Schmidt Orthogonalisation Technique

Starting from a set of linearly independent eigenfunctions {fj, f2, ....., f,} of a Hermitian
operator with a degenerate eigenvalue, the application of the Schmidt Orthogonalization
Technique gives a new set {Fy, Fo, ....., Fy} of eigenfunctions with the same eigenvalue, such
that the new set is an orthogonal set.

According to this procedure, the first new function F; is taken to be equal to f;. F; is taken to be
a linear combination of f, and Fy, i.e., to be f, + ¢3;F; (where c;; is a constant). Similarly, the
other functions are defined. Thus we get:

Fi =1, F, =1, +cyF, F3 =15 + c3oF, + ¢31Fy
Fi=f+ 2 iFi

Fn = fn + i=]zn_1 Cni Fi

Orthogonality of F; & F; gives <F; | F,> = 0, which means <F, | £,> + ¢;<F; | F;> =0, thus
giVil’lg ¢ = —<F | >/ <F; | F>
Orthogonality of F; & F5 gives <F; | F3> = 0, which means

<F, ’ 3> + ¢3,<F; | Fo> + ¢31<F; | Fi>=0, thus glVll’lg ¢ = —<F, | 3>/ <F; | F>
(as <F; | F,> = 0 because of orthogonality of F; & F).
Similarly, <F, | F3> = 0 implies ¢35, = — <F, | 3>/ <F; | F,>

Thus we arrive at a general formula for the coefficients c;; (for 1 <j) as _
cii= <Fi|f>/<F;| Fi>. As the new functions F; gets defined (as F; = f; + i:IZH cii Fi) when
these coefficients are defined, the new orthogonal set of functions has been fully obtained.

Schwartz Inequality and Uncertainty Principle

For any two arbitrary well-behaved functions f and g the following relation is obeyed:

4 <f|f><g|g> > (<f|g>+<g|f>)* This relation is known as the Schwartz inequality.
Proof: Let I = <(f + sg) | (f + sg)> where s is an arbitrary real parameter. In the integral I, the
integrand |(f + sg)[* is everywhere non-negative (i.e., positive or zero), and so I is positive,
unless it happens that f = — sg (in which case I is zero as the integrand becomes everywhere
zero). So we have two possible cases: (1) f=—sg in which case I =0 and (2) f # —sg in which
case [ > 0. However, by expanding the expression for I, we get

[=<f[f>+s<f|g>+s* <g|f>+ss* <g| g>=<f|f>+s (< | >+ <g | >) +s"<g | g>

(as s is by definition real). Calling <g | g>=a, (<f|g>+<g|f>)=band <f|f>=c, we get]=
as” + bs + ¢ with a, b, ¢ being some constant integrals. Now considering the more general case
(2) of f#—-sgand1>0, we get as” + bs + ¢ > 0 where s is real. This means that no real root for
s exists for the equation as” + bs + ¢ = 0, meaning that (b — 4ac) is negative giving only non-
real complex roots for this quadratic equatlon So we get, for f#—sg, b> —4ac <0 i.e., 4ac > b’
ie., 4<f|f><g|g> > (<f|g>+<g|f>) -—mmmmmmreeeen (i)

For the more specific case (1) of f=-sg, <f|f>=<(-sg)|(-sg)>=s"<g|g> whereas
<f|g>=-s*<g|g>=-s<g|g>and <g | f>=-s <g| g>. These relations give:
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4<f|f><g|g>=(<f|g>+<g| >)}  —ommeeme (i)
Thus, combining the two possible cases, we arrive at the Schwartz inequality:
4<f|f><g|g> > (<f|g>+<g| )’

In the quantitative formulation of the (generalised) uncertainty principle stated as
AA.AG > %<y | [A, Gl y>|, the stated uncertainties AA and AG are nothing but the
standard deviations in measurement of the physical observables A & G, where A & G are the
corresponding Hermitian operators. This relation can be derived starting from the Schwartz
inequality as follows:

From postulates of quantum mechanics, it is obvious that the standard deviations AA is given
by: AA = (<y | A? | y>—<y | A | y>))"* (square root of the difference between average of
square and square of average). In the Schwartz inequality, let us choose the arbitrary functions f
& gasf=(A-<A>)¥ and g=i (G —<G>)¥, where i = V(1) and V¥ is the normalized system
wavefunction (with <¥ | ¥>=1). Now

<f| f>=<(A - <A>)¥ | (A - <A>)¥>

= <AY | AP> - <AY | <A>P> - < <A>Y | AP> + < <A>Y | <A>P>

=<P | A2P> —<A> <P | AP> —<A>" <P | AP>+<A><A>"<W¥ | P>  (asAis
Hermitian)

= <Y | A?| P> - <A><¥ | AP> - <A>< ¥ | AP>+ <A><A> (as <A>" = <A>)

= <P | A? | P> <P | A | P>7 = (AA)

while <g | g> = <i(G — <G>)¥ | i(G — <G>)¥>

=i(-) <(G - <G>)¥ | (G - <G>)¥>

= <(G-<G>)¥ | (G-<G>)¥>

=(AG)’  (similarly)

Combining, it gives <f | £> <g | g> = (AA)* (AG)” . Now let us look for <f | g> and

<g| >

<f| g>=<(A-<A>)Y¥ |i(G - <G>)¥>

=i<A¥ | G¥>-i<G><AY | ¥>—i<A>" <¥ | GP>+i<A>"<G>< V¥ | P>

= i<¥|AG|P>—i<G><¥|A|P>—i<A>" <V |G |¥>+i<A>"<G><¥ | ¥> (as A,
G Hermitian)

= i<¥|AG|¥>- i<A><G> (as <A>, <G> are real)

while <g | £> =i <(G — <G>)¥ | (A — <A>)¥>=(-1)(i <¥ | GA | ¥> — i <G> <A>)
(similarly)

So, adding them we get, <f| g>+<g | f>=i<¥ |AG |¥>-i<¥ | GA | ¥>
=i<¥|(AG-GA) |¥> =i<¥|[A,G]|¥>

Now application of the Schwartz inequality 4 <f | f><g | g> > (<f| g>+ <g | £>) gives

4 (AAY(AGY > (i<¥|[A,G1|¥P>) ie,4(AAY(AG) > —<¥|[A, G]|¥>?

Taking modulus of square root on both sides we get

2(AA)(AG) > [i<¥ [ A, G]|¥>|or, 2 (AA)(AG) > <Y |[A, G| P> ie.,

AAAG > % |<¥ |[ A, G ]| ¥>|, which is the (generalised) uncertainty principle.

For example, putting x in place of A and py in place of G, we get

AXApx > Vo <Y | [ X, “px | | ¥>|. Now we know that

[, *px ] ¥ =x.(—1h 0/0x)¥ — (—1h 0/0x) x¥) =—1h x 0¥/0x + 1 h 0/ox (x'P)
=—1hxo¥V/ox+ih¥Y+ihx o¥Y/ox=1hWY, so that

<Y [ x| P>=<¥ |ih¥>=1h <¥Y|¥>=1h (as ¥ is normalised).
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This gives <YW | [ *x, “px ] | ¥>| =|1h | =h, so that Ax Apx > "2 h = h/(4n), the well-known
relation. Note: the RHS of the last inequality is h/(47) i.e., 5.273 x 107> I's, not h/(27).

The above concept is formulated also in the form of compatible observables and incompatible
observables. A pair of mutually compatible observables are such a pair of observables (e.g., x
& py) which can be simultaneously observed precisely, without any obstacle regarding the
product of their uncertainties. For such a pair of observables, the commutator (e.g., [*X, "py] )
of their corresponding quantum-mechanical operators is zero. The compatibility theorem states
just this: "For a pair of mutually compatible observables, the commutator of their
corresponding quantum-mechanical operators is zero". On the other hand, incompatible
observables are such a pair of observables (e.g., x & px) which can't be simultaneously
observed precisely, with the product of their uncertainties (i.e., of standard deviations) can't be
possible to become smaller than a certain minimum limit (this limit being the half of the
modulus of the expectation value of the commutator of their corresponding quantum-
mechanical operators, as per the generalised uncertainty principle mentioned above). For them
the commutator of their corresponding quantum-mechanical operators is not zero.



