
INTRODUCTION

For the past ten or fifteen years, the choice of programming languages for embedded
systems has been between assembler and a small variety of higher-level languages. For
many (but obviously not all) programmers, the higher-level language of choice has been
C. In recent years, programmers have been considering, and actually even using, C++ for
programming embedded systems.

Just as C was designed to appeal to assembler programmers, C++ was designed to appeal
to C programmers. Along the way, C++ seems to have attracted programmers who have
been using other languages. However, since most of the interest in C++ seems to be
coming from C programmers, most of this presentation focuses on contrasting C++ with
C.

I won’t presume to tell you that C++ is right for you or your application. It may not be.
C may be just fine for your needs, and there are other high-level languages, notably Ada,
that merit consideration for some projects. My objective is simply to provide you with
background information that will help you decide for yourself if C++ is worth a try.

WHY USE C FOR EMBEDDED PROGRAMMING?

When evaluating a new language to replace the one you’re already using, you should re-
member those things that your current language does well. If the new language can’t
handle some task that the old one could, you should be sure that the task is no longer im-
portant to you. In this particular case, it’s worth noting what C does well so that we can
determine if C++ does those same things just as well.

What makes C suitable for embedded programming?
• C is a general-purpose programming language, so it can meet a broad range of needs.
• C is a “low-level” high-level language. (Some people think of it as a “high-level”

assembler.) C provides machine-level data objects, such as bits, characters, and inte-
gers with different sizes. C also provides many machine-level operators such as in-
crement, decrement, shift, bitwise-and, and bitwise-or, many of which map directly
into individual machine instructions.

• C programs can be highly portable across platforms. Even if an entire C program is
not portable, significant portions of it can be.

Firmino Santos Filho
WHY C++ ?

In the Rationale for the C Standard (Hudson [1989]), the ANSI C standards committee
characterized the “spirit” of C as:
• Trust the programmer.
• Don’t prevent the programmer from doing what needs to be done.
• Keep the language small and simple.
• Make it fast, even if it’s not guaranteed to be portable.

C was not designed to teach good habits; it assumes that you, the programmer, already
have them. It provides modest type checking to catch common errors, but you can by-
pass the checks when necessary, typically by employing casts.

As is the case with any language, C attempts to balance safety and portability against
speed and space efficiency. C tends to favor efficiency. C sometimes defines operations
as “whatever the target machine’s hardware does” rather than by some architecture-
independent rule. For example, when shifting a signed integer with negative value to the
right, a C program may propagate the sign bit, or simply shift in zeros, depending on
what the underlying hardware wants to do.

WHY LOOK TO C++?

Processors keep getting faster and memory keeps getting cheaper. Data paths are wider
than they were years ago. Consequently, embedded applications have been getting larger
and more ambitious. Larger projects require larger teams and more powerful tools. Thus
priorities have shifted. For an increasing number of embedded programming projects,
project control and maintainability are becoming more important than efficiency.

This shift in priorities makes object-oriented languages and techniques more appealing.
Data abstraction (the principal object-oriented technique) goes a long way toward im-
proving the quality of designs and programs. For C programmers in particular, C++ has
the following advantages:
• C++ is a “better” C. Since it is essentially a superset of C, C programmers can start

using C++ as a “better” C with little, if any, loss of productivity. C++ is “better” in
the sense that it applies stricter translation-time checking than C does, so C++ com-
pilers can catch more errors early in the development process.

• C++ supports data abstraction. C++ programs can use classes and objects to partition
systems into simpler components, yielding designs that are easier to maintain.
Classes and objects can enforce the semantics of component interfaces better than
function libraries.

• C++ supports object-oriented programming. Class hierarchies can model system
components (such as devices, files, and tasks) very naturally. Virtual functions can
capture subtle variations in behavior among closely related components without com-
plicating component interfaces.

• C++ partitions the name space better than C, reducing the chance of global name con-
flicts.

Contrary to much of the early hype, you need not learn a completely new way of pro-
gramming to benefit from C++. You can use it as a procedural language and grow into
data abstraction and object-oriented programming at your own pace.

C++ captures essentially the same “spirit” as C. C++ is also a general-purpose language
with the same low-level programming capabilities as C. In some ways, C++ places even
more trust in the programmer than C does. Bjarne Stroustrup, the inventor of C++, char-
acterized the “spirit” of C++ (Stroustrup [1989]) as:
• C++ is an engineering compromise. It exists to solve real problems, and was driven

more by constraints than by principles.
• What you don’t use you don’t pay for.
• Don’t leave room for a lower level language. If C++ can’t do the whole job, people

will start writing some parts of the program in a lower-level language.
• Aim at radical portability – of the language and of the libraries.
• Serve users first and compiler writers second. Rely on compiler technology, mini-

mize run-time support, and distrust elaborate mechanisms.
• Don’t break C compatibility, unless you really have to.
In short, C++ was designed so that C programmers could exploit more powerful pro-
gramming methodologies without sacrificing that which is good about C.

Of course, C++ has its drawbacks:
• C++ is a far more complex language than C. Compiler diagnostics can be very cryp-

tic. Run-time bugs can be very subtle. C++ places higher demands on tools such as
linkers and debuggers.

• Hidden run-time costs can creep into C++ programs. Virtual functions increase ob-
ject sizes and slow down function calls. Constructors and destructors can add over-
head to object creation and destruction and complicate exception handling. Tempo-
rary objects can appear at surprising times with surprising costs in time and space.
Classes can have hidden fields, making them harder to map into existing data struc-
tures.

Fortunately, you can overcome most of the drawbacks with training and experience.

ADDRESSING THE CONCERNS

C++ adds quite a number of syntactic features to C. Many of the features appear to have
additional speed or space penalties relative to C. The fact is that some do and some
don’t. Part of learning to use C++ for embedded applications is learning to gauge the
costs of the features you use. Let’s look at a few C++ features to gain a sense of how to
do this.

The principal feature of C++ is classes. A class defines a data type with associated op-
erations on that type. The operations are expressed as member and friend functions. For
example, a class definition such as:

class port
 {
public:
 int open(port_regs *p);
 int close();
 int get();
 int put(int c);
private:
 port_regs *regs;
 int errno;
 };

defines a type port with member functions open , close , get , and put .

A common concern for embedded programmers is that member functions appear to oc-
cupy space in each object, and therefore increase the application’s memory requirements.
In fact...

• Ordinary member functions do not increase object sizes.

For example, a port object occupies the same storage as if the port type had been de-
fined as just:

struct port
 {
 port_regs *regs;
 int errno;
 };

In a sense, the difference between non-member functions and ordinary member functions
is merely notational. Classes and member functions provide an explicit notation for data
abstraction:
• A class encapsulates data with the functions that operate on that data.
• A class uses access specifiers (the keywords public and private) to grant or deny

access to class members from outside the class.
This notation depends only on run-time facilities already available in C.

Well, you ask, if it doesn’t provide any additional run-time capabilities, then why bother?
The class notation provides the opportunity for:
• better compile-time enforcement of the semantics of component interfaces, and

• fewer global names, thereby reducing the possibility of global name conflicts that oc-
cur when two or more components use the same global identifier for different pur-
poses.

Notice that it is ordinary member functions that do not increase object sizes. What about
member functions that aren’t ordinary? Well, the reality is that...

• Virtual member functions do increase object sizes.

For example, if you change some of the member functions of port into virtual functions,
as in:

class port
 {
public:
 int open(port_regs *p);
 virtual int close();
 virtual int get();
 virtual int put(int c);
private:
 port_regs *regs;
 int errno;
 };

then you increase the size of each port object by the size of one data pointer. A port
would then occupy the same storage as if the port type were:

struct port
 {
 port_regs *regs;
 int errno;
 void *vptr;
 };

OK, so some C++ features have extra run-time costs and others do not. How can you tell
which is which? As a general rule, the spirit of C++ is “What you don’t use you don’t
pay for.” In other words,

• C++ does not make you pay for a feature unless you use it.

C++ adheres to this rule fairly well, but not perfectly. For example, you must request the
virtual call mechanism for a function by using the keyword virtual in the member
function declaration. You get more functionality than with ordinary member functions,

but you also pay a little for it. On the other hand,

• C++ makes you ask for certain optimizations, such as inline function calls.

For example, if a function has an extremely short body, the execution cost (run time
and/or code space) of actually jumping to and from the function body may be greater than
the cost of the function body itself. In that case, it makes sense to expand the function
body in line at the point of each call.

In C, you write an inline function as a macro. In C++, you write it as a function but you
declare it inline , as in:

inline int port::put(int c)
 {
 // something very short
 }

Inserting the keyword inline , though not automatic, is generally less work than con-
verting a function to a macro.

The “pay for only what you use” philosophy clearly applies to the C part of C++. With
most development systems that support both C and C++, rebuilding a C program as a
C++ program produces essentially the same object program. Here are the caveats:
• You will probably need to massage your C source a little to get it to compile as C++.
• C++ compilers may add a little extra code for program initiation and termination, but

the speed and space penalty is usually marginal.
• With most implementations, the C++ features supporting exception handling and run-

time type information may spawn additional static data. Exception handling may in-
troduce extra overhead on each function call and return. However, C++ implementa-
tions usually offer compile and link options to fine tune these features or disable them
completely.

Another related concern regarding member functions is that they execute more slowly
than non-member function calls. The reality is that...

• Ordinary member function calls are just as fast as non-member function calls.

A member function call such as:

p.put('x');

applies a put operation to object p. p is called the receiver object of the call, and the
compiler generates code which passes a pointer to p as an additional argument to put .
For example, C++ translates the member function declaration:

int port::put(char c);

into the equivalent of a C function that looks something like:

int port_put(port *const this, char c);

and translates the call:

p.put('x');

into something like:

port_put(&p, 'x');

Is passing the address of the receiver object an extra cost? Not really. The vast majority
of C functions that operate on an object of struct type pass the address of that object as an
explicit argument. When you redesign this code using classes, that struct object becomes
the receiver object in a member function call. The number of actual arguments remains
the same.

What about the efficiency of virtual function calls? Are they slower than ordinary func-
tion calls? Yes.

• On most architectures, a virtual function call executes 2 to 4 more instructions than a
non-virtual function call.

Again, you only pay for this if you ask for it. Moreover, there is a notation by which you
can turn off the virtual call mechanism for an individual call to a virtual function (thus
saving the added cost) without turning off the virtual call mechanism for any other calls.

OTHER LOW-COST C++ FEATURES

C++ offers C programmers several other attractive features that incur little or no run-time
cost. Some of these features can be very useful in improving the clarity of programs.
Here’s a sampling.

Reference types offer an alternative to pointers as a way of referring to objects indirectly.
For example, if you write (in either C or C++):

port p;
...
port *pp = &p; /* pp is a pointer to a port */

then pp is the address of p, and *pp refers to p itself. In C++, you can also write:

port &pr = p; /* pr is a reference to a port */

so that &pr is the address of p, and pr refers to p itself.

Believe it or not, references have many notational advantages. For example, passing a
large object by value, as in

void f(large_object lo);

can be expensive. Each call such as f(x) must copy x into lo in its entirety. In C, you
can reduce the cost of each call by declaring f to pass its parameter by address, as in:

void f(large_object const *lo);

But then you must write all the calls as f(&x) , which is cheaper than passing by value,
but less readable.

In C++, you can declare f to pass its parameter by reference:

void f(large_object const &lo);

and then you can still write all the calls as f(x) , which looks like passing by value, but
has the efficiency of passing by address.

Not everyone likes references. Some beginners find the notation deceptive and confus-
ing. Most learn to appreciate it. You must decide for yourself.

Another feature that can add readability to C++ programs with no run-time cost is func-
tion name overloading. In C, every function must have a unique name. Thus, C libraries
are filled with names of closely related functions with slightly different spellings, such as
sqrt , fsqrt , and ldsqrt . In C++, a program can declare different functions with the
same name as long as each function has a sufficiently distinct parameter list:

 float sqrt(float);
 double sqrt(double);
long double sqrt(long double);

For a given call to an overloaded function, the compiler selects (at compile time) the
function whose formal parameters are the best match for the actual arguments in the call.
For instance:

d = sqrt(10.0); /* calls sqrt(double) */
f = sqrt(10.0f); /* calls sqrt(float) */

Compilers can distinguish these calls because 10.0 has type double while 10.0f has
type float .

A compiler will reject a call that does not have a unique best match:

x = sqrt(10); /* error: ambiguous */

This is ambiguous because 10 has type int , which converts equally well to either
float or double .

Function name overloading, used judiciously, can help you implement libraries and pro-
gram components with simpler, more intuitive, interfaces.

An important side-effect of function name overloading is type-safe linkage, which guar-
antees (at link time) that a function declared in one translation unit and defined in another
has the same parameter types in both places. For example, C++ can catch this error:

/* file 1 */
void f(int)
 {
 ...
 }

/* file 2 */
void f(long int);
...
 {
 f(0L); /* link error */
 }

C cannot. Thus, C++ eliminates yet another source of bugs.

MIGRATING FROM C TO C++

Converting C source to C++ requires only a few, largely mechanical, changes to the C
source. Even if you are not converting source code, you must make small changes in
your coding style to use C++ instead of C. For example:
• C++ has more reserved words, such as class , public , private , inline , vir-

tual , new, and delete . You must avoid using these words as identifiers.

• C++ is less lenient about type conversions. You may have to insert a cast here or
there. Eventually, you may want to rethink the way you use types to reduce the num-
ber of casts.

For the most part, using C++ to compile C imposes no real restrictions on the expressive-
ness of C. Rather, it forces you to abandon poor coding practices, most of which are al-
ready considered obsolete by the C standard. Translating C directly into C++ typically
yields code that’s no less efficient than C, but is a little safer (from more rigorous static
checking).

THE DOWN SIDE

So what are some of the genuine concerns regarding the use of C++ for embedded pro-
gramming? Here are some examples...

• The effects of constructors and destructors can add surprising run-time overhead to
programs.

A constructor for a class X is a special member function that automatically initializes X
objects at run time. A destructor for class X is a special member function that releases
resources used by an X object that’s about to be destroyed. For the most part, construc-
tors and destructors are good things. They make programs more reliable. They do work
the program should do anyway, but you may be surprised at when it gets done.

Here’s an example of a possible surprise. If string is a class type with a constructor
and destructor, then:

for (i = 0; i < N; ++i)
 {
 string s;
 // ... use s ...
 }

creates and destroys s on each iteration, invoking both a constructor and destructor each
time around. In this case, avoiding the overhead is easy – move the declaration for s out-
side the loop. Not all such problems have such simple solutions.

• C++ programs create and destroy temporary objects in places you might not expect,
again producing surprising run-time overhead.

For example, the standard string class defines the + operator as concatenation so that,
for strings s, t , and u,

u = s + t;

concatenates s and t and assigns the result to u. Most compilers produce a program that
creates a temporary string object (using a constructor) to hold the result of s + t .
The program destroys the temporary after copying it to u. In this example, you can avoid
creating the temporary (and the constructor and destructor calls) by rewriting the code as:

u = s;
u += t;

Again, correcting the problem is not always that simple.

• C++ compiler diagnostics can be very cryptic.

The syntax of C++ is much more complicated than that of C. C++ compilers have more
difficulty pinpointing errors. Templates compound the problem.

• The Standard C++ Library has a very large footprint.

Even the smallest C++ programs may drag in tens of thousands of bytes of code from the
standard library (see Plauger [1996]). Thus, C++ executable images can be surprisingly
large. You may need to avoid certain library facilities, or “roll your own” simplified ver-
sions of library components. See Green [1996] for an example of a simplified i/o library.

DEVELOPMENT TOOLS

Tools for embedded programming with C++ are essentially the same as the tools you
need for C, with a few additional requirements. Here are some things you should look
for.

• Diagnostic messages and debugger symbols should appear as they do in the source.

Many C++ implementations use a form of “name mangling” to preserve compile-time
type information for use at link time. The linker uses the “mangled” names to enforce
type-safe linkage. For example, the sqrt functions:

float sqrt(float d);
double sqrt(double d);
complex sqrt(complex c);

might be mangled as:

sqrt__Ff
sqrt__Fd
sqrt__F7complex

In early C++ implementations, these “mangled” names appeared in diagnostic messages
and link maps. You should expect more recent C++ development tools to display the
function declarations as they appear in the source.

• Debuggers should be able to set breakpoints in inline function bodies and template
instances.

What’s the debugger to do when you ask it to set a breakpoint in an inline function body?
When the compiler expands a function body inline, there’s no one copy of the function
body where the debugger can set breakpoints. The copies are scattered all over the ex-
ecutable code. Templates may also generate different instances of the executable code
from a single copy of the source code. This poses similar problems for debuggers. Many
C++ compilers disable inline expansions when you enable symbolic debugging.

• Class browsers can be helpful tools for navigating through class inheritance hierar-
chies.

When dealing with class hierarchies, sometimes you can’t tell which member came from
which source file or header file. A good graphical browser can quickly locate a program
component no matter which file or header it actually resides in.

STRATEGIC RECOMMENDATIONS

The proper mind set is to think of object-oriented approaches as evolutionary, not revolu-
tionary. Think of C++ the same way.

My experience is that, if projects run into trouble in using C++, it is because they under-
estimate the time it takes to transition to C++. Technical evangelists can create undue
pressures by overstating the benefits of object-oriented techniques and C++.

A safe, sensible strategy is to:

• Adopt C++ incrementally.

That is, use only a small subset of C++ for your first project, use a larger subset on your
next project, and so on. Plum and Saks [1991] and Plauger [1993] recommend the fol-
lowing incremental subsets of C++:

1. Typesafe C: the common subset of Standard C and C++.
2. Enhanced C: C++ features that improve the safety and convenience of procedural

programming.
3. Object-Based C++: C++ with classes and templates but not derivation.
4. Object-Oriented C++: the entire C++ language.

Progressing through levels such as these reduces technical risks by innovating in smaller
steps. It also eases tension within programming teams caused by disparities in ability.
Let’s look at these levels in greater detail.

Typesafe C is essentially Standard C with a few restrictions (some of which were men-
tioned earlier). The primary restrictions are that you must avoid C++ keywords, use casts
a bit more often, and avoid old-style (non-prototype) function headings.

Enhanced C is Typesafe C plus features such as:
• inline functions (in place of macros)
• reference types (for passing arguments)
• function name overloading (for more intuitive user interfaces)
• operator overloading (for notational convenience)
• operators new and delete (for better storage management)
You should use Enhanced C only if you can completely abandon Standard C. The re-
sulting code should be more readable, but no less efficient, than it would be in C.

Object-Based C++ is Enhanced C plus:
• classes and access control (for data abstraction and encapsulation)
• friend functions
• templates (for generic classes and functions)
• exception handling (for orderly error recovery)
• namespaces (for managing the global namespace)
It excludes derived classes and virtual functions. This dialect:
• partitions the name space very effectively
• enforces the semantics of devices, APIs, etc.
• can still be as efficient as Standard C
• avoids the worst complexities of object-oriented programming
Object-Based C++ dialect offers the largest payoff for embedded systems that have seri-
ous performance requirements.

EMBEDDED C++

In 1996, a consortium of Japanese semiconductor manufacturers agreed that C++ had
gotten too complicated and expensive for programming embedded systems. They speci-
fied a subset of C++ for embedded systems that they called EC++ (Embedded C++).

EC++ omits the most complicated and expensive parts of C++. The EC++ specification
is a list of changes to (mostly deletions from) the C++ standard. That specification is
available at http://www.caravan.net/ec2plus . Specifically, EC++ omits from
C++:
• exception handling
• multiple inheritance
• run-time type information (RTTI)
because they incur speed and space penalties that are often unacceptable in embedded
systems. It omits:
• namespaces and using-declarations
• templates
because they were the least stable parts of the draft C++ standard, and remain so with
current compilers. Templates can also be responsible for producing surprising large
code. EC++ also omits:
• mutable class members
• new-style casts
purportedly because their utility does not justify the complexity they add to C++. The
exact combination of features in EC++ is still the subject of discussion.

The EC++ Library is a subset of the full C++ Library. The EC++ Library components
are smaller and less interconnected than their C++ Library counterparts. Therefore,
EC++ programs tend to have a smaller footprint than comparable C++ programs. That is,
a C++ program that uses only EC++ language and library features should yield a smaller
executable image when compiled and linked as EC++.

Several C++ compiler and library vendors are already supporting EC++. It may prove to
be a viable alternative for many embedded applications.

SUMMARY

C++ is a viable language for many, but not all, embedded programming applications.
Smaller systems with demanding resource requirements may never see a benefit, and
could possibly suffer, from using C++ instead of C. However, most large systems should
see at least some benefit. Some will experience significant improvements in software
quality. Some may eventually see a reduction in development costs.

There’s no doubt that C++ is a large language and takes time to master. The best way to
find out if it’s right for you is to try it out in small doses.

ACKNOWLEDGMENT

Thanks to P.J. Plauger for sharing his notes on this material with me.

REFERENCES

• Green [1996]. Curtis Green, “Shrinking Iostreams for Embedded Developers”, Em-
bedded Systems Programming, June 1996. Miller Freeman.

• Hudson [1988]. R. Hudson, ed., Rationale for Draft Proposed American National
Standard for Information Processing Systems, Programming Language C. American
National Standards Institute.

• Plauger [1993]. P.J. Plauger, “Embedded Programming in C++”, Proceedings of the
Embedded Systems Conference East, April 1993. Miller Freeman.

• Plauger [1996]. P.J. Plauger, “Too Much of a Good Thing”, Embedded Systems Pro-
gramming, July 1996. Miller Freeman.

• Plum and Saks [1991]. Thomas Plum and Dan Saks, C++ Programming Guidelines.
Plum Hall.

• Stroustrup [1989]. Bjarne Stroustrup, Keynote Address: Organizational Meeting of
ANSI X3J16. December 1989.

	back:

