
PR:QA White Paper Series: WP1.1

Static and Dynamic Testing Compared

Abstract

Many developers believe that dynamic testing is more effective than static testing. In fact the opposite is true. This paper
compares the technical and economic effectiveness of static and dynamic testing. It shows that:

• static testing finds bugs before you compile.

• many bugs found by dynamic testing can be found earlier by static testing.

• the earlier you detect bugs the cheaper they are to fix.

• static testing is more cost effective than dynamic testing.

• quality-conscious developers use both static and dynamic testing tools.

PR:QA’s static checking tools QA C, QA C++ and QA Fortran are the most comprehensive in the industry. Developers
who use them achieve shorter delivery times and reduced development cost.

PR:QA White papers provide short discussions of a range of topics in software engineering. For a current list contact

Programming Research Ltd. Tel: 01932 888080
Glenbrook House Fax 01932 888081
1-11 Molesey Road E-mail: support@prqa.co.uk
HERSHAM WWW: http://www.prqa.co.uk
Surrey KT12 4RH

Static or dynamic testing?

Software developers often think they must choose
between static and dynamic testing. Some feel they
cannot afford the tools to do both. Many prefer dynamic
testing because they believe, mistakenly, that it finds real
rather than potential bugs.

This note compares static and dynamic testing. It is based
on the experiences of clients of Programming Research
Ltd (PR:QA) who use both dynamic test tools and one or
more of PR:QA’s world-leading QA C, QA C++ or
QA Fortran tools. All have reported that static testing is
many times more cost-effective than dynamic testing.

PR:QA users confirm that static testing beats dynamic
testing by a wide margin.

Why is static testing more effective?

Static testing gives you comprehensive diagnostics for
your code. QA C, for example, warns you about:

• syntax errors
• code that will be hard to maintain
• code that will be hard to test
• code that does not conform to your coding standards
• non-portable usage
• ANSI violations

All this takes place before compilation. It takes roughly
as long as compilation and checks every statement you
have written.

Static testing achieves 100% statement coverage in a
relatively short time.

Dynamic testing can take place only after compilation
and linking. It may involve running several test cases
each of which may take longer than compilation. It finds
bugs only in parts of the code that are actually
executed. Furthermore such testing often touches less
than half the code. (See for example Woodward, Hedley
et al. [1]).

Typically dynamic testing takes longer than static
testing yet finds fewer bugs.

Of course static and dynamic testing find different
classes of bugs. Some bugs are detectable only by static
testing, some only by dynamic. Nevertheless about half
of the bugs detectable by dynamic testing can be detected
earlier by static testing.

Since static testing is faster and achieves 100% coverage,
the unit cost of detecting these bugs by static testing is
many times lower than by dynamic testing.

If you are using neither static nor dynamic test tools,
static tools offer greater marginal benefits.

The essential difference between static and dynamic
testing is this: static testing is about prevention, dynamic
testing is about cure. Ideally you should use both static
and dynamic testing tools. If you can only afford one
kind of tool, remember:

Prevention is always cheaper than cure.

Where is the evidence?

At PR:QA we know from experience, both our clients’
and our own, that static testing outperforms dynamic
testing. For example:

• Engineers at a large telecommunications company
checked code with QA C and found a bug that their
regression testing failed to detect. This bug would
have cost over £6m to correct after release.

• One company took 18 months to achieve 100%
dynamic statement coverage of 3% of their safety-
critical code. In contrast, using QA Fortran for just
one afternoon revealed over a hundred errors
distributed throughout the code.

• At PR:QA it took us two days using an excellent,
widely used dynamic testing tool to detect four
errors that our static testing had missed. Our own
static testing tools had previously found over 200
errors in under an hour.

These experiences are not isolated. Humphrey [2] cites
comparable experiences at TRW. Grady and Caswell [3]
give evidence suggesting that static testing was four
times more effective than dynamic testing (see Figure 1).

Figure 1

Live Running

0..2

0

0.4

Grady and Caswell data

0.6

0.8

1.0

1.2

Black Box White Box Inspections

Dutch associates of PR:QA relayed to us the following
data reported by the Dutch organisation for Structured
design of Information Systems. This data came from
research done to compare the effectiveness of static
testing against dynamic testing using a large number of
test cases.

Comprehensive Testing:

Type Hours Error Coverage

Static 1 90%
Dynamic 8 99%

Static Testing (of key or complex modules):

Type Hours Error Coverage

Static 1 90%
Dynamic 1 98%

The system studied had functions with on average 50
lines of code each and taking on average 8 hours each to
write. Coding adhered to a local coding standard.

Figure 2 summarises the results of using static testing
followed by dynamic testing in the ratio 1:8, that is 1
hour of static testing followed by 8 hours of dynamic
testing.

Figure 2

1 0

0

20

30

40

50

60

70

80

90

10 0

1 2 3 4 5 6 7 8 9 10

Error Coverage Using Static QA then
Dynamic QA Strategy

Error
Coverage %

Module Hours of Testing(Start @ 1 Hour; Static
for 1 Hour then Dynamic)

The evidence supports the following conclusions about
comparative time effectiveness:

Static testing is up to 100 times more effective. Even in
selective testing, static testing may be up to 10 times

more effective. The most pessimistic estimates suggest a
factor of 4.

Dynamic testing detects fewer errors than static testing,
but it does detect some that static testing misses.

If timescales are tight, use of dynamic testing tools
might be omitted, but tool-supported static testing

should never be omitted.

To eliminate as many errors as possible, both static and
dynamic testing should be used.

Figure 3 shows these results in terms of cost-
effectiveness:

Vendors of the best dynamic testing tools argue
convincingly that use of their tools result in a 30%
increase in test efficiency. Such benefits repay user
investment in a few months.

Figure 3

Hours/Module Error Coverage Cost Effectiveness

Static QA Dynamic QA

Cost-Effectiveness of Static vs. Dynamic Analysis

With static testing tools the payback is measured in
weeks, and sometimes in days.

Summary

• Static testing is a bargain compared with dynamic
testing.

• Static and dynamic testing are complementary.

• To maximise software reliability, you should use both
static and dynamic techniques supported by
appropriate tools (Hatton [4]).

References

 [1] Woodward, M. R, Hedley, D. et al Experience
with path analysis and testing of programs,
IEEE Trans. Software Engineering 6(3): 278-
286, 1980

[2] Humphrey, W. S, Managing the Software
Process, Addison-Wesley 1990

[3] Grady, R. B, and Caswell, D. L, Software
Metrics: Establishing a Company-Wide
Program, Prentice-Hall, 1987

[4] Hatton, L, Safer C: Developing for High-
Integrity and Safety-Critical Systems, McGraw-
Hill, 1994

For more information contact:

Programming Research Ltd
Glenbrook House
1-11 Molesey Road
HERSHAM
Surrey
KT12 4RH

Tel: 01932 888080
Fax 01932 888081
E-mail: support@prqa.co.uk
WWW: http://www.prqa.co.uk

