhere 
zero). So we have two possible cases: (1) f = –sg in which case I = 0 and (2) f ≠ –sg in which 
case I > 0. However, by expanding the expression for I, we get  
I = <f | f> + s <f | g> + s* <g | f> + ss* <g | g> = <f | f> + s (<f | g> + <g | f>) + s2 <g | g>  
(as s is by definition real). Calling <g | g> = a,  (<f | g> + <g | f>) = b and <f | f> = c, we get I = 
as2 + bs + c with a, b, c being some constant integrals. Now considering the more general case 
(2) of  f ≠ –sg and I > 0, we get as2 + bs + c > 0 where s is real. This means that no real root for 
s exists for the equation as2 + bs + c = 0, meaning that (b2 – 4ac) is negative giving only non-
real complex roots for this quadratic equation. So we get, for f ≠ – sg, b2 – 4ac < 0 i.e., 4ac > b2 
i.e.,   4<f | f><g | g>   >  (<f | g> + <g | f>)2     --------------- (i) 
For the more specific case (1) of  f = –sg, < f | f > = < (–sg) | (–sg) > = s2 < g | g > whereas  
<f | g> = –s* <g | g> = –s <g | g> and <g | f> = –s <g | g>. These relations give:  
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4<f | f><g | g> = (<f | g> + <g | f>)2     --------------- (ii) 
Thus, combining the two possible cases, we arrive at the Schwartz inequality:  
4<f | f> <g | g>  ≥  (<f | g> + <g | f>)2 

In the quantitative formulation of the (generalised) uncertainty principle stated as 

∆∆∆∆A. ∆ ∆ ∆ ∆G  ≥   ½ |<ψψψψ | [Â, Ĝ] | ψψψψ>|, the stated uncertainties ∆A and ∆G are nothing but the 
standard deviations in measurement of the physical observables A & G, where Â & Ĝ are the 
corresponding Hermitian operators. This relation can be derived starting from the Schwartz 
inequality as follows: 
From postulates of quantum mechanics, it is obvious that the standard deviations ∆A is given 
by:  ∆A = (<ψ | Â2 | ψ> – <ψ | Â | ψ>2)1/2 (square root of the difference between average of 
square and square of average). In the Schwartz inequality, let us choose the arbitrary functions f 
& g as f = (Â – <Â>)Ψ and g = i (Ĝ – <Ĝ>)Ψ, where i = √(–1) and Ψ is the normalized system 
wavefunction (with <Ψ | Ψ> = 1). Now  
<f | f> = <(Â – <Â>)Ψ | (Â – <Â>)Ψ>  
= <ÂΨ | ÂΨ> – <ÂΨ | <Â>Ψ> – < <Â>Ψ |  ÂΨ> + < <Â>Ψ | <Â>Ψ>  
= <Ψ | Â2

Ψ> – <Â> <Ψ | ÂΨ> – <Â>* < Ψ |  ÂΨ> + <Â> <Â>* < Ψ | Ψ>      (as Â is 
Hermitian) 
= <Ψ | Â2 

| Ψ> – <Â> <Ψ | ÂΨ> – <Â> < Ψ |  ÂΨ> + <Â> <Â>          (as <Â>* = <Â>) 
= <Ψ | Â2 | Ψ> – <Ψ | Â | Ψ>2 = (∆A)2 
while <g | g> = <i(Ĝ – <Ĝ>)Ψ | i(Ĝ – <Ĝ>)Ψ>  
= i(–i) <(Ĝ – <Ĝ>)Ψ | (Ĝ – <Ĝ>)Ψ> 
=  <(Ĝ – <Ĝ>)Ψ | (Ĝ – <Ĝ>)Ψ>  
= (∆G)2       (similarly) 
Combining, it gives <f | f> <g | g> = (∆A)2 (∆G)2 . Now let us look for <f | g> and  
<g | f>:  
<f | g> = <(Â – <Â>)Ψ | i(Ĝ – <Ĝ>)Ψ>  
= i <ÂΨ | ĜΨ> – i <Ĝ> <ÂΨ | Ψ> – i <Â>* < Ψ | ĜΨ> + i <Â>* <Ĝ> < Ψ | Ψ>  
=  i <Ψ | ÂĜ | Ψ> – i <Ĝ> <Ψ | Â | Ψ> – i <Â>* < Ψ | Ĝ | Ψ> + i <Â>* <Ĝ> < Ψ | Ψ>   (as Â, 
Ĝ Hermitian) 
=  i <Ψ | ÂĜ | Ψ> –  i <Â> <Ĝ>    (as <Â>, <Ĝ> are real) 
while <g | f> = –i <(Ĝ – <Ĝ>)Ψ | (Â – <Â>)Ψ> = (–1)(i <Ψ | ĜÂ | Ψ> –  i  <Ĝ> <Â>)    
(similarly) 
So, adding them we get, <f | g> + <g | f> = i <Ψ | ÂĜ | Ψ> – i <Ψ | ĜÂ | Ψ> 
= i <Ψ | (ÂĜ – ĜÂ) | Ψ>  =  i <Ψ | [ Â, Ĝ ] | Ψ> 
Now application of the Schwartz inequality 4 <f | f><g | g>  ≥  (<f | g> + <g | f>)2 gives 
4 (∆A)2 (∆G)2  ≥  (i <Ψ | [ Â, Ĝ ] | Ψ>)2   i.e., 4 (∆A)2 (∆G)2  ≥  – <Ψ | [ Â, Ĝ ] | Ψ>2  

Taking modulus of square root on both sides we get 
2 (∆A) (∆G)  ≥  |i <Ψ | [ Â, Ĝ ] | Ψ>| or, 2 (∆A) (∆G)  ≥  |<Ψ | [ Â, Ĝ ] | Ψ>|  i.e., 
∆A 

∆G  ≥  ½ |<Ψ | [ Â, Ĝ ] | Ψ>| , which is the (generalised) uncertainty principle.  

For example, putting x in place of A and px in place of G, we get  
∆x 

∆px
  ≥  ½ |<Ψ | [ ^x, ^px ] | Ψ>|. Now we know that   

[ ^x, ^px ] Ψ = x.(– i ħ ∂/∂x)Ψ – (– i ħ ∂/∂x) (xΨ) = – i ħ x ∂Ψ/∂x + i ħ ∂/∂x (xΨ)  
= – i ħ x ∂Ψ/∂x + i ħΨ + i ħ x ∂Ψ/∂x = i ħ Ψ, so that  
<Ψ | [ ^x, ^px ] | Ψ> = <Ψ | i ħ Ψ> = i ħ <Ψ|Ψ> = i ħ (as Ψ is normalised).  
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This gives |<Ψ | [ ^x, ^px ] | Ψ>| = | i ħ | = ħ, so that ∆x 
∆px

  ≥  ½ ħ = h/(4π), the well-known 
relation.  Note: the RHS of the last inequality is h/(4π) i.e., 5.273 x 10–35 J s, not h/(2π).   

The above concept is formulated also in the form of compatible observables and incompatible 
observables. A pair of mutually compatible observables are such a pair of observables (e.g., x 
& py) which can be simultaneously observed precisely, without any obstacle regarding the 
product of their uncertainties. For such a pair of observables, the commutator (e.g., [^x, ^py] ) 
of their corresponding quantum-mechanical operators is zero. The compatibility theorem states 
just this: "For a pair of mutually compatible observables, the commutator of their 
corresponding quantum-mechanical operators is zero". On the other hand, incompatible 
observables are such a pair of observables (e.g., x & px) which can't be simultaneously 
observed precisely, with the product of their uncertainties (i.e., of standard deviations) can't be 
possible to become smaller than a certain minimum limit (this limit being the half of the 
modulus of the expectation value of the commutator of their corresponding quantum-
mechanical operators, as per the generalised uncertainty principle mentioned above). For them 
the commutator of their corresponding quantum-mechanical operators is not zero.  


