
1
64

63

Extending the Shell’s Namespace

A namespace extension provides a way for you to define a new object that a browser, such as the Windows Explorer, can explore. The code you provide and the registry entries you make define the icon images and text that the user sees while viewing your data, as well as the menus, toolbars, and status information the user can use on your data objects.

One of the reasons it is relatively simple to extend the shell’s namespace is that the Explorer can be viewed as two independent parts: the browser code and the system namespace provider code. Because they were written polymorphically and communicate by using COM-based interfaces, they do not depend on each other’s implementation. Thus, anyone can provide either browser code that browses the system namespace, or a namespace extension that extends the system namespace that can be browsed using the Explorer.

Your extension has to provide the Explorer with icons, names, and details you want to represent the items in your namespace. It can provide the Explorer with a custom context menu for your data, and drag-and-drop capabilities. A key thought to remember, however, is that the contents of your namespace are known only to you so the Explorer can work only with what you provide.

Structuring a Namespace Extension

As is the case with shell extensions, a namespace extension is implemented as a COM in-process server DLL. Even the simplest of extensions requires experience with COM, OLE, and the behavior of the Windows Explorer before you attempt to implement a namespace extension. It also means that you must make the proper entries in the system Registry or your extension will not work.

As a reminder, the construction of an in-process server DLL requires the implementation of a DLL that exports the following functions:

SYMBOL 183 \f "Symbol" \s 11 \h
DllMain
SYMBOL 183 \f "Symbol" \s 11 \h
DllGetClassObject
SYMBOL 183 \f "Symbol" \s 11 \h
DllUnloadNow
The DLL also implements an object that exposes IClassFactory for creation of the other objects contained in the DLL. Those objects will expose IUnknown and the other interfaces necessary to implement a namespace extension, including IPersistFolder, IShellFolder, IEnumIDList, and IShellView. These interfaces allow the Explorer and your extension to display, interact, and communicate.

It is important to remember that the Explorer calls into your extension by using the IShellFolder and IShellView interfaces you have implemented in your extension. The IShellBrowser interface (implemented by the Explorer), allows your extension to call back into the Explorer. It is very similar to “Site”-type interfaces commonly found in OLE scenarios.

Beyond these required interfaces, your extension will need to implement other interfaces that will be created by the IShellFolder object. These include IExtractIcon to provide icons, IContextMenu to provide context menus for your items, drag-and-drop interfaces (IDropSource and IDropTarget), and IDataObject for data transfer.

Examples of in-process server DLLs, especially any that contain namespace or shell extensions, are obviously helpful in learning to build namespace extension DLLs.

Identifying Items in the Namespace

One of the operations that must be handled when extending the shell’s namespace is the enumeration of items. The IShellFolder::EnumObjects method returns an enumerator object, IEnumIdList that will return a set of identifiers that identifies each item within a specific folder.Called a shell item IDList, it is an array of bytes that contains enough data to identify items by the parent folder. Only the first two bytes are defined (as the size of the ID) and the rest is opaque to the caller.

A shell item IDList must contain sufficient information to identify an object with a folder, but it may also contain additional information for efficient manipulation (such as retrieving display name or sorting). You have the option to store additional information because the Explorer does not compare two item IDs directly for either sorting or identification. Instead it uses IShellFolder::CompareID to perform this task.

Nonrooted and Rooted Explorers

Your namespace extension can be implemented in either of two ways and there is no set criteria for determining which to use. Rather, it depends only on your evaluation of which is more logical and better suited to your particular application.

You can implement your extension so the user can browse into it using the standard Explorer. In this case, your new namespace is presented as a sub-namespace to the system namespace already there. Since the Desktop is the root folder of the system’s namespace, it also serves this purpose for your extension. Accordingly, your extension resides within the existing hierarchy of objects on the desktop and appears to the user as just another item in the system namespace.

On the other hand, if you analyze your application and determine that a completely separate namespace makes more sense, you can choose to implement your extension in just this way. However, the user will not be able to browse into it without running a special instance of the Explorer rooted in an item of your choosing. The rooted Explorer’s top level is referred to as a junction point. It can be a file or a folder but if the extension uses anything as a junction point, it is by definition “rooted” because the Explorer does not support exploring directly into files.

As noted earlier, whether you choose to implement your extension as rooted or nonrooted is largely situational. There is no hard-and-fast rule. If your extension logically blends into the existing hierarchy of objects, a nonrooted Explorer might be best. If not, it will probably be better to implement a rooted Explorer with a specific file as your entry point to the new namespace,

Creating a Junction Point

Creating a junction point can be done in several different ways, depending on the item you choose for the junction point, such as a file or directory. For example, to make a junction point in either the Desktop or in the My Computer folder, add the following key to the registry:

HKEY_LOCAL_MACHINE

SOFTWARE

Microsoft

CurrentVersion

Explorer

[MyComputer or Desktop]

{CLSID}
You can also use a directory as your junction point. If your operating system supports long filenames, you can use the CLSID of your namespace extension as the file extension of a folder (MyFolder.{20D....}. Otherwise, you can create a directory, change its file attributes to read-only and place a file called DESKTOP.INI into it. This simple text file is made up of the following:

[.ShellClassInfo]

CLSID={clsid}

NOTES: A quick perusal of my own machine’s DESKTOP.INI files reveals the C:\Windows\Temporary Internet Files\ and C:\Windows\Fonts folders contain:

[.ShellClassInfo]

UICLSID={CLSID}

The C:\Windows\Favorites folder contains:

[.ShellClassInfo]

CLSID={CLSID1}

[ExtShellFolderViews]

{CLSID2}=%windir%\web\favorite.htm

The C:\Windows\Favorites\Channels\ folders contain:

[.ShellClassInfo]

ConfirmFileOp=0

URL=URL.htm

Logo=C:\WINDOWS\web\Filename.gif
WideLogo=C:\WINDOWS\web\Filename.gif
IconIndex=0

IconFile=C:\WINDOWS\web\Filename.ico
The C:\Windows\Desktop\My Briefcase folder contains:

[.ShellClassInfo]

CLSID={CLSID}

ConfirmFileOp=0

Opening a Rooted Explorer

To open a rooted Explorer for the namespace you have created, you must provide a way to start the new instance of EXPLORER.EXE, using the /root switch on the command line. There are several ways to accomplish this. For example, you can either call ShellExecute directly, or you can create a shortcut file that contains one of the following as a command line:

SYMBOL 183 \f "Symbol" \s 11 \h
If the junction point is an item under the desktop:

explorer.exe /e,/root,::{CLSID of item}

SYMBOL 183 \f "Symbol" \s 11 \h
If the junction point is an item under My Computer:

explorer.exe /e,/root,,::{20D04FE0 - 3AEA - 1069 - A2D8 - 08002B30309D}\::{CLSID of item}}

SYMBOL 183 \f "Symbol" \s 11 \h
If the junction point is a file system folder:

explorer.exe /e,/root, [path to a junction point]

When the Explorer is opened using the /root::{CLSID} option, it sets the junction point object as the root of hierarchy and calls its IShellFolder.
When the user opens a junction point object or one of its subfolders, the Explorer lets it create a view object by calling IShellFolder::CreateViewObject and requesting an IShellView interface. The Explorer then calls IShellView::CreateViewWindow to allow it to create the view window of its folder. One of the parameters passed is a pointer to the IShellBrowser interface which allows the extension to communicate with the Explorer. The view object is able to add menu items to the menu bar, add toolbar buttons, display status information on the status bar, and/or process shortcut keys.

UI Negotiation (Menu, Toolbar, and Status Bar)
The mechanism to determine which items will appear in the view window while the contents are visible is similar to OLE in-place activation but notable differences do exist. Three of them are discussed here.

First, the view window always exists even though it does not have the input focus. Therefore, it should maintain three states:

SYMBOL 183 \f "Symbol" \s 11 \h
Deactivated

SYMBOL 183 \f "Symbol" \s 11 \h
Activated with the focus

SYMBOL 183 \f "Symbol" \s 11 \h
Activated without the focus

The view window may present different sets of menu items depending on the focus state. The Explorer notifies the state changes by calling IShellView::UIActivate. The view object should call IShellBrowser::OnViewWindowActivate when the view window is activated by the user.

Second, the Explorer does not support layout negotiation. Instead, it allows the view window to add toolbar buttons or set status bar texts. The view window may create modeless popups. The view object may call IShellBrowser::GetControlWindow or IShellBrowser::SendControlMsg to control them. The Explorer forwards appropriate notification messages from those controls using IShellView::ForwardControlMsg.

Third, the Explorer allows the view window to add menu items to the Explorer’s pull-down menus (in addition to inserting top-level pull-down menus). In other words, the view object is allowed to insert menu items to submenus returned from IShellBrowser::InsertMenus. To let the Explorer dispatch menu messages correctly, a certain range of menu item IDs (between SHVIEW_FIRST and SHVIEW_LAST) must be used.

Persistent View State
The Explorer defines a set of standard view states:

SYMBOL 183 \f "Symbol" \s 11 \h
View mode, such as large/small icon view (or detail view)

SYMBOL 183 \f "Symbol" \s 11 \h
View attributes, such as snap to grid.

The Explorer provides a persistent medium to store these states and though using them is not required, it is recommended. The setting is passed to the view object by using IShellView::CreateViewWindow and retrieved from it by using IShellView::GetCurrentInfo.

The Explorer also provides a persistent medium (a stream) to let the view object store view-specific information (such as scroll positions or icon layout). The view object can access this stream by calling IShellBrowser::GetViewStateStream.

When the user is browsing from one folder to another, the Explorer passes the pointer to the previously viewed IShellView instance as a parameter to IShellView::CreateViewWindow (before calling its DestroyViewWindow). This allows the next view object to retrieve appropriate view state from the previous view object (such as column widths of its details view), typically by calling IUnknown::QueryInterface on a private interface.

Registering Your Namespace Extension

Registering your extension is not particularly difficult but it must be done precisely or users will never find your namespace extension. The following registry entries must be included:

HKEY_CLASSES_ROOT\CLSID\{CLSID}

HKEY_CLASSES_ROOT_CLSID\{CLSID}\InProcServer32\(default)

=path\filename.dll

HKEY_CLASSES_ROOT_CLSID\{CLSID}
\InProcServer32\"ThreadingModel"

="Apartment"

HKEY_CLASSES_ROOT_CLSID\{CLSID}\Shell\Open\Command\(default)

=c:\windows\explorer.exe/root,%1

HKEY_CLASSES_ROOT_CLSID\{CLSID}\Shell\Explore\Command\(default)

=c:\windows\explorer.exe/e,/root/%1

Include the following entry if you are registering a specific filename extension:

HKEY_CLASSES_ROOT\.EXT\CLSID\{CLSID}

You can also include entries under the following key for the default icon, although this is optional.

HKEY_CLASSES_ROOT_CLSID\{CLSID}\DefaultIcon\(default)

="path\filename.dll",IconIndex

The following is also an optional key but one that can be very important. If you include the “Attributes” named value under ...{CLSID}\ShellFolder, it specifies the attributes of a junction point by using the SFGAO_* flags returned by the IShellFolder::GetAttributesOf method.

HKEY_CLASSES_ROOT_CLSID\{CLSID}\ShellFolder\Attributes

= 0000 00 00

For example, if the SFGAO_FOLDER flag is set and its junction point exists in the system namespace, the user sees your extension’s icon in the Explorer’s left pane and is able to browse into it using the standard (nonrooted) Explorer. If this flag is not set, you must provide a rooted Explorer for browsing

Another example is the SFGAO_HASSUBFOLDER flag. If it is set, the Explorer can make the extension’s icon expandable to the next level by displaying the + icon to its left.

Windows NT-only Registry Entry

Windows NT requires one additional registry entry. It is based on the list of extensions that have already been approved in the user’s system. For your namespace extension to work, you must add the following:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsNT\CurrentVersion\ShellExtensions\Approved\{CLSID}

="Extension Name"

Additional Namespace Extension Considerations

The material in this overview is specifically intended for the beta 2 release of Windows NT 4.0 (SUR). It is not final, nor is it complete. Additional information will be provided in future releases of this product.

Additional interfaces not discussed here include IShellExecuteHook, IShellIcon, and ICommDlgBrowser.

ICommDlgBrowser

The ICommDlgBrowser interface is used by the common file dialog boxes to extend the behavior of the shell browser. This interface is received by calling QueryInterface on the IShellBrowser object.

When to Implement

This interface is implemented only by the common file-dialog boxes.

When to Use

Use ICommDlgBrowser when you want to provide special behavior when hosted inside the common dialog boxes.

Methods in Vtable Order

IUnknown Methods
Description

QueryInterface
Returns pointers to supported interfaces.

AddRef
Increments reference count.

Release
Decrements reference count.

ICommDlgBrowser Methods
Description

OnDefaultCommand
Called when a user double-clicks in the view or presses the Enter key.

OnStateChange
Called after a state of change has occurred in a common dialog box.

IncludeObject
Allows common dialog filter objects that the view presents..

ICommDlgBrowser::OnDefaultCommand

OnDefaultCommand is called when a user double-clicks in the view or presses the Enter key.

HRESULT OnDefaultCommand()

This method has no parameters.

Return Values

Returns NOERROR if successful or an OLE-defined error code otherwise.

Remarks

The browser should return S_OK if it has processed the action or S_FALSE to let the view perform the default action.

Notes to Callers

Allows the default command to be handled by the common dialog box instead of the view.

See Also

ICommDlgBrowser
ICommDlgBrowser::OnStateChange

OnStateChange is called after a certain state has changed in the IShellView, as identified by the parameter passed in.

HRESULT OnStateChange(

 ULONG uChange
Specifies the change in state.

);

Parameters

uChange
Specifies the change in the selection state. This parameter can be one of the following values:

Value
Meaning

CDBOSC_SETFOCUS
The focus has been set to the view.

CDBOSC_KILLFOCUS
The focus has been lost from the view.

CDBOSC_SELCHANGE
The selection has changed.

CDBOSC_RENAME
An item has been renamed.

Return Values

OnStateChange does not return a value.

Remarks

OnStateChange is used to let the common file dialogs track the state of the view and change its UI as needed.

Notes to Callers

When items in the view are selected, or when the view loses the focus, it needs to call this member to notify the common dialog that either the view state or selection state is changing.

See Also

ICommDlgBrowser
ICommDlgBrowser::IncludeObject

IncludeObject is used to allow the common dialog filter objects that the view presents.

HRESULT IncludeObject(

 LPCITEMIDLIST pidl
//Pointer to an identifier list.

);

Parameters

pidl
Pointer to a identifier list (IDLIST) that is relative to the folder.

Return Values

The browser should return S_OK to include the object in the view, S_FALSE to hide it.

Remarks

IncludeObject is called by the IEnumIDList implementation when hosted in the file dialogs. The enumerator should call this function to let the common dialog filter out objects it does not want to display. Typically, the file dialogs will get the display text of the item, and filter by the extension.

Notes to Callers

Call before returning an object in the shell folder’s IDList enumerator.

See Also

ICommDlgBrowser
IContextMenu2

The IContextMenu2 interface is used to either create or merge a context menu associated with a certain object when a client of IContextMenu is supposed to handle messages associated with owner-drawn menu items.

When to Implement

Implement IContexMenu2 if your object is a client of IContextMenu when owner-drawn messages are an issue: Do so if it is possible to receive one of the following messages while calling TrackPopupMenu in the window procedure of the menu’s owner window:

WM_INITPOPUP

WM_DRAWITEM

WM_MEASUREITEM

These messages are sent only if a QueryInterface call for an IContextMenu2 interface pointer is successful, indicating that the object supports this interface.

When to Use

You do not call this interface directly. IContextMenu2 is used by the operating system only when it has confirmed that the application is aware of this interface.

Methods in Vtable Order

IUnknown Methods
Description

QueryInterface
Returns pointers to supported interfaces.

AddRef
Increments reference count.

Release
Decrements reference count.

IContextMenu2 Methods
Description

QueryContextMenu
Adds commands to a context menu.

HandleMenuMsg
Handles messages related to drawing owner-drawn menu items.

InvokeCommand
Carries out a menu command, either in response to user input or otherwise. For an example, see IExtractIcon.

GetCommandString
Retrieves the language-independent name of a menu command or the help text for a menu command.

IContextMenu2::GetCommandString

Retrieves the language-independent command string or the help text for a context menu item.

HRESULT GetCommandString(

 UINT idCmd,
//Menu item identifier offset

 UINT uFlags,
//Specifies information to retrieve

 UINT *pwReserved,
//Reserved; must be NULL

 LPSTR pszName,
//Address of buffer to receive string

 UINT cchMax
//Size of the buffer that receives the string

);

Parameters

idCmd

Menu item identifier offset.

uFlags
Flag specifying the information to retrieve. This parameter can be one of the following values:

Value
Meaning

GCS_HELPTEXT
Returns the help text for the menu item.

GCS_VALIDATE
Validates that the menu item exists.

GCS_VERB
Returns the language-independent command name for the menu item.

pwReserved
Reserved. Applications must specify NULL when calling this method, and handles must ignore this parameter when called.

pszName
Address of the buffer that receives the null-terminated string being retrieved.

cchMax
Size of the buffer that receives the null-terminated string.

Return Values

Returns NOERROR if successful or an OLE-defined error code otherwise.

Remarks

The language-independent command name is a name that can be passed to the IContextMenu::InvokeCommand method to activates a command by an application. The help text is a description that the Explorer displays in its status bar; it should be reasonably short (under 40 characters).

See Also

IContextMenu
IContextMenu2::HandleMenuMsg

Allows client objects of IContextMenu to handle messages associated with owner-drawn menu items.

HRESULT HandleMenuMsg(

 UINT uMsg,
//Specifies the message

 WPARAM wParam,
//Depends on the contents of uMsg

 LPARAMlParam,
//Depends on the contents of uMsg

);

Parameters

uMsg

Specifies the message to be processed. If it is either WM_INITPOPUP, WM_DRAWITEM, or WM_MEASUREITEM, the client object being called may provide owner-drawn menu items.

wParam

Specifies additional message information. The value of this parameter depends on the value of the uMsg parameter.

lParam
Specifies additional message information. The value of this parameter depends on the value of the uMsg parameter.

Return Values

Returns NOERROR if successful or an OLE-defined error code otherwise.

Remarks

HandleMenuMsg is called when a client of IContextMenu is aware of the IContextMenu2 interface and receives one of the messages specified in the description of the uMsg parameter while the client is processing menu messages.

See Also

IContextMenu
IContextMenu2::InvokeCommand

Carries out the command associated with a context menu item.

HRESULT InvokeCommand(

 LPCMINVOKECOMMANDINFO lpici
//Points to a command info structure

);

Parameters

lpici
Pointer to a CMINVOKECOMMANDINFO structure containing information about the command.

Return Values

Returns NOERROR if successful or an OLE-defined error code otherwise.

The shell calls this method when the user chooses a command that the handler added to a context menu. This method may also be called by an application without any corresponding user action.

See Also

CMINVOKECOMMANDINFO, IContextMenu
IContextMenu2::QueryContextMenu

Adds menu items to the specified menu. The menu items should be inserted at a specified position in the menu, and their menu item identifiers must be in a given range.

HRESULT QueryContextMenu(

 HMENU hmenu,
//Handle of the menu

 UINT indexMenu,
//Location to insert first menu item

 UINT idCmdFirst,
//Minimum value for a menu item identifier

 UINT idCmdLast,
//Maximum value for a menu item identifier

 UINT uFlags
//Specifies zero or more status values

);

Parameters

hmenu
Handle of the menu. The handler should specify this handle when calling the InsertMenu or InsertMenuItem function.

indexMenu
Zero-based position at which to insert the first menu item.

idCmdFirst
Minimum value that the handler can specify for a menu item identifier.

idCmdLast
Maximum value that the handler can specify for menu item identifiers.

uFlags
Flag specifying zero or more of the following values:

CMF_DEFAULTONLY
The user is activating the default action, typically by double-clicking. This value provides a hint for the context menu to add nothing if it does not modify the default item in the menu. A context menu extension or drag-and-drop handler should not add any menu items if this value is specified. A name space extension should add only the default item (if any).

CMF_EXPLORER
Context menu handlers should ignore this value. It is specified when the context menu is for an object in the Explorer.

CMF_NORMAL
Indicates normal operation. A context menu extension, name-space extension, or drag-and-drop handler can add any menu items.

CMF_VERBSONLY
Context menu handlers should ignore this value. This value is specified if the context menu is for a shortcut object. This value is specified if the context menu is for a shortcut object.

The remaining bits of the low-order word are reserved by the system. The high-order word may be used for context-specific communications.

Return Values

Returns an HRESULT structure in which, if the method is successful, the code member contains the menu identifier offset of the last menu item added plus one.

Remarks

The actual identifier of each menu item should be idCmdFirst plus a menu identifier offset in the range zero through (idCmdLast – idCmdFirst).

See Also

IContextMenu, InsertMenu, InsertMenuItem
IPersistFolder

The IPersistFolder interface is used to initialize shell folder objects.

When to Implement

When implementing a shell namespace extension, specifically IShellFolder, you need to implement this interface so the folder object can be initialized this is how the folder is told where it is in the shell namespace.

When to Use

You don’t use this interface directly. It is used by the file system implementation of IShellFolder::BindToObject when it is initializing a shell folder object

Methods in Vtable Order

IUnknown Methods
Description

QueryInterface
Returns pointers to supported interfaces.

AddRef
Increments reference count.

Release
Decrements reference count.

IPersist Method
Description

GetClassID
Returns the class identifier (CLSID) for the component object.

IPersistFolder Method
Description

Initialize
Called when the Explorer initializes a shell folder object.

IPersistFolder::Initialize

The IPersistFolder::Initialize method is called whenever the Explorer is initializing a shell folder object.

HRESULT Initialize(

 LPCITEMIDLIST pidl,
//Folder’s absolute location.

);

Parameters

pidl
Pointer to the ITEMIDLIST (tem identifiier list) structure that specifies the absolute location of the folder.

Return Values

Returns NOERROR if successful or an OLE-defined error value otherwise.

Remarks

Notes to Implementors

All objects that implement IShellFolder for use in the shell’s name space must implement this method. When a folder’s location in the name space is not a relevant consideration, Initialize can simply return NOERROR. When the location is relevant to the folder, you should store the fully qualified IDLIST passed in for future reference.

For example, if the folder implementation needs to construct a fully qualified PIDL to elements that it contains, the PIDL passed to Initialize should be used to construct those fully qualified PIDLs.
See Also

IShellExtInit, IShellFolder, ITEMIDLIST
IShellBrowser

The IShellBrowser interface provides services for namespace extensions and is the companion to the IShellView interface implemented by namespace extensions.. It is similar to the “site” interfaces that are often found in OLE hosting scenarios, such as IOleControl and IOleControlSite. This allows the extension to communicate with the host of the namespace, providing UI elements like menus, status text, and tool bars. This interface also provides the extension with a way to access storage to save its persistent view state.

IShellBrowser derives from IOleWindow and it represents the container’s top-level window, allowing the contained views to insert their menus into the composite menu, install the composite menu into the appropriate window frame and remove the container’s menu elements from the composite menu. It sets and displays status text relevant to the in-place object. It also enables or disables the frame’s modeless dialog boxes, and translates accelerator keystrokes intended for the container’s frame.

When to Implement

You do not implement this interface directly. IShellBrowser is implemented by the Windows Explorer and by the Windows File Open Dialog.

When to Use

When implementing a namespace extension, notably IShellView, you will use the IShellBrowser implementation that is passed to use IShellBrowser::CreateViewWindow to communicate with the Explorer.

Methods in Vtable Order

IUnknown Methods
Description

QueryInterface
Returns pointers to supported interfaces.

AddRef
Increments reference count.

Release
Decrements reference count.

IOleWindow Methods
Description

GetWindow
Returns a handle to one of the windows participating in in-place activation.

ContextSensitiveHelp
Determines whether context-sensitive help mode should be entered during an in-place activation session.

IShellBrowser Methods
Description

InsertMenusSB
Inserts the Explorer’s menu items to an empty menu created by the view.

SetMenuSB
Installs the composite menu in the Explorer.

RemoveMenusSB
Gives the container a chance to remove its items from a composite menu. It perform tasks that are the opposite of InsertMenuSB.

SetStatusTextSB
Sets and displays status text in the Explorer window.

EnableModelessSB
Enables or disables modeless windows of the Explorer, such as a floating toolbar.

TranslateAcceleratorSB
Reserved for future use.

BrowseObject
Tells the Explorer to browse in another folder.

GetViewStateStream
Returns a view-specific stream that can be used to read and write the persistent data for a view.

GetControlWindow
Gets the window handle of an Explorer control.

SendControlMsg
Sends messages to Explorer controls.

QueryActiveShellView
Returns the currently activated (displayed) shellview object.

OnViewWindowActive
Informs the Explorer that the view was activated.

SetToolbarItems
Adds toolbar items to the Explorer’s toolbar.

IShellBrowser::InsertMenusSB

Allows the Explorer to insert its menu groups into the composite menu being displayed while viewing or using an extended namespace.

HRESULT InsertMenusSB(

 HMENU hmenuShared,
// A handle to an empty menu

 LPOLEMENUGROUPWIDTHS lpMenuWidths,
// Points to OLEMENUGROUPWIDTHS

);

Parameters

hmenuShared

Specifies a handle to an empty menu.

lpMenuWidths

Points to an OLEMENUGROUPWIDTHS array of 6 LONG values. The container fills in elements 0,2, and 4 to reflect the number of menu elements it provided in the File, View, and Window menu groups.

Return Values

Returns NOERROR if successful or an OLE-defined error value otherwise.

Remarks

This method is similar to IOleInPlaceFrame::InsertMenus. The Explorer puts File and Edit pulldown menus in the File menu group, View and Tools in the Container menu group, and Help in the Window menu group. Each pulldown menu will have a unique identifier, FCIDM_MENU_FILE/EDIT/VIEW/TOOLS/HELP. The view is allowed to insert menu items into those submenus by their identifiers, which is different from OLE’s in-place activation mechanism. The command IDs for menus that the view inserts into either the Explorer’s submenus or its own submenus, must be between FCIDM_SHVIEWFIRST and FCIDM_SHVIEWLAST.

Notes to Callers

This method is called by namespace extensions when they are first being activated so they can insert their menus into the frame-level user interface.

The object application asks the container to add its menus to the menu specified in hmenuShared and to set the group counts in the OLEMENUGROUPWIDTHS array pointed to by lpMenuWidths. The object application then adds its own menus and counts. Objects can call IOleInPlaceFrame::InsertMenus as many times as necessary to build up the composite menus. The container should use the initial menu handle associated with the composite menu for all items in the drop-down menus.

Notes to Implementors

For IShellBrowser implementations, the menu identifiers must be in the range of FCIDM_BROWSERFIRST to FCIDM_BROWSERLAST.

See Also

IShellBrowser
IShellBrowser::SetMenuSB

Installs the composite menu in the view window. Similar to IOleInPlaceFrame::SetMenu.

RESULT SetMenuSB(

 HMENU hmenuShared,
// A handle to the composite menu

 HOLEMENU holemenuReserved,
// Reserved for future use

);

Parameters

hmenuShared

Specifiies a handle to the composite menu constructed by calls to IShellBrowser::InsertMenusSB and the Win32 InsertMenu function.

holemenuReserved

Reserved for future use.

Return Values

Returns NOERROR if successful or an OLE-defined error value otherwise.

Remarks

This method is similar to IOleInPlaceFrame::SetMenu. However, the Explorer performs menu dispatch based on the menu item ID.

The availability of specific menu items depends on whether the view has the focus. Accordingly, it is necessary to call IShellBrowser::OnViewWindowActivate whenever the view window (or one of it’s child windows) has the focus.

Notes to Callers

The object calls IShellBrowser::SetMenuSB to ask the container to install the composite menu structure set up by calls to IShellBrowser::InsertMenusSB.

Notes to Implementers

A container’s implementation of this method should call the Windows SetMenu function.

See Also

IShellBrowser
IShellBrowser::RemoveMenusSB

Gives the container a chance to remove its menu elements from the in-place composite menu and free all associated resources.

HRESULT RemoveMenusSB(

 HMENU hmenuShared
//Handle to in-place composite menu

);

Parameters

hmenuShared

Specifies a handle to the in-place composite menu that was constructed by calls to IShellBrowser::InsertMenusSB and the Win32 InsertMenu function.

Return Values

Returns NOERROR if successful or an OLE-defined error value otherwise.

Remarks

This method is similar to IOleInPlaceFrame::RemoveMenus.

The object should always give the container a chance to remove its menu elements from the composite menu before deactivating the shared user interface.

Notes to Callers

Called by the object application while it is being UI-deactivated to remove its menus.

See Also

IShellBrowser
IShellBrowser::SetStatusTextSB

Sets and displays status text about the in-place object in the container’s frame-window status line.

HRESULT SetStatusTextSB(

 LPCOLESTR lpszStatusText
// Address of string with the message

);

Parameters

lpszStatusText

Points to a null-terminated character string containing the message to display.

Return Values

Returns NOERROR if successful or an OLE-defined error value otherwise.

Remarks

It is also possible to send messages directly to the status window by using SendControlMsg.

Notes to Callers

Use this method to set the contents of the status bar.

See Also

IShellBrowser
IShellBrowser::EnableModelessSB

Tells the Explorer to enable or disable its modeless dialog boxes.

HRESULT EnableModelessSB(

 BOOL fEnable
//Enable or disable modeless dialog

);

Parameters

fEnable
Specifies whether the modeless dialog boxes are to be enabled by specifying TRUE or disabled by specifying FALSE.

Return Values

Returns NOERROR if successful or an OLE-defined error value otherwise.

Remarks

This method is similar to IOleInPlaceFrame::EnableModeless. Although the current version of the Explorer does not have any modeless dialog boxes, the view should call this member appropriately when it wants to disable or enable modeless dialog boxes associated with the Explorer window.

See Also

IShellBrowser
IShellBrowser::TranslateAcceleratorSB

This method is not used in the Explorer at this time.

HRESULT TranslateAcceleratorSB(

 LPMSG lpmsg,
// Points to an MSG structure

 WORD wID,
// Contains the command identifier value

);

Parameters

lpmsg

Points to an MSG structure containing the keystroke message.

wID

Contains the command identifier value corresponding to the keystroke in the container-provided accelerator table. Containers should use this value instead of translating again.

Return Values

Returns NOERROR if successful or an OLE-defined error value otherwise.

Remarks

This method is similar to IOleInPlaceFrame::TranslateAccelerator but is not used.

See Also

IShellBrowser
IShellBrowser::BrowseObject

Tells the Explorer to browse to another folder.

HRESULT BrowseObject(

 LPCITEMIDLIST pidl,
//Address of item identifier list

 UINT *wFlags
//Specifies the folder to be browsed

);

Parameters

pidl

Address of an ITEMIDLIST (item identifier list) structure that specifies an object’s location. This value is dependent on the wFlags parameter.

wFlags
Flag specifying the folder to be browsed. It can be zero or more of the following values. The first three specify whether another window is to be created.

SBSP_SAMEBROWSER
Browse to another folder with the same Explorer window.

SBSP_NEWBROWSER
Creates another window for the specified folder.

SBSP_DEFBROWSER
The default behavior is to respect the view option (the user setting to create new windows or to browse in place). In most cases, callers should use this flag.

The following flags specify either the open, explore, or default mode. These values are ignored if SBSP_SAMEBROWSER or (SBSP_DEFBROWSER && (single window browser || explorer)).

SBSP_OPENMODE
Use a normal folder window.

SBSP_EXPLOREMODE
Use an Explorer window.

SBSP_DEFMODE
Us the same one as the current window.

The following flags specify the pidl parameter’s category:

SBSP_ABSOLUTE
An absolute pidl (relative from the desktop).

SBSP_RELATIVE
A relative pidl (relative from the current folder).

SBSP_PARENT
Browse the parent folder (ignores the pidl).

Return Values

Returns NOERROR if successful or an OLE-defined error value otherwise.

Remarks

Views can use this method to force the Explorer to browse to a specific place in the namespace. Typically, these are folders contained in the view.

See Also

IShellBrowser
IShellBrowser::GetViewStateStream

The browser provides an IStream interface as the storage for view-specific state information.

HRESULT GetViewStateStream(

 DWORD grfMode,
//Specifies the mode

 LPSTREAM * ppStrm
//Points to the LPSTREAM variable

);

Parameters

grfMode

Specifiies the read-write access. This may be set to STGM_READ, STGM_WRITE, or STGM_READWRITE. For more information about these values see the STGM enumeration.

ppStrm

Pointer to the address of the LPSTREAM variable to be filled.

Return Values

Returns NOERROR if successful or an OLE-defined error value otherwise.

Remarks

Used to save and restore the persistent state for a view. For example, the icon positions the column widths, and the current scroll position.

Notes to Callers:

Use GetViewStateStream when the view is being created to read in the saved view state and when the view is being closed to save any changes to the view state. Typically, the view calls this member with STGM_READ when creating a view window and with STGM_WRITE when the SaveViewState method of its IShellView interface is called.

Notes to Implementors:

Each shell view should have its own view stream. The Explorer implements an MRU (most recently used) list of view streams that are stored on a per-user basis in the registry.

See Also

IShellBrowser
IShellBrowser::GetControlWindow

GetControlWindow can be called by the shell view object to get the window handle of an Explorer control, either for a toolbar or for a status window.

HRESULT GetControlWindow(

 UINT id,
// Identifier of an Explorer control

 HWND * lphwnd
// Handle of the control’s window

);

Parameters

id

Specifies the identifer for either a toolbar (FCW_TOOLBAR), for a status window (FCW_STATUS), or for a tree (FCW_TREE).

lphwnd

Pointer to the window handle of the Explorer control.

Return Values

Returns NOERROR if successful or an OLE-defined error value otherwise.

Remarks

GetControlWindow is used so views can directly manipulate the toolbar and status bar. FCW_TREE should be used only to sense whether the tree is present; that is, whether the folder is in Explorer mode or folder mode.

Notes to Callers

This is used to manipulate and test the state of these windows. Do not send messages directly to these controls; instead, use IShellBrowser::SetControlMessage. Be prepared for the returns of this call to be NULL. Future versions of the Explorer may not include a toolbar, status bar, or tree window.

Notes to Implementors

IShellBrowser::GetControlWindow returns the hwnds of these controls if they exist in your implementation.

See Also

IShellBrowser
IShellBrowser::SendControlMsg

SendControlMsg can be called by the shell view object to send control messages to an Explorer control, either for a toobar or for a status bar window.

HRESULT SendControlMsg(

 UINT id,
// Identifies a control

 UINT uMsg,
// Specifies the message to be sent

 WPARAM wParam,
// Depends on uMs.

 LPARAM lParam,
// Depends on uMsg

 LRESULT * pref
// Points to the SendMessage return value

);

Parameters

id

Specifies the identifer for either a toolbar (FCW_TOOLBAR) or for a status bar window (FCW_STATUS).

uMsg

Specifies the message to be sent to the control.

wParam
This value depends on the message specified in the uMsg parameter.

lParam
This value depends on the message specified in the uMsg parameter.

pret
Pointer to the return value of the SendMessage function.

Return Values

Returns NOERROR if successful or an OLE-defined error value otherwise.

Remarks

Refer to the commctrl.h header file to find the messages that can be sent to the toolbar or status bar control.

Notes to Callers

Use of this call requires diligent attention because leaving either the status bar or toolbar in an inappropriate state will affect the performance of the Explorer.

Notes to Implementors

If your Explorer does not have these controls you can return E_NOTIMPL.

See Also

IShellBrowser
IShellBrowser::QueryActiveShellView

QueryActiveShellView returns the currently activated (displayed) shell view object.

HRESULT QueryActiveShellView(

 IShellView ** ppshv,
// Points to the view’s address

);

Parameters

ppshv

Points to the address of the currently active shell view object.

Return Values

Returns NOERROR if successful or an OLE-defined error value otherwise.

Notes to callers

QueryActiveShellView is useful because it is possible for an IShellBrowser to host several shell views simultaneously. However, the current version of the Explorer does not do this.

See Also

IShellBrowser
IShellBrowser::OnViewWindowActive

The shell view window calls OnViewWindowActive when the view window or one of its child windows gets the focus.

HRESULT OnViewWindowActive(

 IShellView * ppshv
// Points to the view’s address

);

Parameters

ppshv

Points to the address of the currently active shell view object.

Return Values

Returns NOERROR if successful or an OLE-defined error value otherwise.

Remarks

The view must pass its IShellView implementation to this routine, although the current version of the Explorer does not use this parameter.

Notes to Callers

The shell view window must call this member before calling IShellBrowser::InsertMenus because it will insert a different set of menu items depending on whether the view has the focus.

Notes to Implementors

Lets you know that the view is getting the focus, for example, on a mouse click.

See Also

IShellBrowser
IShellBrowser::SetToolbarItems

The SetToolbarItems method can be called by the view to add toolbar items to the Explorer’s toolbar.

HRESULT SetToolbarItems(

 LPTBBUTTON lpButtons,
// Points to an array of items

 UINT nButtons,
// Number of buttons in the array

 UINT uFlags
// Specifies button location

);

Parameters

lpButtons

Points to an array of toolbar items.

nButtons

Number of buttons in the lpButtons array.

uFlags

Flags specifying where the toolbar buttons should go.

FCT_ADDTOEND
Add at the right side of the toolbar.

FCT_CONFIGABLE
Not implemented.

FCT_MERGE
Merge the toolbar items instead of replacing all of the buttons with those provided by the view. This is the recommended choice.

Return Values

Returns NOERROR if successful or an OLE-defined error value otherwise.

Remarks

This is the way toolbars are merged into the Explorer’s toolbar.

Notes to Callers

See the Common Controls TOOLBAR control for the definition of TBBUTTON.

See Also

IShellBrowser
IShellExecuteHook

Extends the behavior of ShellExecute or ShellExecuteEx. Typically implemented by subsystems that expose the names of objects that users might type into the Start.Run... dialog.

When to Implement

You should implement IShellExecuteHook when you have named objects that users would expect to be able to run in the Start.Run... dialog.

When to Use

You do not use this interface directly. It is generally used by the ShellExecuteEx code.

Methods in Vtable Order

IUnknown Methods
Description

QueryInterface
Returns pointers to supported interfaces.

AddRef
Increments reference count.

Release
Decrements reference count.

IShellExecuteHook
Description

Execute
Fill in this field.

IShellExecuteHook::Execute

Provides a hook with an opportunity to intercept a command and perform an alternate action.

HRESULT Execute(

 LPSHELLEXECUTEINFO pei,
//Points to a SHELLEXECUTEINFO struct.

);

Parameters

pei
Pointer to a SHELLEXECUTEINFO structure. This structure is discussed further under ShellExecuteEx.

Return Values

Returns NOERROR if the hook is implemented in the executable or S_FALSE if it is not. It is an OLE-defined error value otherwise.

Remarks

Execute provides the hook the chance to pick off a command to be executed and perform some other action.

See Also

IShellExtInit, ITEMIDLIST
IShellFolder

The IShellFolder interface is used to manage folders.

When to Implement

Implement IShellFolder for objects that extend the shell’s namespace. For example, if you create a separate name space that requires a rooted Explorer; or if you install a new name space directly within the hierarchy of the system name space.Anything that exists in your name space is known only to you, so you are responsible for implementing everything you expect to see in it.

When to Use

Use IShellFolder when you need to display or operate on the contents of the shell’s namespace. Objects that support IShellFolder are usually created by other shell folder objects, with the root object (the Desktop shell folder) being returned from the SHGetDesktopFolder function.

Methods in Vtable Order

IUnknown Methods
Description

QueryInterface
Returns pointers to supported interfaces.

AddRef
Increments reference count.

Release
Decrements reference count.

IShellFolder Methods
Description

ParseDisplayName
Translates a display name into an item identifier list.

EnumObjects
Enumerates the objects in a folder.

BindToObject
Retrieves the IShellFolder interface for the specified subfolder.

BindToStorage
Returns the storage instance of a subfolder.

CompareIDs
Compares two item identifier lists and returns the result.

CreateViewObject
Creates a view object of the folder itself.

GetAttributesOf
Retrieves the attributes of the specified file object or subfolder.

GetUIObjectOf
Creates an OLE interface that can be used to carry out operations on a file object or subfolder.

GetDisplayNameOf
Retreives the display name of a file object or subfolder.

SetNameOf
Sets the display name of the specified file object or subfolder and changes its identifier accordingly.

IShellFolder::BindToObject

Creates an IShellFolder object for a subfolder.

HRESULT BindToObject(

 LPCITEMIDLIST pidl,
//Pointer to an ITEMIDLIST

 LPBC pbcReserved,
//Reserved—specify NULL

 REFIID riid,
//Interface to return

 LPVOID *ppvOut
//Address that receives interface pointer

);

Parameters

pidl
Pointer to an ITEMIDLIST structure that identifies the subfolder relative to its parent folder.

pbcReserved
Reserved. Callers should specify NULL for this parameter; callees should ignore it.

riid
Identifier of the interface to return. This parameter must point to the IID_IShellFolder interface identifier.

ppvOut
Address that receives the interface pointer. If an error occurs, a NULL pointer is returned in this address.

Return Value

Returns NOERROR if successful or an OLE-defined error value otherwise.

Remarks

Use BindToObject to access the COM interface to the sub-folder or sub-object.

See Also

ITEMIDLIST, SHGetDeskTopFolder
IShellFolder::BindToStorage

Reserved for a future use. This method should return E_NOTIMPL.

IShellFolder::CompareIDs

Determines the relative ordering of two file objects or folders, given their item identifier lists.

HRESULT CompareIDs(

 LPARAM lParam,
//Type of comparison to perform

 LPCITEMIDLIST pidl1,
//Address of ITEMIDLIST structure

 LPCITEMIDLIST pidl2
//Address of ITEMIDLIST structure

);

Parameters

lParam
Value specifying the type of comparison to perform. The calling application should always specify zero, indicating that the two items should be sorted by name.

pidl1 and pidl2
Addresses of two ITEMIDLIST structures that uniquely identify the items to be compared. Both item identifier lists are relative to the parent folder.

Return Value

Returns a handle to a result code. If this method is successful, the CODE field of the status code (SCODE) has the following meaning:

CODE field
Meaning

Less than zero
The first item should precede the second (pidl1 < pidl2).

Greater than zero
The first item should follow the second (pidl1 > pidl2)

Zero
The two items are the same (pidl1 = pidl2).

Remarks

Passing 0 as the lParam indicates sort by name. 0x00000001-0x7fffffff are for folder specific sorting rules. 0x80000000-0xfffffff are used the system.

See Also

ITEMIDLIST
IShellFolder::CreateViewObject

Creates a view object of a folder.

HRESULT CreateViewObject(

 HWND hwndOwner,
//Handle of owner window

 REFIID, riid,
//Interface identifier

 LPVOID * ppvOut,
//Reserved

);

Parameters

hwndOwner

Specifies the owner window for any modal dialog boxes or message boxes within this call. It may be different from hwndParen passed in a call to IShellView::CreateViewWindow.

Handle of the owner window from which to create the view object.

riid
Identifier of the interface to return.

ppvOut
Specifies the address that receives a pointer to the view object.

Return Value

Returns NOERROR if successful or an OLE defined error value otherwiise.

Remarks

It is important to remember that the COM object created by CreateViewObject must be a different object than the shell folder object. The Explorer may call CreateViewObject more than once to create more than one view object and expects them to behave as independent objects. A new view object must be created for each call.

IShellFolder::EnumObjects

Determines the contents of a folder by creating an item enumeration object (a set of item identifiers) that can be retrieved using the IEnumIDList interface.

HRESULT EnumObjects(

 HWND hwndOwner,
//Handle of owner window

 DWORD grfFlags,
//ems to include in enumeration

 LPENUMIDLIST *ppenumIDList
//Pointer to IEnumIDList

);

Parameters

hwndOwner
Handle of the owner window that the client should specify if it displays a dialog box or message box.

grfFlags
Flags determining which items to iclude in the enumeration. For a list of possible values, see the description of the SHCONTF type.

ppenumIDList
Address that receives a pointer to the IEnumIDList interface created by this method. If an error occurs, a NULL pointer is returned in this address.

Return Value

Returns NOERROR if successful or an OLE-defined error value otherwise.

Remarks

The calling application must free the returned IEnumIDList object by calling its Release method.

This method is similar to the method defined by OLE.

See Also

IEnumIDList, IOleContainer::EnumObjects, SHGetDeskTopFolder
IShellFolder::GetAttributesOf

Retrieves the attributes of one or more file objects or subfolders.

HRESULT GetAttributesOf(

 UINT cidl,
//Number of file objects

 LPCITEMIDLIST *apidl,
//Pointer to array of pointers to ITEMIDLIST structures

 ULONG *rgfInOut
//Address of value containing attributes of the file objects

);

Parameters

cidl
Number of file objects to get the attributes of.

apidl
Pointer to an array of pointers to ITEMIDLIST structures, each of which uniquely identifies a file object relative to the parent folder. Each ITEMIDLIST structure must contain exactly one SHITEMID structure followed by a terminating zero.

rgfInOut

Address of a ULONG value that specifies the common (logically AND’ed) attributes of specified file objects.

Return Value

Returns NOERROR if successful or an OLE-defined error value otherwise.

Remarks

The following tables list the attribute flags that may be returned by this method. File object attributes include capability flags, display attributes, contents flags, and miscellaneous attributes.

A file object’s capability flags may include zero or more of the following values:

SFGAO_CANCOPY
The specified file objects or folders can be copied (same value as the DROPEFFECT_COPY flag).

SFGAO_CANDELETE
The specified file objects or folders can be deleted.

SFGAO_CANLINK
It is possible to create shortcuts for the specified file objects or folders (same value as the DROPEFFECT_LINK flag).

SFGAO_CANMOVE
The specified file objects or folders can be moved (same value as the DROPEFFECT_MOVE flag).

SFGAO_CANRENAME
The specified file objects or folders can be renamed.

SFGAO_CAPABILITYMASK
Mask for the capability flags.

SFGAO_DROPTARGET
The specified file objects or folders are drop targets.

SFGAO_HASPROPSHEET
The specified file objects or folders have property sheets.

A file object’s display attributes may include zero or more of the following values:

SFGAO_DISPLAYATTRMASK
Mask for the display attributes.

SFGAO_GHOSTED
The specified file objects or folders should be displayed using a ghosted icon.

SFGAO_LINK
The specified file objects are shortcuts.

SFGAO_READONLY
The specified file objects or folders are read-only.

SFGAO_SHARE
The specified folders are shared.

A file object’s contents flags may include zero or more of the following values:

SFGAO_CONTENTSMASK
Mask for the contents attributes.

SFGAO_HASSUBFOLDER
The specified folders have subfolders (and are, therefore, expandable in the left pane of Windows Explorer).

A file object may have zero or more of the following miscellaneous attributes:

SFGAO_FILESYSTEM
The specified folders or file objects are part of the file system (that is, they are files, directories, or root directories).

SFGAO_FILESYSANCESTOR
The specified folders contain one or more file system folders.

SFGAO_FOLDER
The specified items are folders.

SFGAO_REMOVABLE
The specified file objects or folders are on removable media.

SFGAO_VALIDATE
Validate cached information.

Remarks

You can optimize this operation by not returning unspecified flags.

See Also

ITEMIDLIST, SHITEMID
IShellFolder::GetDisplayNameOf

Retrieves the display name for the specified file object or subfolder, returning it in a STREET structure.

HRESULT GetDisplayNameOf(

 LPCITEMIDLIST pidl,
//Pointer to an ITEMIDLIST

 DWORD uFlags,
//Type of display to return

 LPSTRRET lpName
//Pointer to a STRRET structure

);

Parameters

pidl
Pointer to an ITEMIDLIST structure that uniquely identifies the file object or subfolder relative to the parent folder.

uFlags
Value indicating the type of display name to return. For a list of possible values, see the description of the SHGNO enumerated type.

lpName
Pointer to a STRRET structure in which to return the display name. The string returned in this structure depends on the type of display name requested.

Return Value

Returns NOERROR if successful or an OLE-defined error value otherwise.

Remarks

If the ID contains the display name (in the local character set), it returns the offset to the name. If not, it returns a pointer to the display name string (UNICODE) allocated by the task allocator, or it fills in a buffer. The type of string returned depends on the type of display specified. Values identifying different types of display names are contained in the enumeration SHGNO.

See Also

ITEMIDLIST, STRRET, SHGNO

IShellFolder::GetUIObjectOf

Creates a COM object that can be used to carry out actions on the specified file objects or folders, typically, to create context menus or carry out drag-and-drop operations.

HRESULT GetUIObjectOf(

 HWND hwndOwner,
//Handle to owner window

 UINT cidl,
//Number of objects specified in apidl

 LPCITEMIDLIST *apidl,
//Pointer to an array of pointers to an ITEMIDLIST structure

 REFIID riid,
//Interface to return

 UINT *prgfInOut,
//Reserved

 LPVOID *ppvOut
//Address to receive interface pointer

);

Parameters

pIface
hwndOwner
Handle of the owner window that the client should specify if it displays a dialog box or message box.

cidl
Number of file objects or subfolders specified by apidl.

apidl
Pointer to an array of pointers to ITEMIDLIST structures, each of which uniquely identifies a file object or subfolder relative to the parent folder. Each item identifier list must contain exactly one SHITEMID structure followed by a terminating zero.

riid
Specifies the type and the interface of the COM object to return. This parameter can be a pointer to the IID_IExtractIcon, IID_IContextMenu, IID_IDataObject, or IID_IDropTarget interface identifier.

prgfInOutd
Reserved.

ppvOut
Address that receives the interface pointer. If an error occurs, a NULL pointer is returned in this address.

Return Value

Returns NOERROR if successful or an OLE-defined error value otherwise.

Remarks

GetUIObjectOf creates a UI object to be used for specified objects. Either IID_IDataObject (transfer operations) or IID_IContextMenu (context menu operations) is passed in the riid parameter.

See Also

ITEMIDLIST, SHITEMID
IShellFolder::ParseDisplayName

Translates a file object or folder’s display name into an item identifier.

HRESULT ParseDisplayName(

 HWND hwndOwner,
//Handle of owner window

 LPBC pbcReserved,
//Reserved

 LPOLESTR lpszDisplayName,
//Pointer to display name

 ULONG *pchEaten,
//Pointer to number of characters parsed

 LPITEMIDLIST *ppidl,
//Pointer to new item identifier list

 ULONG *pdwAttributes
//Address receiving attributes of file object

);

Parameters

hwndOwner
Handle of the owner window that the client should specify if it displays a dialog box or message box.

pbcReserved
Reserved; this parameter is always NULL.

lpszDisplayName
Pointer to a null-terminated Unicode string specifying the display name. This parameter must be a display name for parsing — that is, a display name retrieved using the SHGDN_FORPARSING value.

pchEaten
Pointer to an unsigned long value that receives the number of characters of the display name that were parsed.

ppidl
Address that receives a pointer to the new item identifier list for the object. If an error occurs, a NULL is returned in this address.

The returned item identifier list specifies the relative path (from the parent folder) that corresponds to the specified display name. It contains only one SHITEMID structure followed by a terminating zero.

pdwAttributes
Address that receives the attributes of the file object.

Return Value

Returns NOERROR if successful or an OLE-defined error value otherwise.

Remarks

This method is similar to the IParseDisplayName::ParseDisplayName method defined by OLE.

See Also

IParseDisplayName::ParseDisplayName, IShellLink, SHITEMID
IShellFolder::SetNameOf

Changes the name of a file object or subfolder, changing its item identifier in the process.

HRESULT SetNameOf(

 HWND hwndOwner,
//Handle of owner window

 LPCITEMIDLIST pidl,
//Pointer to an ITEMIDLIST structure

 LPCOLESTR lpszName,
//Pointer to string specifying new display name

 DWORD uFlags,
//Type of name specified in lpszName

 LPITEMIDLIST *ppidlOut
//Pointer to new ITEMIDLIST

);

Parameters

hwndOwner
Handle of the owner window that the client should specify if it displays a dialog box or message box.

pidl
Pointer to an ITEMIDLIST structure that uniquely identifies the file object or subfolder relative to the parent folder.

lpszName
Pointer to a null-terminated string that specifies the new display name.

uFlags
Value indicating the type of name specified by the lpszName parameter. For a list of possible values, see the description of the SHCONTF enumerated type.

ppidlOut
Address in which the method returns a pointer to the new ITEMIDLIST structure. This parameter can be NULL, and in that case, the method does not return the new ITEMIDLIST for the object.

If this parameter is not NULL, this method frees the specified ITEMIDLIST structure and allocates a new one using the task allocator. The calling application is responsible for freeing the new ITEMIDLIST structure. If an error occurs, the method returns NULL in this address.

Return Value

Returns NOERROR if successful or an OLE-defined error value otherwise.

Remarks

SetNameOf sets the display name of the specified object. If it also changes the item identifier, then it returns the new item identifier (a pidl), which is allocated by the task allocator. Changing the display name of a file system object or folder within renames the file or directory.

See Also

ITEMIDLIST
IShellIcon

The IShellIcon interface is used to obtain an icon index for an IShellFolder object. Only one instance of the interface for the folder is required instead of an instance for each object, as is the case for IExtractIcon.

When to Implement

Implement IShellIcon as part of an IShellFolder implementation as a quick way to obtain the icon for an object in the folder.

If IShellIcon is not implemented by an IShellFolder object, IShellFolder::GetUIObjectOf(..., IID_IExtractIcon, ...) is used to get an icon for all objects.

When to Use

Use IShellIcon when getting icon indexes for items in a shell folder.

Methods in Vtable Order

IUnknown Methods
Description

QueryInterface
Returns pointers to supported interfaces.

AddRef
Increments reference count.

Release
Decrements reference count.

IShellIcon Method
Description

GetIconOf
Retrieves an icon for an object in a folder.

IShellIcon::GetIconOf

Retrieves an icon for an object inside a specific folder.

HRESULT GetIconOf(

 LPCITEMIDLIST pidl,
//Points to an item identifier list

 UINT flags,
//Flags specifying the display state

 LPINT lpIconIndex,
Points to where the icon index is to be returned

);

Parameters

pidl

Pointer to the ITEMIDLIST (item identifier list) that specifies the relative location of the folder.

flags
This parameter can be zero or one of the following values:

Value
Meaning

GIL_FORSHELL
The icon is to be displayed in a shell folder.

GIL_OPENICON
The icon should be in the “open” state if both open- and closed-state images are available. If this flag is not specified the icon should be in the normal or “closed” state. This flag is typically used for folder objects.

lpIconIndex
Pointer to the location where the icon index will be returned.

Return Values

Returns NOERROR if lpIconIndex contains the correct system imagelist index. S_FALSE is returned if an icon cannot be obtained for this object.

The following standard imagelist indexes can be returned:

Value
Meaning

0
Document (blank page, not associated)

1
Document (with data on the page)

2
Application (file extension must be .exe, .com, .bat)

3
Folder (plain)

4
Folder (open)

Remarks

If you are unable to get an icon for this object using GetIconOf, use IShellFolder::GetUIObjectOf to get an object that supports IExtractIcon::Extract.

Notes to Callers

The indexes returned are from the system image list.

Notes to Implementors

This method cannot be implemented external to the shell itself.

See Also

IShellIcon
IShellView

The IShellView interface is implemented to present a view in the Windows Explorer or folder windows. The object that exposes IShellView is created by a call to IShellFolder::CreateViewObject. This provides the channel of communication between a view object and the Explorer’s outermost frame window. The communication involves the translation of messages, the state of the frame window (activated or deactivated), and the state of the document window (Activated or deactivated), the merging of menus, and toolbar items.

When to Implement

This interface is implemented by namespace extensions that want to represent themselves in the Explorer’s namespace. This object is created by the IShellFolder object that hosts the view.

When to Use

These methods are used by the shell view’s Explorer window to manipulate objects while they are active.

Methods in Vtable Order

IUnknown Methods
Description

QueryInterface
Returns pointers to supported interfaces.

AddRef
Increments reference count.

Release
Decrements reference count.

IOleWindow Methods
Description

GetWindow
Returns a handle to one of the windows participating in in-place activation.

ContextSensitiveHelp
Determines whether context-sensitive help mode should be entered during an in-place activation session.

IShellView Methods
Description

TranslateAccelerator
Translates accelerator key strokes when a namespace extension’s view has the focus.

EnableModeless
Enables or disables modeless dialog boxes. Not in use by the Explorer at this time.

EnableModelessSV
Currently not in use.

UIActivate
Passes a value when the state of the view window is changed by events not caused by the shell view itself.

Refresh
Responds to user input to refresh the display.

CreateViewWindow
Creates the view window.

DestroyViewWindow
Destroys the view window.

GetCurrentInfo
Returns the folder settings.

AddPropertySheetPages
Allows the view to add pages to the options property sheet.

SaveViewState
Saves the current view state into a stream obtained by the view by calling IShellBrowser::GetViewStateStream.

SelectItem
Changes the state of items within the shell view window.

GetItemObject
Allows callers to get an object that represents something in the view.

IShellView::AddPropertySheetPages

Provides a way for the view to add pages to the Options property sheet.

HRESULT AddPropertySheetPages(

 DWORD dwReserved,
//Reserved

 LPFNADDPROPSHEETPAGE lpfn,
//Points to the callback that adds pages

 LPARAM lparam
//lparam to be passed to the callback function

);

Parameters

dwReserved

This parameter is reserved for future use.

lpfn

Pointer to the callback function used to add the pages.

lparam

Specifies the lParam that must be passed to the callback in the lpfn parameter.

Return Values

Returns NOERROR if successful or an OLE-defined error value otherwise.

Remarks

Allows the view to add property pages to the View.Options... property page.

Notes to implementors

The Explorer calls this method when it is opening the View.Options... property sheet. Views can add pages by creating them and calling the callback function with the page handles.

See Also

IShellView, CreatePropertySheetPage

IShellView::CreateViewWindow

CreateViewWindow creates a view window. This can be either the right pane of the Explorer or the client window of a folder window.

RESULT CreateViewWindow(

 ISHELLLINK * lpPrevView,
//Points to previous view

 LPFOLDERSETTINGS lpfs,
//Points to a FOLDERSETTINGS struct

 IShellBrowser * psb,
//Points to shell browser

 RECT * prcView,
//Points to the rect the defines the view size

 HWND * phWnd
//Poinr to the returned window handle

);

Parameters

lpPrevView

Pointer to the view window being exited. Views can use it to talk to a previous view of the same implementation. This can be used to optimize browsing between like views. This pointer may be NULL.

lpfs

Pointer to a FOLDERSETTINGS structure. The view should use this when creating its view.

psb

Pointer to the current instance of IShellBrowser. The view should AddRef this pointer and keep it to allow communication with the Explorer window.

prcView

Specifies the dimensions in client coordinates in which the view should create itself.

phWnd
Pointer to the handle of the window being created.

Return Values

Returns NOERROR if successful or an OLE-defined error value otherwise.

Remarks

This is the call that creates the view.

Notes to Callers

Call this method when the view needs to be created.

Notes to Implementors

Create your view window and restore any persistent state by calling IShellBrowser::GetViewStateStream.

See Also

IShellView, IShellBrowser::GetViewStateStream
IShellView::DestroyViewWindow

DestroyViewWindow destroys the view window.

HRESULT DestroyViewWindow(

Parameters

This method has no parameters.

Return Values

Returns NOERROR if successful or an OLE-defined error value otherwise.

Remarks

The Explorer calls this method when a folder window or the Explorer is being closed.

Notes to Implementors

Clean up all state that represents the view, including the window and any other associated resources.

See Also

IShellView
IShellView::EnableModeless

If the view owns any modeless dialog boxes, it should disable all of them when this member is called with FALSE and keep them disabled until it is called again with TRUE.

HRESULT EnableModeless(

 LPFOLDERSETTINGS fEnable
//Boolean flags

);

Parameters

fEnable

Specifies TRUE to enable modeless dialog box windows, FALSE to disable them.

Return Values

Returns NOERROR if successful or an OLE-defined error value otherwise.

See Also

IShellView
IShellView::EnableModelessSV

Currently not in use.

IShellView::GetCurrentInfo

Obtains information about the current folder settings.

HRESULT GetCurrentInfo(

 LPFOLDERSETTINGS lpfs
//Points to the folder settings

);

Parameters

lpfs

Pointer to a FOLDERSETTINGS structure to receive the settings.

Return Values

Returns NOERROR if successful or an OLE-defined error value otherwise.

Remarks

The Explorer uses GetCurrentInfo to query the view for standard settings.

Notes to Callers

Used to get the current view settings of the view.

Notes to Implementors

Return as many of the settings as apply. This is intended to let browsing from view to view maintain the same basic settings. For example, if the user sets Details view, going from one folder to the other in Explorer mode, it should remain in Details view.

See Also

IShellView
IShellView::GetItemObject

Returns an interface that refers to data presented in the view.

HRESULT GetItemObject(

 UINT uItem,
//Specifies background object constants

 REFIIDriid,
//Identifies the interface to return

 LPVOID * ppv
//Address that receives the interface pointer

);

Parameters

uItem

Specifies constants that refer to an aspect of the view. It can be any of the following values.

Value
Meaning

SVGIO_BACKGROUND
Refers to the background of the view. It is used with IID_IContextMenu to get a context menu for the view background.

SVGIO_SELECTION
Refers to the currently selected items. IID_IDataObject uses this constant to get a data object that represents the selected items.

SVGIO_ALLVIEW
Same as SVGIO_SELECTION but refers to all items in the view.

riid

Identifier of the interface to return.

ppv
Address that receives the interface pointer. If an error occurs, the pointer returned must be NULL.

Return Values

Returns NOERROR if successful or an OLE-defined error value otherwise.

Remarks

Used by the common dialogs to get the selected items from the view.

See Also

IShellView
IShellView::Refresh

Refreshes the view’s contents in response to an event such as when a user hits the F5 key.

HRESULT Refresh(
Parameters

This method has no parameters.

Return Values

Returns NOERROR if successful or an OLE-defined error value otherwise.

Remarks

Tells the view to refresh its contents, revalidating any view information it has.

Notes to Callers

The Explorer calls this method when F5 is pressed on an already open view.

Notes to Implementors

Refill the view by going to any underlying storage for the contents.

See Also

IShellView
IShellView::SaveViewState

Allows the shell view to store its view settings so the current state can be resotred during a subsequent browsing session.

HRESULT SaveViewState()

Parameters

This method has no parameters.

Return Values

Returns NOERROR if successful or an OLE-defined error value otherwise.

Remarks

The shell view is supposed to get a view stream by calling IShellBrowser::GetViewStateStream and store the current view state in that stream.

Notes to Callers

The Explorer calls this method when it wants to save the view state for a view.

Notes to Implementors

Be sure to make the format of the data stored in the stream robust and versionable.

See Also

IShellBrowser::GetViewStateStream, IShellView

IShellView::SelectItem

Changes the selection state of one or more items within the shell view window.

HRESULT SelectItem(

 LPCITEMIDLIST pidlItem,
//Points to item ID list

 UINT uFlags
//Specifies the selection state

);

Parameters

pidlItem

Pointer to the item ID list. If this parameter is NULL and uFlags is SVSI_DESELECTOTHERS, all items should be deselected.

uFlags

Flag specifying what type of selection to apply. This parameter can be one of the following values:

Value
Meaning

SVSI_DESELECT
Deselect the specified item.

SVSI_DESELECTOTHERS
If pidlItem is NULL, deselect all items.

SVSI_EDIT
Put the pidlItem in edit mode.

SVSI_ENSUREVISIBLE
Ensure the item is displayed on the screen.

SVSI_FOCUSED
The item should be given the focus.

SVSI_SELECT
The item should be selected.

Return Values

Returns NOERROR if successful or an OLE-defined error value otherwise.

Remarks

This method is used to implement functionality in the Explorer.

Notes to Implementors

SelectItem is used to implement the File Target command of the shell shortcut property sheet.

See Also

IShellView
IShellView::TranslateAccelerator

Processes menu accelerator-key messages from the container’s message queue. .

HRESULT TranslateAccelerator(

 LPMSG lpmsg
//Points to a message that may need translating.

);

Parameters

lpmsg

Pointer to the message that might need to be translated.

Return Values

Returns NOERROR if successful or an OLE-defined error value otherwise.

Returning S_OK indicates that the message was translated and should not be translated or dispatched by the Explorer.

Remarks

TranslateAccelerator is called by the Explorer to let the view translate its accelerators.

Notes to Callers

The Explorer calls this method before any other translation if the view has the focus. If the view does not have the focus (if the tree has it, for example) this is called after the Explorer translates its own accelerators.

Notes to Implementors

By default, the view should return S_FALSE so that the Explorer can either do it’s own accelerator translation or normal menu dispatching. The view should return S_OK only if it has processed the message as the accelerator and does not want the Explorer to process it further.

See Also

IShellView
IShellView::UIActivate

Called by the Explorer whenever the activation state of the view window is changed by a certain event that is not caused by the shell view itself. For example, if the tab key is pressed when the tree has the focus, the view should be given the focus.

HRESULT UIActivate(

 UINT uState
//activation state flag

);

Parameters

uState

Flag specifying the activation state of the window. This parameter can be one of the following values:

Value
Meaning

SVUIA_ACTIVATE_FOCUS
The Explorer has just created the view window with the input focus. This means the shell view should be able to set menu items appropriate for the focused state.

SVUIA_ACTIVATE_NOFOCUS
The shell view is either losing the input focus or it has just been created without the input focus. The shell view should be able to set menu items appropriate for the nonfocused state. This means no selection-specific items should be added.

SVUIA_DEACTIVATE
The Explorer is about to destroy the shell view window. The shell view should remove all extended UIs, typically merged menu and modeless popup windows.

Return Values

Returns NOERROR if successful or an OLE-defined error value otherwise.

Remarks

To remerge menu items, the shell view typically hooks the WM_SETFOCUS message and calls IShellBrowser::OnViewWindowActivated before remerging. The shell view should not hook the WM_KILLFOCUS message to remerge menu items.

Notes to Callers

Call this method to inform the view of activation state change.

Notes to Implementors

Use this method to track activation state and change any behavior, as appropriate.

See Also

IShellView
SHGetDataFromIDList

The ShGetDataFromIDList function retrieves extended property data from a relative IDList.

HRESULT ShGetDataFromIDList(

 LPSHELLFOLDER psf,
//Points to the parent folder

 LPCITEMIDLIST pidl,
//Points to an item identifier struct

 int nFormat,
//Specifies a format

 PVOID pv,
//Points to a buffer for a structure

 int cb
//Size of the buffer passed in

);

Parameters

psf
Pointer to the parent folder.

pidl
Pointer to an ITEMIDLIST structure that identifies the subfolder relative to its parent folder.

nFormat

Specifies one of the following formats:

SHGDFIL_FINDDATA
Format used for file system objects.

SHGDFIL_NETRESOURCE
Format used for network resources.

pv

Pointer to a buffer for either a WIN32_FIND_DATA or NET_RESOURCE structure, depending on the value of the nFormat parameter. For more information, see the Remarks section below.

cb
Size of the buffer passed in. This value should be either sizeof(WIN32_FIND_DATA) for SHGDFIL_FINDDATA or, sizeof(NETRESOURCE) + 1024 to retrieve a SHGDFIL_NETRESOURCE structure.

Return Values

The return value is NOERROR if the format is supported and the function succeeds. If the psf, pidl, pv, or cb parameters do not match the nFormat parameter, or if nFormat is not one of the specific SHGDFIL_ values shown, E_INVALIDARG is also returned.

Remarks

If nFormat is SHGDFIL_NETRESURCE, there are two possible cases. If the buffer is large enough, the net resource’s string information (fields for the network name, local name, provider, and comments) will be placed into the buffer. If the buffer is not large enough, only the net resource structure will be placed into the buffer and the string information pointers will be NULL.

FOLDERSETTINGS

The FOLDERSETTINGS structure is passed from one folder view to another when the user is browsing. It calls IShellView::GetCurrentInfo to get the current settings and passes them to IShellView::CreateViewWindow to allow the next folder view to “inherit” it. These setttings assume a particular UI, which the shell’s folder view has. Shell extensions may or may not use these settings.

typedef struct {

UINT ViewMode;

UINT fFlags;

}FOLDERSETTINGS; *LPFOLDERSETTINGS;

Members

ViewMode
Specifies the view mode. Can be set to any of the following values:

Value
Meaning

FVM_ICON
The large icon is displayed.

FVM_SMALLICON
The small icon is displayed.

FVM_LIST
Object names are displayed in a list view.

FVM_DETAILS
Object names and other selected information is shown, such as the size or date last updated.

fFlags
Specifies the view mode. Can be set to any of the following values:

Value
Description

FWF_AUTOARRANGE
Automatically arrange the elements in the view. This implies LVS_AUTOARRANGE if the ListView control is used to implement the view.

FWF_ABBREVIATEDNAMES
Names should be abbreviated. This value is not currently supported.

FWF_SNAPTOGRID
Items should be arranged on a grid. This value is not currently used.

FWF_OWNERDATA
This value is not currently used.

FWF_BESTFITWINDOW
Enable the best-fit window mode. Let the view size the window to fit its contents as well as possible.

FWF_DESKTOP
Make the folder behave like the desktop. This value applies only to the desktop view and is not used for typical shell folders.

FWF_SINGLESEL
Do not allow more than a single item to be selected. This is used in the common dialogs.

FWF_NOSUBFOLDERS
Do not show subfolders.

FWF_TRANSPARENT
Draw transparently. This is used only for the desktop.

FWF_NOCLIENTEDGE
Do not add WS_EX_CLIENTEDGE to the folder. This is used only for the desktop.

FWF_NOSCROLL
Do not add scroll bars. This is used only for the desktop.

See Also

IShellView::CreateViewWindow, IShellView::GetCurrenttInfo

