

Next: Preface

Introduction to
Object-Oriented Programming

Using C++
Peter Müller

pmueller@uu-gna.mit.edu

Globewide Network Academy (GNA)
www.gnacademy.org/

August 31, 1997

Preface●

1 Introduction●

2 A Survey of Programming Techniques

2.1 Unstructured Programming❍

2.2 Procedural Programming❍

2.3 Modular Programming❍

2.4 An Example with Data Structures

2.4.1 Handling Single Lists■

2.4.2 Handling Multiple Lists■

❍

2.5 Modular Programming Problems

2.5.1 Explicit Creation and Destruction■

2.5.2 Decoupled Data and Operations■

2.5.3 Missing Type Safety■

2.5.4 Strategies and Representation■

❍

2.6 Object-Oriented Programming❍

2.7 Exercises❍

●

Introduction to Object-Oriented Programming Using C++

http://www.gnacademy.org/text/cc/Tutorial/tutorial.html (1 of 4) [14/04/2002 15:22:10]

http://www.gnacademy.org/

3 Abstract Data Types

3.1 Handling Problems❍

3.2 Properties of Abstract Data Types

Importance of Data Structure Encapsulation■

❍

3.3 Generic Abstract Data Types❍

3.4 Notation❍

3.5 Abstract Data Types and Object-Orientation❍

3.6 Excercises❍

●

4 Object-Oriented Concepts

4.1 Implementation of Abstract Data Types❍

4.2 Class❍

4.3 Object❍

4.4 Message❍

4.5 Summary❍

4.6 Exercises❍

●

5 More Object-Oriented Concepts

5.1 Relationships

A-Kind-Of relationship■

Is-A relationship■

Part-Of relationship■

Has-A relationship■

❍

5.2 Inheritance❍

5.3 Multiple Inheritance❍

5.4 Abstract Classes❍

5.5 Exercises❍

●

6 Even More Object-Oriented Concepts

6.1 Generic Types❍

6.2 Static and Dynamic Binding❍

6.3 Polymorphism❍

●

7 Introduction to C++

7.1 The C Programming Language

7.1.1 Data Types■

7.1.2 Statements■

❍

●

Introduction to Object-Oriented Programming Using C++

http://www.gnacademy.org/text/cc/Tutorial/tutorial.html (2 of 4) [14/04/2002 15:22:10]

7.1.3 Expressions and Operators■

7.1.4 Functions■

7.1.5 Pointers and Arrays■

7.1.6 A First Program■

7.2 What Next?❍

8 From C To C++

8.1 Basic Extensions

8.1.1 Data Types■

8.1.2 Functions■

❍

8.2 First Object-oriented Extensions

8.2.1 Classes and Objects■

8.2.2 Constructors■

8.2.3 Destructors■

❍

●

9 More on C++

9.1 Inheritance

9.1.1 Types of Inheritance■

9.1.2 Construction■

9.1.3 Destruction■

9.1.4 Multiple Inheritance■

❍

9.2 Polymorphism❍

9.3 Abstract Classes❍

9.4 Operator Overloading❍

9.5 Friends❍

9.6 How to Write a Program

9.6.1 Compilation Steps■

9.6.2 A Note about Style■

❍

9.7 Excercises❍

●

10 The List - A Case Study

10.1 Generic Types (Templates)❍

10.2 Shape and Traversal❍

10.3 Properties of Singly Linked Lists❍

10.4 Shape Implementation

10.4.1 Node Templates■

❍

●

Introduction to Object-Oriented Programming Using C++

http://www.gnacademy.org/text/cc/Tutorial/tutorial.html (3 of 4) [14/04/2002 15:22:10]

10.4.2 List Templates■

10.5 Iterator Implementation❍

10.6 Example Usage❍

10.7 Discussion

10.7.1 Separation of Shape and Access Strategies■

10.7.2 Iterators■

❍

10.8 Exercises❍

References●

A Solutions to the Exercises

A.1 A Survey of Programming Techniques❍

A.2 Abstract Data Types❍

A.3 Object-Oriented Concepts❍

A.4 More Object-Oriented Concepts❍

A.5 More on C++❍

A.6 The List - A Case Study❍

●

About this document ...●

Next: Preface P. Mueller
8/31/1997

Introduction to Object-Oriented Programming Using C++

http://www.gnacademy.org/text/cc/Tutorial/tutorial.html (4 of 4) [14/04/2002 15:22:10]

Next: 1 Introduction Up: Introduction to Object-Oriented Programming Previous: Introduction to
Object-Oriented Programming

Preface
 The first course Object-Oriented Programming Using C++ was held in Summer 1994 and was based
on a simple ASCII tutorial. After a call for participation, several highly motivated people from all over
the world joined course coordinator Marcus Speh as consultants and had pushed the course to its success.
Besides of the many students who spend lots of their time to help doing organizational stuff.

Then, the ``bomb''. The original author of the used ASCII tutorial stands on his copyright and denies us
to reuse his work. Unfortunately, Marcus was unable to spend more time on this project and so the main
driving force was gone.

My experiences made as consultant for this first course have lead to my decision that the course must be
offered again. So, in Summer 1995 I've just announced a second round, hoping that somehow a new
tutorial could be written. Well, here is the result. I hope, that you find this tutorial useful and clear. If not,
please send me a note. The tutorial is intended to be a group work and not a work of one person. It is
essential, that you express your comments and suggestions.

The course and the tutorial could have only been realized with help of many people. I wish to thank the
people from the Globewide Network Academy (GNA), especially Joseph Wang and Susanne Reading.

Ricardo Nassif and David Klein provide me with suggestions to improve the readability of the tutorial.

The complete tutorial is available free of charge in PostScript in both US letter and DIN A4 paper
formats. Please check out http://www.zib.de/mueller/Course/Tutorial/Postscript/ .
Berlin, Germany
Peter Müller

Next: 1 Introduction Up: Introduction to Object-Oriented Programming Previous: Introduction to
Object-Oriented Programming P. Mueller
8/31/1997

Preface

http://www.gnacademy.org/text/cc/Tutorial/node1.html [14/04/2002 15:22:12]

http://www.zib.de/mueller/Course/Tutorial/Postscript/

Next: 2 A Survey of Up: Introduction to Object-Oriented Programming Previous: Preface

1 Introduction
 This tutorial is a collection of lectures to be held in the on-line course Introduction to Object-Oriented
Programming Using C++ . In this course, object-orientation is introduced as a new programming
concept which should help you in developing high quality software. Object-orientation is also introduced
as a concept which makes developing of projects easier. However, this is not a course for learning the
C++ programming language. If you are interested in learning the language itself, you might want to go
through other tutorials, such as C++: Annotations by Frank Brokken and Karel Kubat. In this tutorial
only those language concepts that are needed to present coding examples are introduced. And what
makes object-orientation such a hot topic? To be honest, not everything that is sold under the term of
object-orientation is really new. For example, there are programs written in procedural languages like
Pascal or C which use object-oriented concepts. But there exist a few important features which these
languages won't handle or won't handle very well, respectively.

Some people will say that object-orientation is ``modern''. When reading announcements of new products
everything seems to be ``object-oriented''. ``Objects'' are everywhere. In this tutorial we will try to
outline characteristics of object-orientation to allow you to judge those object-oriented products.

The tutorial is organized as follows. Chapter 2 presents a brief overview of procedural programming to
refresh your knowledge in that area. Abstract data types are introduced in chapter 3 as a fundamental
concept of object-orientation. After that we can start to define general terms and beginning to view the
world as consisting of objects (chapter 4). Subsequent chapters present fundamental object-oriented
concepts (chapters 5 and 6). Chapters 7 through 9 introduce C++ as an example of an object-oriented
programming language which is in wide-spread use. Finally chapter 10 demonstrates how to apply
object-oriented programming to a real example.

Next: 2 A Survey of Up: Introduction to Object-Oriented Programming Previous: Preface P. Mueller
8/31/1997

1 Introduction

http://www.gnacademy.org/text/cc/Tutorial/node2.html [14/04/2002 15:22:19]

http://www.zib.de/mueller/Course/
http://www.zib.de/mueller/Course/
http://www.icce.rug.nl/docs/cpp.html

Next: 3 Abstract Data Types Up: Introduction to Object-Oriented Programming Previous: 1
Introduction

Subsections
2.1 Unstructured Programming●

2.2 Procedural Programming●

2.3 Modular Programming●

2.4 An Example with Data Structures

2.4.1 Handling Single Lists❍

2.4.2 Handling Multiple Lists❍

●

2.5 Modular Programming Problems

2.5.1 Explicit Creation and Destruction❍

2.5.2 Decoupled Data and Operations❍

2.5.3 Missing Type Safety❍

2.5.4 Strategies and Representation❍

●

2.6 Object-Oriented Programming●

2.7 Exercises●

2 A Survey of Programming Techniques

Peter Müller
Globewide Network Academy (GNA)

pmueller@uu-gna.mit.edu

This chapter is a short survey of programming techniques. We use a simple example to illustrate the
particular properties and to point out their main ideas and problems.

Roughly speaking, we can distinguish the following learning curve of someone who learns to program:

Unstructured programming,●

procedural programming,●

modular programming and●

object-oriented programming.●

This chapter is organized as follows. Sections 2.1 to 2.3 briefly describe the first three programming
techniques. Subsequently, we present a simple example of how modular programming can be used to

2 A Survey of Programming Techniques

http://www.gnacademy.org/text/cc/Tutorial/node3.html (1 of 11) [14/04/2002 15:22:43]

mailto:pmueller@uu-gna.mit.edu

implement a singly linked list module (section 2.4). Using this we state a few problems with this kind of
technique in section 2.5. Finally, section 2.6 describes the fourth programming technique.

2.1 Unstructured Programming
 Usually, people start learning programming by writing small and simple programs consisting only of
one main program. Here ``main program'' stands for a sequence of commands or statements which
modify data which is global throughout the whole program. We can illustrate this as shown in Fig. 2.1.

Figure 2.1:
 Unstructured

programming. The main
program directly

operates on global data.

As you should all know, this programming techniques provide tremendous disadvantages once the
program gets sufficiently large. For example, if the same statement sequence is needed at different
locations within the program, the sequence must be copied. This has lead to the idea to extract these
sequences, name them and offering a technique to call and return from these procedures.

2.2 Procedural Programming
 With procedural programming you are able to combine returning sequences of statements into one
single place. A procedure call is used to invoke the procedure. After the sequence is processed, flow of
control proceeds right after the position where the call was made (Fig. 2.2).

Figure 2.2: Execution
of procedures. After
processing flow of

controls proceed where

2 A Survey of Programming Techniques

http://www.gnacademy.org/text/cc/Tutorial/node3.html (2 of 11) [14/04/2002 15:22:43]

the call was made.

With introducing parameters as well as procedures of procedures (subprocedures) programs can now be
written more structured and error free. For example, if a procedure is correct, every time it is used it
produces correct results. Consequently, in cases of errors you can narrow your search to those places
which are not proven to be correct.

Now a program can be viewed as a sequence of procedure calls . The main program is responsible to
pass data to the individual calls, the data is processed by the procedures and, once the program has
finished, the resulting data is presented. Thus, the flow of data can be illustrated as a hierarchical graph, a
tree, as shown in Fig. 2.3 for a program with no subprocedures.

Figure 2.3: Procedural programming.
The main program coordinates calls to
procedures and hands over appropriate

data as parameters.

To sum up: Now we have a single program which is devided into small pieces called procedures. To
enable usage of general procedures or groups of procedures also in other programs, they must be
separately available. For that reason, modular programming allows grouping of procedures into modules.

2 A Survey of Programming Techniques

http://www.gnacademy.org/text/cc/Tutorial/node3.html (3 of 11) [14/04/2002 15:22:43]

http://www.gnacademy.org/text/cc/Tutorial/footnode.html#90

2.3 Modular Programming
 With modular programming procedures of a common functionality are grouped together into separate
modules. A program therefore no longer consists of only one single part. It is now devided into several
smaller parts which interact through procedure calls and which form the whole program (Fig. 2.4).

Figure 2.4: Modular programming. The main program
coordinates calls to procedures in separate modules and

hands over appropriate data as parameters.

Each module can have its own data. This allows each module to manage an internal state which is
modified by calls to procedures of this module. However, there is only one state per module and each
module exists at most once in the whole program.

2.4 An Example with Data Structures
 Programs use data structures to store data. Several data structures exist, for example lists, trees, arrays,
sets, bags or queues to name a few. Each of these data structures can be characterized by their structure
and their access methods.

2 A Survey of Programming Techniques

http://www.gnacademy.org/text/cc/Tutorial/node3.html (4 of 11) [14/04/2002 15:22:43]

2.4.1 Handling Single Lists
 You all know singly linked lists which use a very simple structure, consisting of elements which are
strung together, as shown in Fig. 2.5).

Figure 2.5: Structure of a singly linked list.

Singly linked lists just provides access methods to append a new element to their end and to delete the
element at the front. Complex data structures might use already existing ones. For example a queue can
be structured like a singly linked list. However, queues provide access methods to put a data element at
the end and to get the first data element (first-in first-out (FIFO) behaviour).

We will now present an example which we use to present some design concepts. Since this example is
just used to illustrate these concepts and problems it is neither complete nor optimal. Refer to chapter 10
for a complete object-oriented discussion about the design of data structures.

Suppose you want to program a list in a modular programming language such as C or Modula-2. As you
believe that lists are a common data structure, you decide to implement it in a separate module.
Typically, this requires you to write two files: the interface definition and the implementation file. Within
this chapter we will use a very simple pseudo code which you should understand immediately. Let's
assume, that comments are enclosed in ``/* ... */''. Our interface definition might then look similar to that
below:

 /*
 * Interface definition for a module which implements
 * a singly linked list for storing data of any type.
 */

 MODULE Singly-Linked-List-1

 BOOL list_initialize();
 BOOL list_append(ANY data);
 BOOL list_delete();
 list_end();

 ANY list_getFirst();
 ANY list_getNext();
 BOOL list_isEmpty();

2 A Survey of Programming Techniques

http://www.gnacademy.org/text/cc/Tutorial/node3.html (5 of 11) [14/04/2002 15:22:43]

 END Singly-Linked-List-1

Interface definitions just describe what is available and not how it is made available. You hide the
information of the implementation in the implementation file. This is a fundamental principle in software
engineering, so let's repeat it: You hide information of the actual implementation (information hiding).
This enables you to change the implementation, for example to use a faster but more memory consuming
algorithm for storing elements without the need to change other modules of your program: The calls to
provided procedures remain the same.

The idea of this interface is as follows: Before using the list one has to call list_initialize() to initialize
variables local to the module. The following two procedures implement the mentioned access methods
append and delete. The append procedure needs a more detailed discussion. Function list_append() takes
one argument data of arbitrary type. This is necessary since you wish to use your list in several different
environments, hence, the type of the data elements to be stored in the list is not known beforehand.

Consequently, you have to use a special type ANY which allows to assign data of any type to it . The
third procedure list_end() needs to be called when the program terminates to enable the module to clean
up its internally used variables. For example you might want to release allocated memory.

With the next two procedures list_getFirst() and list_getNext() a simple mechanism to traverse through
the list is offered. Traversing can be done using the following loop:

 ANY data;

 data <- list_getFirst();
 WHILE data IS VALID DO
 doSomething(data);
 data <- list_getNext();
 END

Now you have a list module which allows you to use a list with any type of data elements. But what, if
you need more than one list in one of your programs?

2.4.2 Handling Multiple Lists
 You decide to redesign your list module to be able to manage more than one list. You therefore create a
new interface description which now includes a definition for a list handle. This handle is used in every
provided procedure to uniquely identify the list in question. Your interface definition file of your new list
module looks like this:

 /*
 * A list module for more than one list.
 */

 MODULE Singly-Linked-List-2

2 A Survey of Programming Techniques

http://www.gnacademy.org/text/cc/Tutorial/node3.html (6 of 11) [14/04/2002 15:22:43]

http://www.gnacademy.org/text/cc/Tutorial/footnode.html#205

 DECLARE TYPE list_handle_t;

 list_handle_t list_create();
 list_destroy(list_handle_t this);
 BOOL list_append(list_handle_t this, ANY data);
 ANY list_getFirst(list_handle_t this);
 ANY list_getNext(list_handle_t this);
 BOOL list_isEmpty(list_handle_t this);

 END Singly-Linked-List-2;

You use DECLARE TYPE to introduce a new type list_handle_t which represents your list handle. We do
not specify, how this handle is actually represented or even implemented. You also hide the
implementation details of this type in your implementation file. Note the difference to the previous
version where you just hide functions or procedures, respectively. Now you also hide information for an
user defined data type called list_handle_t.

You use list_create() to obtain a handle to a new thus empty list. Every other procedure now contains the
special parameter this which just identifies the list in question. All procedures now operate on this handle
rather than a module global list.

Now you might say, that you can create list objects. Each such object can be uniquely identified by its
handle and only those methods are applicable which are defined to operate on this handle.

2.5 Modular Programming Problems
 The previous section shows, that you already program with some object-oriented concepts in mind.
However, the example implies some problems which we will outline now.

2.5.1 Explicit Creation and Destruction
In the example every time you want to use a list, you explicitly have to declare a handle and perform a
call to list_create() to obtain a valid one. After the use of the list you must explicitly call list_destroy()
with the handle of the list you want to be destroyed. If you want to use a list within a procedure, say,
foo() you use the following code frame:

 PROCEDURE foo() BEGIN
 list_handle_t myList;
 myList <- list_create();

 /* Do something with myList */
 ...

 list_destroy(myList);

2 A Survey of Programming Techniques

http://www.gnacademy.org/text/cc/Tutorial/node3.html (7 of 11) [14/04/2002 15:22:43]

 END

Let's compare the list with other data types, for example an integer. Integers are declared within a
particular scope (for example within a procedure). Once you've defined them, you can use them. Once
you leave the scope (for example the procedure where the integer was defined) the integer is lost. It is
automatically created and destroyed. Some compilers even initialize newly created integers to a specific
value, typically 0 (zero).

Where is the difference to list ``objects''? The lifetime of a list is also defined by its scope, hence, it must
be created once the scope is entered and destroyed once it is left. On creation time a list should be
initialized to be empty. Therefore we would like to be able to define a list similar to the definition of an
integer. A code frame for this would look like this:

 PROCEDURE foo() BEGIN
 list_handle_t myList; /* List is created and initialized */

 /* Do something with the myList */
 ...
 END /* myList is destroyed */

The advantage is, that now the compiler takes care of calling initialization and termination procedures as
appropriate. For example, this ensures that the list is correctly deleted, returning resources to the
program.

2.5.2 Decoupled Data and Operations
Decoupling of data and operations leads usually to a structure based on the operations rather than the
data: Modules group common operations (such as those list_...() operations) together. You then use these
operations by providing explicitly the data to them on which they should operate. The resulting module
structure is therefore oriented on the operations rather than the actual data. One could say that the defined
operations specify the data to be used.

In object-orientation, structure is organized by the data. You choose the data representations which best
fit your requirements. Consequently, your programs get structured by the data rather than operations.
Thus, it is exactly the other way around: Data specifies valid operations. Now modules group data
representations together.

2.5.3 Missing Type Safety
 In our list example we have to use the special type ANY to allow the list to carry any data we like. This
implies, that the compiler cannot guarantee for type safety. Consider the following example which the
compiler cannot check for correctness:

 PROCEDURE foo() BEGIN
 SomeDataType data1;

2 A Survey of Programming Techniques

http://www.gnacademy.org/text/cc/Tutorial/node3.html (8 of 11) [14/04/2002 15:22:43]

 SomeOtherType data2;
 list_handle_t myList;

 myList <- list_create();
 list_append(myList, data1);
 list_append(myList, data2); /* Oops */

 ...

 list_destroy(myList);
 END

It is in your responsibility to ensure that your list is used consistently. A possible solution is to
additionally add information about the type to each list element. However, this implies more overhead
and does not prevent you from knowing what you are doing.

What we would like to have is a mechanism which allows us to specify on which data type the list should
be defined. The overall function of the list is always the same, whether we store apples, numbers, cars or
even lists. Therefore it would be nice to declare a new list with something like:

 list_handle_t<Apple> list1; /* a list of apples */
 list_handle_t<Car> list2; /* a list of cars */

The corresponding list routines should then automatically return the correct data types. The compiler
should be able to check for type consistency.

2.5.4 Strategies and Representation
The list example implies operations to traverse through the list. Typically a cursor is used for that
purpose which points to the current element. This implies a traversing strategy which defines the order
in which the elements of the data structure are to be visited.

For a simple data structure like the singly linked list one can think of only one traversing strategy.
Starting with the leftmost element one successively visits the right neighbours until one reaches the last
element. However, more complex data structures such as trees can be traversed using different strategies.
Even worse, sometimes traversing strategies depend on the particular context in which a data structure is
used. Consequently, it makes sense to separate the actual representation or shape of the data structure
from its traversing strategy. We will investigate this in more detail in chapter 10.

What we have shown with the traversing strategy applies to other strategies as well. For example
insertion might be done such that an order over the elements is achieved or not.

2 A Survey of Programming Techniques

http://www.gnacademy.org/text/cc/Tutorial/node3.html (9 of 11) [14/04/2002 15:22:43]

2.6 Object-Oriented Programming
 Object-oriented programming solves some of the problems just mentioned. In contrast to the other
techniques, we now have a web of interacting objects, each house-keeping its own state (Fig. 2.6).

Figure 2.6: Object-oriented programming. Objects of
the program interact by sending messages to each other.

Consider the multiple lists example again. The problem here with modular programming is, that you
must explicitly create and destroy your list handles. Then you use the procedures of the module to
modify each of your handles.

In contrast to that, in object-oriented programming we would have as many list objects as needed. Instead
of calling a procedure which we must provide with the correct list handle, we would directly send a
message to the list object in question. Roughly speaking, each object implements its own module
allowing for example many lists to coexist.

Each object is responsible to initialize and destroy itself correctly. Consequently, there is no longer the
need to explicitly call a creation or termination procedure.

You might ask: So what? Isn't this just a more fancier modular programming technique? You were right,
if this would be all about object-orientation. Fortunately, it is not. Beginning with the next chapters
additional features of object-orientation are introduced which makes object-oriented programming to a
new programming technique.

2 A Survey of Programming Techniques

http://www.gnacademy.org/text/cc/Tutorial/node3.html (10 of 11) [14/04/2002 15:22:43]

2.7 Exercises

1.

The list examples include the special type ANY to allow a list to carry data of any type. Suppose
you want to write a module for a specialized list of integers which provides type checking. All you
have is the interface definition of module Singly-Linked-List-2.

(a)

How does the interface definition for a module Integer-List look like?

(b)

Discuss the problems which are introduced with using type ANY for list elements in module
Singly-Linked-List-2.

(c)

What are possible solutions to these problems?

2.

What are the main conceptual differences between object-oriented programming and the other
programming techniques?

3.

If you are familiar with a modular programming language try to implement module
Singly-Linked-List-2. Subsequently, implement a list of integers and a list of integer lists with help
of this module.

Next: 3 Abstract Data Types Up: Introduction to Object-Oriented Programming Previous: 1
Introduction P. Mueller
8/31/1997

2 A Survey of Programming Techniques

http://www.gnacademy.org/text/cc/Tutorial/node3.html (11 of 11) [14/04/2002 15:22:43]

Next: 4 Object-Oriented Concepts Up: Introduction to Object-Oriented Programming Previous: 2 A
Survey of

Subsections
3.1 Handling Problems●

3.2 Properties of Abstract Data Types

Importance of Data Structure Encapsulation❍

●

3.3 Generic Abstract Data Types●

3.4 Notation●

3.5 Abstract Data Types and Object-Orientation●

3.6 Excercises●

3 Abstract Data Types

Peter Müller
Globewide Network Academy (GNA)

pmueller@uu-gna.mit.edu

Some authors describe object-oriented programming as programming abstract data types and their
relationships. Within this section we introduce abstract data types as a basic concept for
object-orientation and we explore concepts used in the list example of the last section in more detail.

3.1 Handling Problems
The first thing with which one is confronted when writing programs is the problem. Typically you are
confronted with ``real-life'' problems and you want to make life easier by providing a program for the
problem. However, real-life problems are nebulous and the first thing you have to do is to try to
understand the problem to separate necessary from unnecessary details: You try to obtain your own
abstract view, or model, of the problem. This process of modeling is called abstraction and is illustrated
in Figure 3.1.

Figure 3.1: Create a model
from a problem with

abstraction.

3 Abstract Data Types

http://www.gnacademy.org/text/cc/Tutorial/node4.html (1 of 8) [14/04/2002 15:22:48]

mailto:pmueller@uu-gna.mit.edu

The model defines an abstract view to the problem. This implies that the model focusses only on problem
related stuff and that you try to define properties of the problem. These properties include

the data which are affected and●

the operations which are identified●

by the problem.

As an example consider the administration of employees in an institution. The head of the administration
comes to you and ask you to create a program which allows to administer the employees. Well, this is not
very specific. For example, what employee information is needed by the administration? What tasks
should be allowed? Employees are real persons who can be characterized with many properties; very few
are:

name,●

size,●

date of birth,●

shape,●

social number,●

room number,●

hair colour,●

hobbies.●

Certainly not all of these properties are necessary to solve the administration problem. Only some of
them are problem specific. Consequently you create a model of an employee for the problem. This model
only implies properties which are needed to fulfill the requirements of the administration, for instance
name, date of birth and social number. These properties are called the data of the (employee) model.
Now you have described real persons with help of an abstract employee.

3 Abstract Data Types

http://www.gnacademy.org/text/cc/Tutorial/node4.html (2 of 8) [14/04/2002 15:22:48]

Of course, the pure description is not enough. There must be some operations defined with which the
administration is able to handle the abstract employees. For example, there must be an operation which
allows you to create a new employee once a new person enters the institution. Consequently, you have to
identify the operations which should be able to be performed on an abstract employee. You also decide to
allow access to the employees' data only with associated operations. This allows you to ensure that data
elements are always in a proper state. For example you are able to check if a provided date is valid.

To sum up, abstraction is the structuring of a nebulous problem into well-defined entities by defining
their data and operations. Consequently, these entities combine data and operations. They are not
decoupled from each other.

3.2 Properties of Abstract Data Types
The example of the previous section shows, that with abstraction you create a well-defined entity which
can be properly handled. These entities define the data structure of a set of items. For example, each
administered employee has a name, date of birth and social number.

The data structure can only be accessed with defined operations. This set of operations is called interface
and is exported by the entity. An entity with the properties just described is called an abstract data type
(ADT).

Figure 3.2 shows an ADT which consists of an abstract data structure and operations. Only the operations
are viewable from the outside and define the interface.

Figure 3.2: An abstract data type
(ADT).

Once a new employee is ``created'' the data structure is filled with actual values: You now have an
instance of an abstract employee. You can create as many instances of an abstract employee as needed to
describe every real employed person.

Let's try to put the characteristics of an ADT in a more formal way:

Definition (Abstract Data Type) An abstract data type (ADT) is characterized by the following

3 Abstract Data Types

http://www.gnacademy.org/text/cc/Tutorial/node4.html (3 of 8) [14/04/2002 15:22:48]

properties:

1.

It exports a type.

2.

It exports a set of operations. This set is called interface.

3.

Operations of the interface are the one and only access mechanism to the type's data structure.

4.

Axioms and preconditions define the application domain of the type.

With the first property it is possible to create more than one instance of an ADT as exemplified with the
employee example. You might also remember the list example of chapter 2. In the first version we have
implemented a list as a module and were only able to use one list at a time. The second version
introduces the ``handle'' as a reference to a ``list object''. From what we have learned now, the handle in
conjunction with the operations defined in the list module defines an ADT List:

1.

When we use the handle we define the corresponding variable to be of type List.

2.

The interface to instances of type List is defined by the interface definition file.

3.

Since the interface definition file does not include the actual representation of the handle, it cannot
be modified directly.

4.

The application domain is defined by the semantical meaning of provided operations. Axioms and
preconditions include statements such as

``An empty list is a list.''❍

``Let l=(d1, d2, d3, ..., dN) be a list. Then l.append(dM) results in l=(d1, d2, d3, ..., dN,
dM).''

❍

``The first element of a list can only be deleted if the list is not empty.''❍

However, all of these properties are only valid due to our understanding of and our discipline in using the
list module. It is in our responsibility to use instances of List according to these rules.

Importance of Data Structure Encapsulation
The principle of hiding the used data structure and to only provide a well-defined interface is known as
encapsulation. Why is it so important to encapsulate the data structure?

To answer this question consider the following mathematical example where we want to define an ADT
for complex numbers. For the following it is enough to know that complex numbers consists of two
parts: real part and imaginary part. Both parts are represented by real numbers. Complex numbers define

3 Abstract Data Types

http://www.gnacademy.org/text/cc/Tutorial/node4.html (4 of 8) [14/04/2002 15:22:48]

several operations: addition, substraction, multiplication or division to name a few. Axioms and
preconditions are valid as defined by the mathematical definition of complex numbers. For example, it
exists a neutral element for addition.

To represent a complex number it is necessary to define the data structure to be used by its ADT. One
can think of at least two possibilities to do this:

Both parts are stored in a two-valued array where the first value indicates the real part and the
second value the imaginary part of the complex number. If x denotes the real part and y the
imaginary part, you could think of accessing them via array subscription: x=c[0] and y=c[1].

●

Both parts are stored in a two-valued record. If the element name of the real part is r and that of the
imaginary part is i, x and y can be obtained with: x=c.r and y=c.i.

●

Point 3 of the ADT definition says that for each access to the data structure there must be an operation
defined. The above access examples seem to contradict this requirement. Is this really true?

Let's look again at the two possibilities for representing imaginary numbers. Let's stick to the real part. In
the first version, x equals c[0]. In the second version, x equals c.r. In both cases x equals ``something''. It
is this ``something'' which differs from the actual data structure used. But in both cases the performed
operation ``equal'' has the same meaning to declare x to be equal to the real part of the complex number
c: both cases archieve the same semantics.

If you think of more complex operations the impact of decoupling data structures from operations
becomes even more clear. For example the addition of two complex numbers requires you to perform an
addition for each part. Consequently, you must access the value of each part which is different for each
version. By providing an operation ``add'' you can encapsulate these details from its actual use. In an
application context you simply ``add two complex numbers'' regardless of how this functionality is
actually archieved.

Once you have created an ADT for complex numbers, say Complex, you can use it in the same way like
well-known data types such as integers.

Let's summarize this: The separation of data structures and operations and the constraint to only access
the data structure via a well-defined interface allows you to choose data structures appropriate for the
application environment.

3.3 Generic Abstract Data Types
ADTs are used to define a new type from which instances can be created. As shown in the list example,
sometimes these instances should operate on other data types as well. For instance, one can think of lists
of apples, cars or even lists. The semantical definition of a list is always the same. Only the type of the
data elements change according to what type the list should operate on.

This additional information could be specified by a generic parameter which is specified at instance
creation time. Thus an instance of a generic ADT is actually an instance of a particular variant of the
ADT. A list of apples can therefore be declared as follows:

3 Abstract Data Types

http://www.gnacademy.org/text/cc/Tutorial/node4.html (5 of 8) [14/04/2002 15:22:48]

 List<Apple> listOfApples;

The angle brackets now enclose the data type for which a variant of the generic ADT List should be
created. listOfApples offers the same interface as any other list, but operates on instances of type Apple.

3.4 Notation
As ADTs provide an abstract view to describe properties of sets of entities, their use is independent from
a particular programming language. We therefore introduce a notation here which is adopted from [3].
Each ADT description consists of two parts:

Data: This part describes the structure of the data used in the ADT in an informal way.●

Operations: This part describes valid operations for this ADT, hence, it describes its interface. We
use the special operation constructor to describe the actions which are to be performed once an
entity of this ADT is created and destructor to describe the actions which are to be performed
once an entity is destroyed. For each operation the provided arguments as well as preconditions
and postconditions are given.

●

As an example the description of the ADT Integer is presented. Let k be an integer expression:

ADT Integer is
Data

A sequence of digits optionally prefixed by a plus or minus sign. We refer to this signed
whole number as N.

Operations
constructor

Creates a new integer.

add(k)
Creates a new integer which is the sum of N and k.

Consequently, the postcondition of this operation is sum = N+k. Don't confuse this
with assign statements as used in programming languages! It is rather a mathematical
equation which yields ``true'' for each value sum, N and k after add has been
performed.

sub(k)
Similar to add, this operation creates a new integer of the difference of both integer
values. Therefore the postcondition for this operation is sum = N-k.

set(k)
Set N to k. The postcondition for this operation is N = k.

...
end

The description above is a specification for the ADT Integer. Please notice, that we use words for names

3 Abstract Data Types

http://www.gnacademy.org/text/cc/Tutorial/node4.html (6 of 8) [14/04/2002 15:22:48]

of operations such as ``add''. We could use the more intuitive ``+'' sign instead, but this may lead to some
confusion: You must distinguish the operation ``+'' from the mathematical use of ``+'' in the
postcondition. The name of the operation is just syntax whereas the semantics is described by the
associated pre- and postconditions. However, it is always a good idea to combine both to make reading
of ADT specifications easier.

Real programming languages are free to choose an arbitrary implementation for an ADT. For example,
they might implement the operation add with the infix operator ``+'' leading to a more intuitive look for
addition of integers.

3.5 Abstract Data Types and
Object-Orientation
ADTs allows the creation of instances with well-defined properties and behaviour. In object-orientation
ADTs are referred to as classes. Therefore a class defines properties of objects which are the instances in
an object-oriented environment.

ADTs define functionality by putting main emphasis on the involved data, their structure, operations as
well as axioms and preconditions. Consequently, object-oriented programming is ``programming with
ADTs'': combining functionality of different ADTs to solve a problem. Therefore instances (objects) of
ADTs (classes) are dynamically created, destroyed and used.

3.6 Excercises

1.

ADT Integer.

(a)

Why are there no preconditions for operations add and sub?

(b)

Obviously, the ADT description of Integer is incomplete. Add methods mul, div and any
other one. Describe their impacts by specifying pre- and postconditions.

2.

Design an ADT Fraction which describes properties of fractions.

(a)

What data structures can be used? What are its elements?

(b)

What does the interface look like?

(c)

3 Abstract Data Types

http://www.gnacademy.org/text/cc/Tutorial/node4.html (7 of 8) [14/04/2002 15:22:48]

Name a few axioms and preconditions.

3.

Describe in your own words properties of abstract data types.

4.

Why is it necessary to include axioms and preconditions to the definition of an abstract data type?

5.

Describe in your own words the relationship between

instance and abstract data type,❍

generic abstract data type and corresponding abstract data type,❍

instances of a generic abstract data type.❍

Next: 4 Object-Oriented Concepts Up: Introduction to Object-Oriented Programming Previous: 2 A
Survey of P. Mueller
8/31/1997

3 Abstract Data Types

http://www.gnacademy.org/text/cc/Tutorial/node4.html (8 of 8) [14/04/2002 15:22:48]

Next: 5 More Object-Oriented Concepts Up: Introduction to Object-Oriented Programming Previous: 3
Abstract Data Types

Subsections
4.1 Implementation of Abstract Data Types●

4.2 Class●

4.3 Object●

4.4 Message●

4.5 Summary●

4.6 Exercises●

4 Object-Oriented Concepts

Peter Müller
Globewide Network Academy (GNA)

pmueller@uu-gna.mit.edu

The previous sections already introduce some ``object-oriented'' concepts. However, they were applied in
an procedural environment or in a verbal manner. In this section we investigate these concepts in more
detail and give them names as used in existing object-oriented programming languages.

4.1 Implementation of Abstract Data
Types
The last section introduces abstract data types (ADTs) as an abstract view to define properties of a set of
entities. Object-oriented programming languages must allow to implement these types. Consequently,
once an ADT is implemented we have a particular representation of it available.

Consider again the ADT Integer. Programming languages such as Pascal, C, Modula-2 and others
already offer an implementation for it. Sometimes it is called int or integer. Once you've created a
variable of this type you can use its provided operations. For example, you can add two integers:

 int i, j, k; /* Define three integers */

 i = 1; /* Assign 1 to integer i */
 j = 2; /* Assign 2 to integer j */

4 Object-Oriented Concepts

http://www.gnacademy.org/text/cc/Tutorial/node5.html (1 of 7) [14/04/2002 15:22:56]

mailto:pmueller@uu-gna.mit.edu

 k = i + j; /* Assign the sum of i and j to k */

Let's play with the above code fragment and outline the relationship to the ADT Integer. The first line
defines three instances i, j and k of type Integer. Consequently, for each instance the special operation
constructor should be called. In our example, this is internally done by the compiler. The compiler
reserves memory to hold the value of an integer and ``binds'' the corresponding name to it. If you refer to
i you actually refer to this memory area which was ``constructed'' by the definition of i. Optionally,
compilers might choose to initialize the memory, for example, they might set it to 0 (zero).

The next line

 i = 1;

sets the value of i to be 1. Therefore we can describe this line with help of the ADT notation as follows:

Perform operation set with argument 1 on the Integer instance i. This is written as follows: i.set(1).

We now have a representation at two levels. The first level is the ADT level where we express
everything that is done to an instance of this ADT by the invocation of defined operations. At this level,
pre- and postconditions are used to describe what actually happens. In the following example, these
conditions are enclosed in curly brackets.

{ Precondition: i = n where n is any Integer }
i.set(1)
{ Postcondition: i = 1 }
Don't forget that we currently talk about the ADT level! Consequently, the conditions are mathematical
conditions.

The second level is the implementation level, where an actual representation is chosen for the operation.
In C the equal sign ``='' implements the set() operation. However, in Pascal the following representation
was chosen:

 i := 1;

In either case, the ADT operation set is implemented.

Let's stress these levels a little bit further and have a look at the line

 k = i + j;

Obviously, ``+'' was chosen to implement the add operation. We could read the part ``i + j'' as ``add the
value of j to the value of i'', thus at the ADT level this results in

{ Precondition: Let i = n1 and j = n2 with n1, n2 particular Integers }
i.add(j)
{ Postcondition: i = n1 and j = n2 }
The postcondition ensures that i and j do not change their values. Please recall the specification of add. It

4 Object-Oriented Concepts

http://www.gnacademy.org/text/cc/Tutorial/node5.html (2 of 7) [14/04/2002 15:22:56]

says that a new Integer is created the value of which is the sum. Consequently, we must provide a
mechanism to access this new instance. We do this with the set operation applied on instance k:

{ Precondition: Let k = n where n is any Integer }
k.set(i.add(j))
{ Postcondition: k = i + j }
As you can see, some programming languages choose a representation which almost equals the
mathematical formulation used in the pre- and postconditions. This makes it sometimes difficult to not
mix up both levels.

4.2 Class
 A class is an actual representation of an ADT. It therefore provides implementation details for the data
structure used and operations. We play with the ADT Integer and design our own class for it:

 class Integer {
 attributes:
 int i

 methods:
 setValue(int n)
 Integer addValue(Integer j)
 }

In the example above as well as in examples which follow we use a notation which is not programming
language specific. In this notation class {...} denotes the definition of a class. Enclosed in the curly
brackets are two sections attributes: and methods: which define the implementation of the data
structure and operations of the corresponding ADT. Again we distinguish the two levels with different
terms: At the implementation level we speak of ``attributes'' which are elements of the data structure at
the ADT level. The same applies to ``methods'' which are the implementation of the ADT operations.

In our example, the data structure consists of only one element: a signed sequence of digits. The

corresponding attribute is an ordinary integer of a programming language . We only define two
methods setValue() and addValue() representing the two operations set and add.

Definition (Class) A class is the implementation of an abstract data type (ADT). It defines attributes and
methods which implement the data structure and operations of the ADT, respectively. Instances of
classes are called objects. Consequently, classes define properties and behaviour of sets of objects.

4 Object-Oriented Concepts

http://www.gnacademy.org/text/cc/Tutorial/node5.html (3 of 7) [14/04/2002 15:22:56]

http://www.gnacademy.org/text/cc/Tutorial/footnode.html#618

4.3 Object
 Recall the employee example of chapter 3. We have talked of instances of abstract employees. These
instances are actual ``examples'' of an abstract employee, hence, they contain actual values to represent a
particular employee. We call these instances objects.

Objects are uniquely identifiable by a name. Therefore you could have two distinguishable objects with
the same set of values. This is similar to ``traditional'' programming languages where you could have, say
two integers i and j both of which equal to ``2''. Please notice the use of ``i'' and ``j'' in the last sentence to
name the two integers. We refer to the set of values at a particular time as the state of the object.

Definition (Object) An object is an instance of a class. It can be uniquely identified by its name and it
defines a state which is represented by the values of its attributes at a particular time.

The state of the object changes according to the methods which are applied to it. We refer to these
possible sequence of state changes as the behaviour of the object:

Definition (Behaviour) The behaviour of an object is defined by the set of methods which can be applied
on it.

We now have two main concepts of object-orientation introduced, class and object. Object-oriented
programming is therefore the implementation of abstract data types or, in more simple words, the writing
of classes. At runtime instances of these classes, the objects, achieve the goal of the program by changing
their states. Consequently, you can think of your running program as a collection of objects. The question
arises of how these objects interact? We therefore introduce the concept of a message in the next section.

4.4 Message
 A running program is a pool of objects where objects are created, destroyed and interacting. This
interacting is based on messages which are sent from one object to another asking the recipient to apply a
method on itself. To give you an understanding of this communication, let's come back to the class
Integer presented in section 4.2. In our pseudo programming language we could create new objects and
invoke methods on them. For example, we could use

 Integer i; /* Define a new integer object */
 i.setValue(1); /* Set its value to 1 */

to express the fact, that the integer object i should set its value to 1. This is the message ``Apply method
setValue with argument 1 on yourself.'' sent to object i. We notate the sending of a message with ``.''.
This notation is also used in C++; other object-oriented languages might use other notations, for example
``- ''.

Sending a message asking an object to apply a method is similar to a procedure call in ``traditional''
programming languages. However, in object-orientation there is a view of autonomous objects which
communicate with each other by exchanging messages. Objects react when they receive messages by

4 Object-Oriented Concepts

http://www.gnacademy.org/text/cc/Tutorial/node5.html (4 of 7) [14/04/2002 15:22:56]

applying methods on themselves. They also may deny the execution of a method, for example if the
calling object is not allowed to execute the requested method.

In our example, the message and the method which should be applied once the message is received have
the same name: We send ``setValue with argument 1'' to object i which applies ``setValue(1)''.

Definition (Message) A message is a request to an object to invoke one of its methods. A message
therefore contains

the name of the method and●

the arguments of the method.●

Consequently, invocation of a method is just a reaction caused by receipt of a message. This is only
possible, if the method is actually known to the object.

Definition (Method) A method is associated with a class. An object invokes a method as a reaction to
receipt of a message.

4.5 Summary
To view a program as a collection of interacting objects is a fundamental principle in object-oriented
programming. Objects in this collection react upon receipt of messages, changing their state according to
invocation of methods which might cause other messages sent to other objects. This is illustrated in
Figure 4.1.

Figure 4.1: A program consisting of four objects.

4 Object-Oriented Concepts

http://www.gnacademy.org/text/cc/Tutorial/node5.html (5 of 7) [14/04/2002 15:22:56]

In this figure, the program consists of only four objects. These objects send messages to each other, as
indicated by the arrowed lines. Note that the third object sends itself a message.

How does this view help us developing software? To answer this question let's recall how we have
developed software for procedural programming languages. The first step was to divide the problem into
smaller manageable pieces. Typically these pieces were oriented to the procedures which were taken
place to solve the problem, rather than the involved data.

As an example consider your computer. Especially, how a character appears on the screen when you type
a key. In a procedural environment you write down the several steps necessary to bring a character on the
screen:

1.

wait, until a key is pressed.

2.

get key value

3.

write key value at current cursor position

4.

advance cursor position

You do not distinguish entities with well-defined properties and well-known behaviour. In an
object-oriented environment you would distinguish the interacting objects key and screen. Once a key
receive a message that it should change its state to be pressed, its corresponding object sends a message
to the screen object. This message requests the screen object to display the associated key value.

4.6 Exercises
1.

Class.

(a)

What distinguishes a class from an ADT?

(b)

Design a class for the ADT Complex. What representations do you choose for the ADT
operations? Why?

2.

Interacting objects. Have a look to your tasks of your day life. Choose one which does not involve
too many steps (for example, watching TV, cooking a meal, etc.). Describe this task in procedural
and object-oriented form. Try to begin viewing the world to consist of objects.

3.

4 Object-Oriented Concepts

http://www.gnacademy.org/text/cc/Tutorial/node5.html (6 of 7) [14/04/2002 15:22:56]

Object view. Regarding the last exercise, what problems do you encounter?

4.

Messages.

(a)

Why do we talk about ``messages'' rather than ``procedure calls''?

(b)

Name a few messages which make sense in the Internet environment. (You must therefore
identify objects.)

(c)

Why makes the term ``message'' more sense in the environment of the last exercise, than the
term ``procedure call''?

Next: 5 More Object-Oriented Concepts Up: Introduction to Object-Oriented Programming Previous: 3
Abstract Data Types P. Mueller
8/31/1997

4 Object-Oriented Concepts

http://www.gnacademy.org/text/cc/Tutorial/node5.html (7 of 7) [14/04/2002 15:22:56]

Next: 6 Even More Object-Oriented Up: Introduction to Object-Oriented Programming Previous: 4
Object-Oriented Concepts

Subsections
5.1 Relationships

A-Kind-Of relationship❍

Is-A relationship❍

Part-Of relationship❍

Has-A relationship❍

●

5.2 Inheritance●

5.3 Multiple Inheritance●

5.4 Abstract Classes●

5.5 Exercises●

5 More Object-Oriented Concepts

Peter Müller
Globewide Network Academy (GNA)

pmueller@uu-gna.mit.edu

Whereas the previous lecture introduces the fundamental concepts of object-oriented programming, this

lecture presents more details about the object-oriented idea. This section is mainly adopted from [2] .

5.1 Relationships
In exercise 3.6.5 you already investigate relationships between abstract data types and instances and
describe them in your own words. Let's go in more detail here.

A-Kind-Of relationship
Consider you have to write a drawing program. This program would allow drawing of various objects
such as points, circles, rectangles, triangles and many more. For each object you provide a class
definition. For example, the point class just defines a point by its coordinates:

 class Point {

5 More Object-Oriented Concepts

http://www.gnacademy.org/text/cc/Tutorial/node6.html (1 of 12) [14/04/2002 15:23:01]

mailto:pmueller@uu-gna.mit.edu
http://www.gnacademy.org/text/cc/Tutorial/footnode.html#647

 attributes:
 int x, y

 methods:
 setX(int newX)
 getX()
 setY(int newY)
 getY()
 }

You continue defining classes of your drawing program with a class to describe circles. A circle defines a
center point and a radius:

 class Circle {
 attributes:
 int x, y,
 radius

 methods:
 setX(int newX)
 getX()
 setY(int newY)
 getY()
 setRadius(newRadius)
 getRadius()
 }

Comparing both class definitions we can observe the following:

Both classes have two data elements x and y. In the class Point these elements describe the
position of the point, in the case of class Circle they describe the circle's center. Thus, x and y have
the same meaning in both classes: They describe the position of their associated object by defining
a point.

●

Both classes offer the same set of methods to get and set the value of the two data elements x and
y.

●

Class Circle ``adds'' a new data element radius and corresponding access methods.●

Knowing the properties of class Point we can describe a circle as a point plus a radius and methods to
access it. Thus, a circle is ``a-kind-of'' point. However, a circle is somewhat more ``specialized''. We
illustrate this graphically as shown in Figure 5.1.

Figure 5.1: Illustration of ``a-kind-of''
relationship.

5 More Object-Oriented Concepts

http://www.gnacademy.org/text/cc/Tutorial/node6.html (2 of 12) [14/04/2002 15:23:01]

In this and the following figures, classes are drawn using rectangles. Their name always starts with an
uppercase letter. The arrowed line indicates the direction of the relation, hence, it is to be read as ``Circle
is a-kind-of Point.''

Is-A relationship
The previous relationship is used at the class level to describe relationships between two similar classes.
If we create objects of two such classes we refer to their relationship as an ``is-a'' relationship.

Since the class Circle is a kind of class Point, an instance of Circle, say acircle, is a point .
Consequently, each circle behaves like a point. For example, you can move points in x direction by
altering the value of x. Similarly, you move circles in this direction by altering their x value.

Figure 5.2 illustrates this relationship. In this and the following figures, objects are drawn using
rectangles with round corners. Their name only consists of lowercase letters.

Figure 5.2: Illustration of ``is-a'' relationship.

Part-Of relationship
You sometimes need to be able to build objects by combining them out of others. You already know this
from procedural programming, where you have the structure or record construct to put data of various
types together.

Let's come back to our drawing program. You already have created several classes for the available
figures. Now you decide that you want to have a special figure which represents your own logo which
consists of a circle and a triangle. (Let's assume, that you already have defined a class Triangle.) Thus,
your logo consists of two parts or the circle and triangle are part-of your logo:

 class Logo {
 attributes:
 Circle circle

5 More Object-Oriented Concepts

http://www.gnacademy.org/text/cc/Tutorial/node6.html (3 of 12) [14/04/2002 15:23:01]

http://www.gnacademy.org/text/cc/Tutorial/footnode.html#679

 Triangle triangle

 methods:
 set(Point where)
 }

We illustrate this in Figure 5.3.

Figure 5.3: Illustration of ``part-of'' relationship.

Has-A relationship
This relationship is just the inverse version of the part-of relationship. Therefore we can easily add this
relationship to the part-of illustration by adding arrows in the other direction (Figure 5.4).

Figure 5.4: Illustration of ``has-a'' relationship.

5.2 Inheritance
With inheritance we are able to make use of the a-kind-of and is-a relationship. As described there,
classes which are a-kind-of another class share properties of the latter. In our point and circle example,
we can define a circle which inherits from point:

 class Circle inherits from Point {
 attributes:
 int radius

5 More Object-Oriented Concepts

http://www.gnacademy.org/text/cc/Tutorial/node6.html (4 of 12) [14/04/2002 15:23:01]

 methods:
 setRadius(int newRadius)
 getRadius()
 }

Class Circle inherits all data elements and methods from point. There is no need to define them twice:
We just use already existing and well-known data and method definitions.

On the object level we are now able to use a circle just as we would use a point, because a circle is-a
point. For example, we can define a circle object and set its center point coordinates:

 Circle acircle
 acircle.setX(1) /* Inherited from Point */
 acircle.setY(2)
 acircle.setRadius(3) /* Added by Circle */

``Is-a'' also implies, that we can use a circle everywhere where a point is expected. For example, you can
write a function or method, say move(), which should move a point in x direction:

 move(Point apoint, int deltax) {
 apoint.setX(apoint.getX() + deltax)
 }

As a circle inherits from a point, you can use this function with a circle argument to move its center point
and, hence, the whole circle:

 Circle acircle
 ...
 move(acircle, 10) /* Move circle by moving */
 /* its center point */

Let's try to formalize the term ``inheritance'':

Definition (Inheritance) Inheritance is the mechanism which allows a class A to inherit properties of a
class B. We say ``A inherits from B''. Objects of class A thus have access to attributes and methods of
class B without the need to redefine them. The following definition defines two terms with which we are
able to refer to participating classes when they use inheritance.

Definition (Superclass/Subclass) If class A inherits from class B, then B is called superclass of A. A is
called subclass of B. Objects of a subclass can be used where objects of the corresponding superclass are
expected. This is due to the fact that objects of the subclass share the same behaviour as objects of the
superclass.

In the literature you may also find other terms for ``superclass'' and ``subclass''. Superclasses are also
called parent classes. Subclasses may also be called child classes or just derived classes.

Of course, you can again inherit from a subclass, making this class the superclass of the new subclass.

5 More Object-Oriented Concepts

http://www.gnacademy.org/text/cc/Tutorial/node6.html (5 of 12) [14/04/2002 15:23:01]

This leads to a hierarchy of superclass/subclass relationships. If you draw this hierarchy you get an
inheritance graph.

A common drawing scheme is to use arrowed lines to indicate the inheritance relationship between two
classes or objects. In our examples we have used ``inherits-from''. Consequently, the arrowed line starts
from the subclass towards the superclass as illustrated in Figure 5.5.

Figure 5.5: A
simple inheritance

graph.

In the literature you also find illustrations where the arrowed lines are used just the other way around.
The direction in which the arrowed line is used, depends on how the corresponding author has decided to
understand it.

Anyway, within this tutorial, the arrowed line is always directed towards the superclass.

In the following sections an unmarked arrowed line indicates ``inherit-from''.

5.3 Multiple Inheritance
One important object-oriented mechanism is multiple inheritance. Multiple inheritance does not mean
that multiple subclasses share the same superclass. It also does not mean that a subclass can inherit from
a class which itself is a subclass of another class.

Multiple inheritance means that one subclass can have more than one superclass. This enables the
subclass to inherit properties of more than one superclass and to ``merge'' their properties.

As an example consider again our drawing program. Suppose we already have a class String which
allows convenient handling of text. For example, it might have a method to append other text. In our
program we would like to use this class to add text to the possible drawing objects. It would be nice to
also use already existing routines such as move() to move the text around. Consequently, it makes sense
to let a drawable text have a point which defines its location within the drawing area. Therefore we

5 More Object-Oriented Concepts

http://www.gnacademy.org/text/cc/Tutorial/node6.html (6 of 12) [14/04/2002 15:23:01]

derive a new class DrawableString which inherits properties from Point and String as illustrated in
Figure 5.6.

Figure 5.6: Derive a drawable
string which inherits properties of

Point and String.

In our pseudo language we write this by simply separating the multiple superclasses by comma:

 class DrawableString inherits from Point, String {
 attributes:
 /* All inherited from superclasses */

 methods:
 /* All inherited from superclasses */
 }

We can use objects of class DrawableString like both points and strings. Because a drawablestring is-a
point we can move them around

 DrawableString dstring
 ...
 move(dstring, 10)
 ...

Since it is a string, we can append other text to them:

 dstring.append("The red brown fox ...")

Now it's time for the definition of multiple inheritance:

Definition (Multiple Inheritance) If class A inherits from more than one class, ie. A inherits from B1,

5 More Object-Oriented Concepts

http://www.gnacademy.org/text/cc/Tutorial/node6.html (7 of 12) [14/04/2002 15:23:01]

B2, ..., Bn, we speak of multiple inheritance. This may introduce naming conflicts in A if at least two of
its superclasses define properties with the same name.

The above definition introduce naming conflicts which occur if more than one superclass of a subclass
use the same name for either attributes or methods. For an example, let's assume, that class String defines

a method setX() which sets the string to a sequence of ``X'' characters . The question arises, what
should be inherited by DrawableString? The Point, String version or none of them?

These conflicts can be solved in at least two ways:

The order in which the superclasses are provided define which property will be accessible by the
conflict causing name. Others will be ``hidden''.

●

The subclass must resolve the conflict by providing a property with the name and by defining how
to use the ones from its superclasses.

●

The first solution is not very convenient as it introduces implicit consequences depending on the order in
which classes inherit from each other. For the second case, subclasses must explicitly redefine properties
which are involved in a naming conflict.

A special type of naming conflict is introduced if a class D multiply inherits from superclasses B and C
which themselves are derived from one superclass A. This leads to an inheritance graph as shown in
Figure 5.7.

Figure 5.7: A name conflict
introduced by a shared superclass
of superclasses used with multiple

inheritance.

5 More Object-Oriented Concepts

http://www.gnacademy.org/text/cc/Tutorial/node6.html (8 of 12) [14/04/2002 15:23:01]

http://www.gnacademy.org/text/cc/Tutorial/footnode.html#759

The question arises what properties class D actually inherits from its superclasses B and C. Some existing
programming languages solve this special inheritance graph by deriving D with

the properties of A plus●

the properties of B and C without the properties they have inherited from A.●

Consequently, D cannot introduce naming conflicts with names of class A. However, if B and C add
properties with the same name, D runs into a naming conflict.

Another possible solution is, that D inherits from both inheritance paths. In this solution, D owns two
copies of the properties of A: one is inherited by B and one by C.

Although multiple inheritance is a powerful object-oriented mechanism the problems introduced with
naming conflicts have lead several authors to ``doom'' it. As the result of multiple inheritance can always
be achieved by using (simple) inheritance some object-oriented languages even don't allow its use.
However, carefully used, under some conditions multiple inheritance provides an efficient and elegant
way of formulating things.

5.4 Abstract Classes
With inheritance we are able to force a subclass to offer the same properties like their superclasses.
Consequently, objects of a subclass behave like objects of their superclasses.

Sometimes it make sense to only describe the properties of a set of objects without knowing the actual
behaviour beforehand. In our drawing program example, each object should provide a method to draw
itself on the drawing area. However, the necessary steps to draw an objects depends on its represented
shape. For example, the drawing routine of a circle is different from the drawing routine of a rectangle.

Let's call the drawing method print(). To force every drawable object to include such method, we define
a class DrawableObject from which every other class in our example inherits general properties of
drawable objects:

 abstract class DrawableObject {
 attributes:

 methods:
 print()
 }

We introduce the new keyword abstract here. It is used to express the fact that derived classes must
``redefine'' the properties to fulfill the desired functionality. Thus from the abstract class' point of view,
the properties are only specified but not fully defined. The full definition including the semantics of the
properties must be provided by derived classes.

Now, every class in our drawing program example inherits properties from the general drawable object

5 More Object-Oriented Concepts

http://www.gnacademy.org/text/cc/Tutorial/node6.html (9 of 12) [14/04/2002 15:23:01]

class. Therefore, class Point changes to:

 class Point inherits from DrawableObject {
 attributes:
 int x, y

 methods:
 setX(int newX)
 getX()
 setY(int newY)
 getY()
 print() /* Redefine for Point */
 }

We are now able to force every drawable object to have a method called print which should provide
functionality to draw the object within the drawing area. The superclass of all drawable objects, class
DrawableObject, does not provide any functionality for drawing itself. It is not intended to create objects
from it. This class rather specifies properties which must be defined by every derived class. We refer to
this special type of classes as abstract classes:

Definition (Abstract Class) A class A is called abstract class if it is only used as a superclass for other
classes. Class A only specifies properties. It is not used to create objects. Derived classes must define the
properties of A.

Abstract classes allow us to structure our inheritance graph. However, we actually don't want to create
objects from them: we only want to express common characteristics of a set of classes.

5.5 Exercises
1.

Inheritance. Consider the drawing program example again.

(a)

Define class Rectangle by inheriting from class Point. The point should indicate the upper
left corner of the rectangle. What are your class attributes? What additional methods do you
introduce?

(b)

All current examples are based on a two-dimensional view. You now want to introduce 3D
objects such as spheres, cubes or cuboids. Design a class Sphere by using a class 3D-Point.
Specify the role of the point in a sphere. What relationship do you use between class Point
and 3D-Point?

(c)

What functionality does move() provide for 3D objects? Be as precise as you can.

(d)

5 More Object-Oriented Concepts

http://www.gnacademy.org/text/cc/Tutorial/node6.html (10 of 12) [14/04/2002 15:23:01]

Draw the inheritance graph including the following classes DrawableObject, Point, Circle,
Rectangle, 3D-Point and Sphere.

(e)

Have a look at the inheritance graph of Figure 5.8.

Figure 5.8:
 Alternative
inheritance
graph for

class Sphere.

A corresponding definition might look like this:

 class Sphere inherits from Circle {
 attributes:
 int z /* Add third dimension */

 methods:
 setZ(int newZ)
 getZ()
 }

Give reasons for advantages/disadvantages of this alternative.

2.

Multiple inheritance. Compare the inheritance graph shown in Figure 5.9 with that of Figure 5.7.
Here, we illustrate that B and C have each their own copy of A.

5 More Object-Oriented Concepts

http://www.gnacademy.org/text/cc/Tutorial/node6.html (11 of 12) [14/04/2002 15:23:01]

Figure 5.9: Illustration of the
second multiple inheritance

semantics.

What naming conflicts can occur? Try to define cases by playing with simple example classes.

Next: 6 Even More Object-Oriented Up: Introduction to Object-Oriented Programming Previous: 4
Object-Oriented Concepts P. Mueller
8/31/1997

5 More Object-Oriented Concepts

http://www.gnacademy.org/text/cc/Tutorial/node6.html (12 of 12) [14/04/2002 15:23:01]

Next: 7 Introduction to C++ Up: Introduction to Object-Oriented Programming Previous: 5 More
Object-Oriented Concepts

Subsections
6.1 Generic Types●

6.2 Static and Dynamic Binding●

6.3 Polymorphism●

6 Even More Object-Oriented Concepts

Peter Müller
Globewide Network Academy (GNA)

pmueller@uu-gna.mit.edu

We continue with our tour through the world of object-oriented concepts by presenting a short
introduction to static versus dynamic binding. With this, we can introduce polymorphism as a mechanism
which let objects figure out what to do at runtime. But first, here is a brief overview about generic types.

6.1 Generic Types
We already know generic types from chapter 3 when we have talked about generic abstract data types.
When defining a class, we actually define a user defined type. Some of these types can operate on other
types. For example, there could be lists of apples, list of cars, lists of complex numbers of even lists of
lists.

At the time, when we write down a class definition, we must be able to say that this class should define a
generic type. However, we don't know with which types the class will be used. Consequently, we must
be able to define the class with help of a ``placeholder'' to which we refer as if it is the type on which the
class operates. Thus, the class definition provides us with a template of an actual class. The actual class
definition is created once we declare a particular object. Let's illustrate this with the following example.
Suppose, you want to define a list class which should be a generic type. Thus, it should be possible to
declare list objects for apples, cars or any other type.

 template class List for T {
 attributes:
 ... /* Data structure needed to implement */
 /* the list */

6 Even More Object-Oriented Concepts

http://www.gnacademy.org/text/cc/Tutorial/node7.html (1 of 7) [14/04/2002 15:23:02]

mailto:pmueller@uu-gna.mit.edu

 methods:
 append(T element)
 T getFirst()
 T getNext()
 bool more()
 }

The above template class List looks like any other class definition. However, the first line declares List to
be a template for various types. The identifier T is used as a placeholder for an actual type. For example,
append() takes one element as an argument. The type of this element will be the data type with which an
actual list object is created. For example, we can declare a list object for apples if a definition fot the type
Apple exists:

 List for Apple appleList
 Apple anApple,
 anotherApple
 appleList.append(anotherApple)
 appleList.append(anApple)

The first line declares appleList to be a list for apples. At this time, the compiler uses the template
definition, substitutes every occurrence of T with Apple and creates an actual class definition for it. This
leads to a class definition similar to the one that follows:

 class List {
 attributes:
 ... /* Data structure needed to implement */
 /* the list */

 methods:
 append(Apple element)
 Apple getFirst()
 Apple getNext()
 bool more()
 }

This is not exactly, what the compiler generates. The compiler must ensure that we can create multiple
lists for different types at any time. For example, if we need another list for, say pears, we can write:

 List for Apple appleList
 List for Pear pearList
 ...

In both cases the compiler generates an actual class definition. The reason why both do not conflict by
their name is that the compiler generates unique names. However, since this is not viewable to us, we
don't go in more detail here. In any case, if you declare just another list of apples, the compiler can figure
out if there already is an actual class definition and use it or if it has to be created. Thus,

6 Even More Object-Oriented Concepts

http://www.gnacademy.org/text/cc/Tutorial/node7.html (2 of 7) [14/04/2002 15:23:02]

 List for Apple aList
 List for Apple anotherList

will create the actual class definition for aList and will reuse it for anotherList. Consequently, both are of
the same type. We summarize this in the following definition:

Definition (Template Class) If a class A is parameterized with a data type B, A is called template class.
Once an object of A is created, B is replaced by an actual data type. This allows the definition of an
actual class based on the template specified for A and the actual data type.

We are able to define template classes with more than one parameter. For example, directories are
collections of objects where each object can be referenced by a key. Of course, a directory should be able
to store any type of object. But there are also various possibilities for keys. For instance, they might be
strings or numbers. Consequently, we would define a template class Directory which is based on two
type parameters, one for the key and one for the stored objects.

6.2 Static and Dynamic Binding
In strongly typed programming languages you typically have to declare variables prior to their use. This
also implies the variable's definition where the compiler reserves space for the variable. For example, in
Pascal an expression like

 var i : integer;

declares variable i to be of type integer. Additionally, it defines enough memory space to hold an integer
value.

With the declaration we bind the name i to the type integer. This binding is true within the scope in
which i is declared. This enables the compiler to check at compilation time for type consistency. For
example, the following assignment will result in a type mismatch error when you try to compile it:

 var i : integer;
 ...
 i := 'string';

We call this particular type of binding ``static'' because it is fixed at compile time.

Definition (Static Binding) If the type T of a variable is explicitly associated with its name N by
declaration, we say, that N is statically bound to T. The association process is called static binding.

There exist programming languages which are not using explicitly typed variables. For example, some
languages allow to introduce variables once they are needed:

 ... /* No appearance of i */
 i := 123 /* Creation of i as an integer */

6 Even More Object-Oriented Concepts

http://www.gnacademy.org/text/cc/Tutorial/node7.html (3 of 7) [14/04/2002 15:23:02]

The type of i is known as soon as its value is set. In this case, i is of type integer since we have assigned a
whole number to it. Thus, because the content of i is a whole number, the type of i is integer.

Definition (Dynamic Binding) If the type T of a variable with name N is implicitly associated by its
content, we say, that N is dynamically bound to T. The association process is called dynamic binding.

Both bindings differ in the time when the type is bound to the variable. Consider the following example
which is only possible with dynamic binding:

 if somecondition() == TRUE then
 n := 123
 else
 n := 'abc'
 endif

The type of n after the if statement depends on the evaluation of somecondition(). If it is TRUE, n is of
type integer whereas in the other case it is of type string.

6.3 Polymorphism
 Polymorphism allows an entity (for example, variable, function or object) to take a variety of
representations. Therefore we have to distinguish different types of polymorphism which will be outlined
here.

The first type is similar to the concept of dynamic binding. Here, the type of a variable depends on its
content. Thus, its type depends on the content at a specific time:

 v := 123 /* v is integer */
 ... /* use v as integer */
 v := 'abc' /* v "switches" to string */
 ... /* use v as string */

Definition (Polymorphism (1)) The concept of dynamic binding allows a variable to take different types
dependent on the content at a particular time. This ability of a variable is called polymorphism. Another
type of polymorphism can be defined for functions. For example, suppose you want to define a function
isNull() which returns TRUE if its argument is 0 (zero) and FALSE otherwise. For integer numbers this
is easy:

 boolean isNull(int i) {
 if (i == 0) then
 return TRUE
 else
 return FALSE
 endif
 }

6 Even More Object-Oriented Concepts

http://www.gnacademy.org/text/cc/Tutorial/node7.html (4 of 7) [14/04/2002 15:23:02]

However, if we want to check this for real numbers, we should use another comparison due to the
precision problem:

 boolean isNull(real r) {
 if (r < 0.01 and r > -0.99) then
 return TRUE
 else
 return FALSE
 endif
 }

In both cases we want the function to have the name isNull. In programming languages without
polymorphism for functions we cannot declare these two functions because the name isNull would be
doubly defined. Without polymorphism for functions, doubly defined names would be ambiguous.
However, if the language would take the parameters of the function into account it would work. Thus,
functions (or methods) are uniquely identified by:

the name of the function (or method) and●

the types of its parameter list.●

Since the parameter list of both isNull functions differ, the compiler is able to figure out the correct
function call by using the actual types of the arguments:

 var i : integer
 var r : real

 i = 0
 r = 0.0

 ...

 if (isNull(i)) then ... /* Use isNull(int) */
 ...
 if (isNull(r)) then ... /* Use isNull(real) */

Definition (Polymorphism (2)) If a function (or method) is defined by the combination of

its name and●

the list of types of its parameters●

we speak of polymorphism. This type of polymorphism allows us to reuse the same name for functions
(or methods) as long as the parameter list differs. Sometimes this type of polymorphism is called
overloading.

The last type of polymorphism allows an object to choose correct methods. Consider the function move()
again, which takes an object of class Point as its argument. We have used this function with any object of
derived classes, because the is-a relation holds.

Now consider a function display() which should be used to display drawable objects. The declaration of

6 Even More Object-Oriented Concepts

http://www.gnacademy.org/text/cc/Tutorial/node7.html (5 of 7) [14/04/2002 15:23:02]

this function might look like this:

 display(DrawableObject o) {
 ...
 o.print()
 ...
 }

We would like to use this function with objects of classes derived from DrawableObject:

 Circle acircle
 Point apoint
 Rectangle arectangle

 display(apoint) /* Should invoke apoint.print() */
 display(acircle) /* Should invoke acircle.print() */
 display(arectangle) /* Should invoke arectangle.print() */

The actual method should be defined by the content of the object o of function display(). Since this is
somewhat complicated, here is a more abstract example:

 class Base {
 attributes:

 methods:
 virtual foo()
 bar()
 }

 class Derived inherits from Base {
 attributes:

 methods:
 virtual foo()
 bar()
 }

 demo(Base o) {
 o.foo()
 o.bar()
 }

 Base abase
 Derived aderived

 demo(abase)

6 Even More Object-Oriented Concepts

http://www.gnacademy.org/text/cc/Tutorial/node7.html (6 of 7) [14/04/2002 15:23:02]

 demo(aderived)

In this example we define two classes Base and Derived. Each class defines two methods foo() and bar().
The first method is defined as virtual. This means that if this method is invoked its definition should
be evaluated by the content of the object.

We then define a function demo() which takes a Base object as its argument. Consequently, we can use
this function with objects of class Derived as the is-a relation holds. We call this function with a Base
object and a Derived object, respectively.

Suppose, that foo() and bar() are defined to just print out their name and the class in which they are
defined. Then the output is as follows:

 foo() of Base called.
 bar() of Base called.
 foo() of Derived called.
 bar() of Base called.

Why is this so? Let's see what happens. The first call to demo() uses a Base object. Thus, the function's
argument is ``filled'' with an object of class Base. When it is time to invoke method foo() it's actual
functionality is chosen based on the current content of the corresponding object o. This time, it is a Base
object. Consequently, foo() as defined in class Base is called.

The call to bar() is not subject to this content resolution. It is not marked as virtual. Consequently,
bar() is called in the scope of class Base.

The second call to demo() takes a Derived object as its argument. Thus, the argument o is filled with a
Derived object. However, o itself just represents the Base part of the provided object aderived.

Now, the call to foo() is evaluated by examining the content of o, hence, it is called within the scope of
Derived. On the other hand, bar() is still evaluated within the scope of Base.

Definition (Polymorphism (3)) Objects of superclasses can be filled with objects of their subclasses.
Operators and methods of subclasses can be defined to be evaluated in two contextes:

1.

Based on object type, leading to an evaluation within the scope of the superclass.

2.

Based on object content, leading to an evaluation within the scope of the contained subclass.

The second type is called polymorphism.

Next: 7 Introduction to C++ Up: Introduction to Object-Oriented Programming Previous: 5 More
Object-Oriented Concepts P. Mueller
8/31/1997

6 Even More Object-Oriented Concepts

http://www.gnacademy.org/text/cc/Tutorial/node7.html (7 of 7) [14/04/2002 15:23:02]

Next: 8 From C To Up: Introduction to Object-Oriented Programming Previous: 6 Even More
Object-Oriented

Subsections
7.1 The C Programming Language

7.1.1 Data Types❍

7.1.2 Statements❍

7.1.3 Expressions and Operators❍

7.1.4 Functions❍

7.1.5 Pointers and Arrays❍

7.1.6 A First Program❍

●

7.2 What Next?●

7 Introduction to C++

Peter Müller
Globewide Network Academy (GNA)

pmueller@uu-gna.mit.edu

This section is the first part of the introduction to C++. Here we focus on C from which C++ was
adopted. C++ extends the C programming language with strong typing, some features and - most
importantly - object-oriented concepts.

7.1 The C Programming Language
Developed in the late 1970s, C gained an huge success due to the development of UNIX which was almost
entirely written in this language [4]. In contrast to other high level languages, C was written by
programmers for programmers. Thus it allows sometimes, say, weird things which in other languages
such as Pascal are forbidden due to its bad influence on programming style. Anyway, when used with
some discipline, C is as good a language as any other.

The comment in C is enclosed in /* ... */. Comments cannot be nested.

7 Introduction to C++

http://www.gnacademy.org/text/cc/Tutorial/node8.html (1 of 14) [14/04/2002 15:23:10]

mailto:pmueller@uu-gna.mit.edu

7.1.1 Data Types
Table 7.1 describes the built-in data types of C. The specified Size is measured in bytes on a 386 PC
running Linux 1.2.13. The provided Domain is based on the Size value. You can obtain information
about the size of a data type with the sizeof operator.

Table 7.1: Built-in types.

7 Introduction to C++

http://www.gnacademy.org/text/cc/Tutorial/node8.html (2 of 14) [14/04/2002 15:23:10]

Variables of these types are defined simply by preceeding the name with the type:

 int an_int;
 float a_float;
 long long a_very_long_integer;

With struct you can combine several different types together. In other languages this is sometimes
called a record:

 struct date_s {
 int day, month, year;
 } aDate;

The above definition of aDate is also the declaration of a structure called date_s. We can define
other variables of this type by referencing the structure by name:

 struct date_s anotherDate;

We do not have to name structures. If we omit the name, we just cannot reuse it. However, if we name a
structure, we can just declare it without defining a variable:

 struct time_s {
 int hour, minute, second;
 };

We are able to use this structure as shown for anotherDate. This is very similar to a type definition
known in other languages where a type is declared prior to the definition of a variable of this type.

Variables must be defined prior to their use. These definitions must occur before any statement, thus they
form the topmost part within a statement block.

7.1.2 Statements
C defines all usual flow control statements. Statements are terminated by a semicolon ``;''. We can group
multiple statements into blocks by enclosing them in curly brackets. Within each block, we can define
new variables:

 {
 int i; /* Define a global i */
 i = 1; /* Assign i the value 0 */
 { /* Begin new block */
 int i; /* Define a local i */
 i = 2; /* Set its value to 2 */
 } /* Close block */
 /* Here i is again 1 from the outer block */

7 Introduction to C++

http://www.gnacademy.org/text/cc/Tutorial/node8.html (3 of 14) [14/04/2002 15:23:10]

 }

Table 7.2 lists all flow control statements:

Table 7.2: Statements.

7 Introduction to C++

http://www.gnacademy.org/text/cc/Tutorial/node8.html (4 of 14) [14/04/2002 15:23:10]

The for statement is the only statement which really differs from for statements known from other
languages. All other statements more or less only differ in their syntax. What follows are two blocks
which are totally equal in their functionality. One uses the while loop while the other the for variant:

 {
 int ix, sum;
 sum = 0;
 ix = 0; /* initialization */
 while (ix < 10) { /* condition */
 sum = sum + 1;
 ix = ix + 1; /* step */
 }
 }

 {
 int ix, sum;
 sum = 0;
 for (ix = 0; ix < 10; ix = ix + 1)
 sum = sum + 1;
 }

To understand this, you have to know, that an assignment is an expression.

7.1.3 Expressions and Operators
In C almost everything is an expression. For example, the assignment statement ``='' returns the value of
its righthand operand. As a ``side effect'' it also sets the value of the lefthand operand. Thus,

 ix = 12;

sets the value of ix to 12 (assuming that ix has an appropriate type). Now that the assignment is also an
expression, we can combine several of them; for example:

 kx = jx = ix = 12;

What happens? The first assignment assigns kx the value of its righthand side. This is the value of the
assignment to jx. But this is the value of the assignment to ix. The value of this latter is 12 which is
returned to jx which is returned to kx. Thus we have expressed

 ix = 12;
 jx = 12;
 kx = 12;

in one line.

7 Introduction to C++

http://www.gnacademy.org/text/cc/Tutorial/node8.html (5 of 14) [14/04/2002 15:23:10]

Truth in C is defined as follows. The value 0 (zero) stands for FALSE. Any other value is TRUE. For
example, the standard function strcmp() takes two strings as argument and returns -1 if the first is lower
than the second, 0 if they are equal and 1 if the first is greater than the second one. To compare if two
strings str1 and str2 are equal you often see the following if construct:

 if (!strcmp(str1, str2)) {
 /* str1 equals str2 */
 }
 else {
 /* str1 does not equal str2 */
 }

The exclamation mark indicates the boolean NOT. Thus the expression evaluates to TRUE only if
strcmp() returns 0.

Expressions are combined of both terms and operators. The first could be constansts, variables or
expressions. From the latter, C offers all operators known from other languages. However, it offers some
operators which could be viewed as abbreviations to combinations of other operators. Table 7.3 lists
available operators. The second column shows their priority where smaller numbers indicate higher
priority and same numbers, same priority. The last column lists the order of evaluation.

Table 7.3: Operators.

7 Introduction to C++

http://www.gnacademy.org/text/cc/Tutorial/node8.html (6 of 14) [14/04/2002 15:23:10]

7 Introduction to C++

http://www.gnacademy.org/text/cc/Tutorial/node8.html (7 of 14) [14/04/2002 15:23:10]

Most of these operators are already known to you. However, some need some more description. First of
all notice that the binary boolean operators &, ^ and | are of lower priority than the equality operators
== and !=. Consequently, if you want to check for bit patterns as in

 if ((pattern & MASK) == MASK) {
 ...
 }

you must enclose the binary operation into parenthesis .

The increment operators ++ and can be explained by the following example. If you have the

following statement sequence

 a = a + 1;
 b = a;

you can use the preincrement operator

 b = ++a;

Similarly, if you have the following order of statements:

 b = a;
 a = a + 1;

you can use the postincrement operator

 b = a++;

Thus, the preincrement operator first increments its associated variable and then returns the new value,
whereas the postincrement operator first returns the value and then increments its variable. The same
rules apply to the pre- and postdecrement operator .

Function calls, nested assignments and the increment/decrement operators cause side effects when they
are applied. This may introduce compiler dependencies as the evaluation order in some situations is
compiler dependent. Consider the following example which demonstrates this:

 a[i] = i++;

The question is, whether the old or new value of i is used as the subscript into the array a depends on the
order the compiler uses to evaluate the assignment.

The conditional operator ?: is an abbreviation for a commonly used if statement. For example to assign
max the maximum of a and b we can use the following if statement:

7 Introduction to C++

http://www.gnacademy.org/text/cc/Tutorial/node8.html (8 of 14) [14/04/2002 15:23:10]

http://www.gnacademy.org/text/cc/Tutorial/footnode.html#1298

 if (a > b)
 max = a;
 else
 max = b;

These types of if statements can be shorter written as

 max = (a > b) ? a : b;

The next unusual operator is the operator assignment. We are often using assignments of the following
form

 expr1 = (expr1) op (expr2)

for example

 i = i * (j + 1);

In these assignments the lefthand value also appears on the right side. Using informal speech we could
express this as ``set the value of i to the current value of i multiplied by the sum of the value of j and 1''.
Using a more natural way, we would rather say ``Multiply i with the sum of the value of j and 1''. C
allows us to abbreviate these types of assignments to

 i *= j + 1;

We can do that with almost all binary operators. Note, that the above operator assignment really
implements the long form although ``j + 1'' is not in parenthesis.

The last unusal operator is the comma operator ,. It is best explained by an example:

 i = 0;
 j = (i += 1, i += 2, i + 3);

This operator takes its arguments and evaluates them from left to right and returns the value of the
rightmost expression. Thus, in the above example, the operator first evaluates ``i += 1'' which, as a side
effect, increments the value of i. Then the next expression ``i += 2'' is evaluated which adds 2 to i leading
to a value of 3. The third expression is evaluated and its value returned as the operator's result. Thus, j is
assigned 6.

The comma operator introduces a particular pitfall when using n-dimensional arrays with . A

frequent error is to use a comma separated list of indices to try to access an element:

 int matrix[10][5]; // 2-dim matrix
 int i;

 ...

7 Introduction to C++

http://www.gnacademy.org/text/cc/Tutorial/node8.html (9 of 14) [14/04/2002 15:23:10]

 i = matrix[1,2]; // WON'T WORK!!
 i = matrix[1][2]; // OK

What actually happens in the first case is, that the comma separated list is interpreted as the comma
operator. Consequently, the result is 2 which leads to an assignment of the address to the third five
elements of the matrix!

Some of you might wonder, what C does with values which are not used. For example in the assignment
statements we have seen before,

 ix = 12;
 jx = 12;
 kx = 12;

we have three lines which each return 12. The answer is, that C ignores values which are not used. This
leads to some strange things. For example, you could write something like this:

 ix = 1;
 4711;
 jx = 2;

But let's forget about these strange things. Let's come back to something more useful. Let's talk about
functions.

7.1.4 Functions
As C is a procedural language it allows the definition of functions. Procedures are ``simulated'' by
functions returning ``no value''. This value is a special type called void.

Functions are declared similar to variables, but they enclose their arguments in parenthesis (even if there
are no arguments, the parenthesis must be specified):

 int sum(int to); /* Declaration of sum with one argument */
 int bar(); /* Declaration of bar with no arguments */
 void foo(int ix, int jx);
 /* Declaration of foo with two arguments */

To actually define a function, just add its body:

 int sum(int to) {
 int ix, ret;
 ret = 0;
 for (ix = 0; ix < to; ix = ix + 1)
 ret = ret + ix;
 return ret; /* return function's value */
 } /* sum */

7 Introduction to C++

http://www.gnacademy.org/text/cc/Tutorial/node8.html (10 of 14) [14/04/2002 15:23:10]

C only allows you to pass function arguments by value. Consequently you cannot change the value of
one argument in the function. If you must pass an argument by reference you must program it on your
own. You therefore use pointers.

7.1.5 Pointers and Arrays
One of the most common problems in programming in C (and sometimes C++) is the understanding of
pointers and arrays. In C (C++) both are highly related with some small but essential differences. You
declare a pointer by putting an asterisk between the data type and the name of the variable or function:

 char *strp; /* strp is `pointer to char' */

You access the content of a pointer by dereferencing it using again the asterisk:

 strp = 'a'; / A single character */

As in other languages, you must provide some space for the value to which the pointer points. A pointer
to characters can be used to point to a sequence of characters: the string. Strings in C are terminated by a
special character NUL (0 or as char ' '). Thus, you can have strings of any length. Strings are

enclosed in double quotes:

 strp = "hello";

In this case, the compiler automatically adds the terminating NUL character. Now, strp points to a
sequence of 6 characters. The first character is `h', the second `e' and so forth. We can access these
characters by an index in strp:

 strp[0] /* h */
 strp[1] /* e */
 strp[2] /* l */
 strp[3] /* l */
 strp[4] /* o */
 strp[5] /* \0 */

The first character also equals ``*strp'' which can be written as ``*(strp + 0)''. This leads to something
called pointer arithmetic and which is one of the powerful features of C. Thus, we have the following
equations:

 *strp == *(strp + 0) == strp[0]
 *(strp + 1) == strp[1]
 *(strp + 2) == strp[2]
 ...

Note that these equations are true for any data type. The addition is not oriented to bytes, it is oriented to

7 Introduction to C++

http://www.gnacademy.org/text/cc/Tutorial/node8.html (11 of 14) [14/04/2002 15:23:10]

the size of the corresponding pointer type!

The strp pointer can be set to other locations. Its destination may vary. In contrast to that, arrays are fix
pointers. They point to a predefined area of memory which is specified in brackets:

 char str[6];

You can view str to be a constant pointer pointing to an area of 6 characters. We are not allowed to use it
like this:

 str = "hallo"; /* ERROR */

because this would mean, to change the pointer to point to 'h'. We must copy the string into the provided
memory area. We therefore use a function called strcpy() which is part of the standard C library.

 strcpy(str, "hallo"); /* Ok */

Note however, that we can use str in any case where a pointer to a character is expected, because it is a
(fixed) pointer.

7.1.6 A First Program
Here we introduce the first program which is so often used: a program which prints ``Hello, world!'' to
your screen:

 #include <stdio.h>

 /* Global variables should be here */

 /* Function definitions should be here */

 int
 main() {
 puts("Hello, world!");
 return 0;
 } /* main */

The first line looks something strange. Its explanation requires some information about how C (and C++)
programs are handled by the compiler. The compilation step is roughly divided into two steps. The first
step is called ``preprocessing'' and is used to prepare raw C code. In this case this step takes the first line
as an argument to include a file called stdio.h into the source. The angle brackets just indicate, that the
file is to be searched in the standard search path configured for your compiler. The file itself provides
some declarations and definitions for standard input/output. For example, it declares a function called
put(). The preprocessing step also deletes the comments.

In the second step the generated raw C code is compiled to an executable. Each executable must define a

7 Introduction to C++

http://www.gnacademy.org/text/cc/Tutorial/node8.html (12 of 14) [14/04/2002 15:23:10]

function called main(). It is this function which is called once the program is started. This function
returns an integer which is returned as the program's exit status.

Function main() can take arguments which represent the command line parameters. We just introduce
them here but do not explain them any further:

 #include <stdio.h>

 int
 main(int argc, char *argv[]) {
 int ix;
 for (ix = 0; ix < argc; ix++)
 printf("My %d. argument is %s\n", ix, argv[ix]);
 return 0;
 } /* main */

The first argument argc just returns the number of arguments given on the command line. The second
argument argv is an array of strings. (Recall that strings are represented by pointers to characters. Thus,
argv is an array of pointers to characters.)

7.2 What Next?
This section is far from complete. We only want to give you an expression of what C is. We also want to
introduce some basic concepts which we will use in the following section. Some concepts of C are
improved in C++. For example, C++ introduces the concept of references which allow something similar
to call by reference in function calls.

We suggest that you take your local compiler and start writing a few programs (if you are not already
familiar with C, of course). One problem for beginners often is that existing library functions are
unknown. If you have a UNIX system try to use the man command to get some descriptions. Especially
you might want to try:

 man gets
 man printf
 man puts
 man scanf
 man strcpy

We also suggest, that you get yourself a good book about C (or to find one of the on-line tutorials). We
try to explain everything we introduce in the next sections. However, there is nothign wrong with having
some reference at hand.

Next: 8 From C To Up: Introduction to Object-Oriented Programming Previous: 6 Even More

7 Introduction to C++

http://www.gnacademy.org/text/cc/Tutorial/node8.html (13 of 14) [14/04/2002 15:23:10]

Object-Oriented P. Mueller
8/31/1997

7 Introduction to C++

http://www.gnacademy.org/text/cc/Tutorial/node8.html (14 of 14) [14/04/2002 15:23:10]

Next: 9 More on C++ Up: Introduction to Object-Oriented Programming Previous: 7 Introduction to
C++

Subsections
8.1 Basic Extensions

8.1.1 Data Types❍

8.1.2 Functions❍

●

8.2 First Object-oriented Extensions

8.2.1 Classes and Objects❍

8.2.2 Constructors❍

8.2.3 Destructors❍

●

8 From C To C++

Peter Müller
Globewide Network Academy (GNA)

pmueller@uu-gna.mit.edu

This section presents extensions to the C language which were introduced by C++ [6]. It also deals with
object-oriented concepts and their realization.

8.1 Basic Extensions
 The following sections present extensions to already introduced concepts of C. Section 8.2 presents
object-oriented extensions.

C++ adds a new comment which is introduced by two slashes (//) and which lasts until the end of line.
You can use both comment styles, for example to comment out large blocks of code:

 /* C comment can include // and can span over
 several lines. */
 // /* This is the C++ style comment */ until end of line

In C you must define variables at the beginning of a block. C++ allows you to define variables and
objects at any position in a block. Thus, variables and objects should be defined where they are used.

8 From C To C++

http://www.gnacademy.org/text/cc/Tutorial/node9.html (1 of 11) [14/04/2002 15:23:18]

mailto:pmueller@uu-gna.mit.edu

8.1.1 Data Types
C++ introduces a new data type called reference. You can think of them as if they were ``aliases'' to
``real'' variables or objects. As an alias cannot exist without its corresponding real part, you cannot define
single references. The ampersand (&) is used to define a reference. For example:

 int ix; /* ix is "real" variable */
 int &rx = ix; /* rx is "alias" for ix */

 ix = 1; /* also rx == 1 */
 rx = 2; /* also ix == 2 */

References can be used as function arguments and return values. This allows to pass parameters as
reference or to return a ``handle'' to a calculated variable or object.

The table 8.1 is adopted from [1] and provides you with an overview of possible declarations. It is not
complete in that it shows not every possible combination and some of them have not been introduced
here, because we are not going to use them. However, these are the ones which you will probably use
very often.

Table 8.1: Declaration expressions.

8 From C To C++

http://www.gnacademy.org/text/cc/Tutorial/node9.html (2 of 11) [14/04/2002 15:23:18]

In C and C++ you can use the modifier const to declare particular aspects of a variable (or object) to be
constant. The next table 8.2 lists possible combinations and describe their meaning. Subsequently, some
examples are presented which demonstrate the use of const.

Table 8.2: Constant declaration expresssions.

Now let's investigate some examples of contant variables and how to use them. Consider the following
declarations (again from [1]):

 int i; // just an ordinary integer
 int *ip; // uninitialized pointer to
 // integer
 int * const cp = &i; // constant pointer to integer
 const int ci = 7; // constant integer
 const int *cip; // pointer to constant integer
 const int * const cicp = &ci; // constant pointer to constant
 // integer

The following assignments are valid:

 i = ci; // assign constant integer to integer
 *cp = ci; // assign constant integer to variable
 // which is referenced by constant pointer
 cip = &ci; // change pointer to constant integer
 cip = cicp; // set pointer to constant integer to
 // reference variable of constant pointer to
 // constant integer

The following assignments are invalid:

 ci = 8; // cannot change constant integer value

8 From C To C++

http://www.gnacademy.org/text/cc/Tutorial/node9.html (3 of 11) [14/04/2002 15:23:18]

 *cip = 7; // cannot change constant integer referenced
 // by pointer
 cp = &ci; // cannot change value of constant pointer
 ip = cip; // this would allow to change value of
 // constant integer *cip with *ip

When used with references some peculiarities must be considered. See the following example program:

 #include <stdio.h>

 int main() {
 const int ci = 1;
 const int &cr = ci;
 int &r = ci; // create temporary integer for reference
 // cr = 7; // cannot assign value to constant reference
 r = 3; // change value of temporary integer
 print("ci == %d, r == %d\n", ci, r);
 return 0;
 }

When compiled with GNU g++, the compiler issues the following warning:

conversion from `const int' to `int &' discards const

What actually happens is, that the compiler automatically creates a temporay integer variable with value
of ci to which reference r is initialized. Consequently, when changing r the value of the temporary
integer is changed. This temporary variable lives as long as reference r.

Reference cr is defined as read-only (constant reference). This disables its use on the left side of
assignments. You may want to remove the comment in front of the particular line to check out the
resulting error message of your compiler.

8.1.2 Functions
C++ allows function overloading as defined in section 6.3. For example, we can define two different
functions max(), one which returns the maximum of two integers and one which returns the maximum of
two strings:

 #include <stdio.h>

 int max(int a, int b) {
 if (a > b) return a;
 return b;
 }

 char *max(char *a, char * b) {

8 From C To C++

http://www.gnacademy.org/text/cc/Tutorial/node9.html (4 of 11) [14/04/2002 15:23:18]

 if (strcmp(a, b) > 0) return a;
 return b;
 }

 int main() {
 printf("max(19, 69) = %d\n", max(19, 69));
 printf("max(abc, def) = %s\n", max("abc", "def"));
 return 0;
 }

The above example program defines these two functions which differ in their parameter list, hence, they
define two different functions. The first printf() call in function main() issues a call to the first version of
max(), because it takes two integers as its argument. Similarly, the second printf() call leads to a call of
the second version of max().

References can be used to provide a function with an alias of an actual function call argument. This
enables to change the value of the function call argument as it is known from other languages with
call-by-reference parameters:

 void foo(int byValue, int &byReference) {
 byValue = 42;
 byReference = 42;
 }

 void bar() {
 int ix, jx;

 ix = jx = 1;
 foo(ix, jx);
 /* ix == 1, jx == 42 */
 }

8.2 First Object-oriented Extensions
 In this section we present how the object-oriented concepts of section 4 are used in C++.

8.2.1 Classes and Objects
C++ allows the declaration and definition of classes. Instances of classes are called objects. Recall the
drawing program example of section 5 again. There we have developed a class Point. In C++ this would
look like this:

 class Point {
 int _x, _y; // point coordinates

8 From C To C++

http://www.gnacademy.org/text/cc/Tutorial/node9.html (5 of 11) [14/04/2002 15:23:18]

 public: // begin interface section
 void setX(const int val);
 void setY(const int val);
 int getX() { return _x; }
 int getY() { return _y; }
 };

 Point apoint;

This declares a class Point and defines an object apoint. You can think of a class definition as a structure
definition with functions (or ``methods''). Additionally, you can specify the access rights in more detail.
For example, _x and _y are private, because elements of classes are private as default. Consequently, we
explicitly must ``switch'' the access rights to declare the following to be public. We do that by using the
keyword public followed by a colon: Every element following this keyword are now accessible from
outside of the class.

We can switch back to private access rights by starting a private section with private:. This is
possible as often as needed:

 class Foo {
 // private as default ...

 public:
 // what follows is public until ...

 private:
 // ... here, where we switch back to private ...

 public:
 // ... and back to public.
 };

Recall that a structure struct is a combination of various data elements which are accessible from the
outside. We are now able to express a structure with help of a class, where all elements are declared to be
public:

 class Struct {
 public: // Structure elements are public by default
 // elements, methods
 };

This is exactly what C++ does with struct. Structures are handled like classes. Whereas elements of
classes (defined with class) are private by default, elements of structures (defined with struct) are
public. However, we can also use private: to switch to a private section in structures.

Let's come back to our class Point. Its interface starts with the public section where we define four

8 From C To C++

http://www.gnacademy.org/text/cc/Tutorial/node9.html (6 of 11) [14/04/2002 15:23:18]

methods. Two for each coordinate to set and get its value. The set methods are only declared. Their
actual functionality is still to be defined. The get methods have a function body: They are defined within
the class or, in other words, they are inlined methods.

This type of method definition is useful for small and simple bodies. It also improve performance,
because bodies of inlined methods are ``copied'' into the code wherever a call to such a method takes
place.

On the contrary, calls to the set methods would result in a ``real'' function call. We define these methods
outside of the class declaration. This makes it necessary, to indicate to which class a method definition
belongs to. For example, another class might just define a method setX() which is quite different from
that of Point. We must be able to define the scope of the definition; we therefore use the scope operator
``::'':

 void Point::setX(const int val) {
 _x = val;
 }

 void Point::setY(const int val) {
 _y = val;
 }

Here we define method setX() (setY()) within the scope of class Point. The object apoint can use these
methods to set and get information about itself:

 Point apoint;

 apoint.setX(1); // Initialization
 apoint.setY(1);

 //
 // x is needed from here, hence, we define it here and
 // initialize it to the x-coordinate of apoint
 //

 int x = apoint.getX();

The question arises about how the methods ``know'' from which object they are invoked. This is done by
implicitly passing a pointer to the invoking object to the method. We can access this pointer within the
methods as this. The definitions of methods setX() and setY() make use of class members _x and _y,
respectively. If invoked by an object, these members are ``automatically'' mapped to the correct object.
We could use this to illustrate what actually happens:

 void Point::setX(const int val) {
 this->_x = val; // Use this to reference invoking
 // object

8 From C To C++

http://www.gnacademy.org/text/cc/Tutorial/node9.html (7 of 11) [14/04/2002 15:23:18]

 }

 void Point::setY(const int val) {
 this->_y = val;
 }

Here we explicitly use the pointer this to explicitly dereference the invoking object. Fortunately, the
compiler automatically ``inserts'' these dereferences for class members, hence, we really can use the first
definitions of setX() and setY(). However, it sometimes make sense to know that there is a pointer this
available which indicates the invoking object.

Currently, we need to call the set methods to initialize a point object . However, we would like to
initialize the point when we define it. We therefore use special methods called constructors.

8.2.2 Constructors
 Constructors are methods which are used to initialize an object at its definition time. We extend our
class Point such that it initializes a point to coordinates (0, 0):

 class Point {
 int _x, _y;

 public:
 Point() {
 _x = _y = 0;
 }

 void setX(const int val);
 void setY(const int val);
 int getX() { return _x; }
 int getY() { return _y; }
 };

Constructors have the same name of the class (thus they are identified to be constructors). They have no
return value. As other methods, they can take arguments. For example, we may want to initialize a point
to other coordinates than (0, 0). We therefore define a second constructor taking two integer arguments
within the class:

 class Point {
 int _x, _y;

 public:
 Point() {
 _x = _y = 0;

8 From C To C++

http://www.gnacademy.org/text/cc/Tutorial/node9.html (8 of 11) [14/04/2002 15:23:18]

http://www.gnacademy.org/text/cc/Tutorial/footnode.html#1567

 }
 Point(const int x, const int y) {
 _x = x;
 _y = y;
 }

 void setX(const int val);
 void setY(const int val);
 int getX() { return _x; }
 int getY() { return _y; }
 };

Constructors are implicitly called when we define objects of their classes:

 Point apoint; // Point::Point()
 Point bpoint(12, 34); // Point::Point(const int, const int)

With constructors we are able to initialize our objects at definition time as we have requested it in
section 2 for our singly linked list. We are now able to define a class List where the constructors take
care of correctly initializing its objects.

If we want to create a point from another point, hence, copying the properties of one object to a newly
created one, we sometimes have to take care of the copy process. For example, consider the class List
which allocates dynamically memory for its elements. If we want to create a second list which is a copy
of the first, we must allocate memory and copy the individual elements. In our class Point we therefore
add a third constructor which takes care of correctly copying values from one object to the newly created
one:

 class Point {
 int _x, _y;

 public:
 Point() {
 _x = _y = 0;
 }
 Point(const int x, const int y) {
 _x = x;
 _y = y;
 }
 Point(const Point &from) {
 _x = from._x;
 _y = from._y;
 }

 void setX(const int val);

8 From C To C++

http://www.gnacademy.org/text/cc/Tutorial/node9.html (9 of 11) [14/04/2002 15:23:18]

 void setY(const int val);
 int getX() { return _x; }
 int getY() { return _y; }
 };

The third constructor takes a constant reference to an object of class Point as an argument and assigns _x
and _y the corresponding values of the provided object.

This type of constructor is so important that it has its own name: copy constructor. It is highly
recommended that you provide for each of your classes such a constructor, even if it is as simple as in
our example. The copy constructor is called in the following cases:

 Point apoint; // Point::Point()
 Point bpoint(apoint); // Point::Point(const Point &)
 Point cpoint = apoint; // Point::Point(const Point &)

With help of constructors we have fulfilled one of our requirements of implementation of abstract data
types: Initialization at definition time. We still need a mechanism which automatically ``destroys'' an
object when it gets invalid (for example, because of leaving its scope). Therefore, classes can define
destructors.

8.2.3 Destructors
 Consider a class List. Elements of the list are dynamically appended and removed. The constructor
helps us in creating an initial empty list. However, when we leave the scope of the definition of a list
object, we must ensure that the allocated memory is released. We therefore define a special method
called destructor which is called once for each object at its destruction time:

 void foo() {
 List alist; // List::List() initializes to
 // empty list.
 ... // add/remove elements
 } // Destructor call!

Destruction of objects take place when the object leaves its scope of definition or is explicitly destroyed.
The latter happens, when we dynamically allocate an object and release it when it is no longer needed.

Destructors are declared similar to constructors. Thus, they also use the name prefixed by a tilde (~) of
the defining class:

 class Point {
 int _x, _y;

 public:
 Point() {
 _x = _y = 0;

8 From C To C++

http://www.gnacademy.org/text/cc/Tutorial/node9.html (10 of 11) [14/04/2002 15:23:18]

 }
 Point(const int x, const int y) {
 _x = xval;
 _y = yval;
 }
 Point(const Point &from) {
 _x = from._x;
 _y = from._y;
 }

 ~Point() { /* Nothing to do! */ }

 void setX(const int val);
 void setY(const int val);
 int getX() { return _x; }
 int getY() { return _y; }
 };

Destructors take no arguments. It is even invalid to define one, because destructors are implicitly called
at destruction time: You have no chance to specify actual arguments.

Next: 9 More on C++ Up: Introduction to Object-Oriented Programming Previous: 7 Introduction to
C++ P. Mueller
8/31/1997

8 From C To C++

http://www.gnacademy.org/text/cc/Tutorial/node9.html (11 of 11) [14/04/2002 15:23:18]

Next: 10 The List - Up: Introduction to Object-Oriented Programming Previous: 8 From C To

Subsections
9.1 Inheritance

9.1.1 Types of Inheritance❍

9.1.2 Construction❍

9.1.3 Destruction❍

9.1.4 Multiple Inheritance❍

●

9.2 Polymorphism●

9.3 Abstract Classes●

9.4 Operator Overloading●

9.5 Friends●

9.6 How to Write a Program

9.6.1 Compilation Steps❍

9.6.2 A Note about Style❍

●

9.7 Excercises●

9 More on C++

Peter Müller
Globewide Network Academy (GNA)

pmueller@uu-gna.mit.edu

This section concludes our introduction to C++. We introduce ``real'' object-oriented concepts and we
answer the question, how a C++ program is actually written.

9.1 Inheritance
 In our pseudo language, we formulate inheritance with ``inherits from''. In C++ these words are
replaced by a colon. As an example let's design a class for 3D points. Of course we want to reuse our
already existing class Point. We start designing our class as follows:

 class Point3D : public Point {
 int _z;

9 More on C++

http://www.gnacademy.org/text/cc/Tutorial/node10.html (1 of 12) [14/04/2002 15:23:21]

mailto:pmueller@uu-gna.mit.edu

 public:
 Point3D() {
 setX(0);
 setY(0);
 _z = 0;
 }
 Point3D(const int x, const int y, const int z) {
 setX(x);
 setY(y);
 _z = z;
 }

 ~Point3D() { /* Nothing to do */ }

 int getZ() { return _z; }
 void setZ(const int val) { _z = val; }
 };

9.1.1 Types of Inheritance
 You might notice again the keyword public used in the first line of the class definition (its signature).
This is necessary because C++ distinguishes two types of inheritance: public and private. As a default,
classes are privately derived from each other. Consequently, we must explicitly tell the compiler to use
public inheritance.

The type of inheritance influences the access rights to elements of the various superclasses. Using public
inheritance, everything which is declared private in a superclass remains private in the subclass.
Similarly, everything which is public remains public. When using private inheritance the things are
quite different as is shown in table 9.1.

Table 9.1: Access rights and inheritance.

The leftmost column lists possible access rights for elements of classes. It also includes a third type

9 More on C++

http://www.gnacademy.org/text/cc/Tutorial/node10.html (2 of 12) [14/04/2002 15:23:21]

protected. This type is used for elements which should be directly usable in subclasses but which
should not be accessible from the outside. Thus, one could say elements of this type are between
private and public elements in that they can be used within the class hierarchy rooted by the
corresponding class.

The second and third column show the resulting access right of the elements of a superclass when the
subclass is privately and publically derived, respectively.

9.1.2 Construction
 When we create an instance of class Point3D its constructor is called. Since Point3D is derived from
Point the constructor of class Point is also called. However, this constructor is called before the body of
the constructor of class Point3D is executed. In general, prior to the execution of the particular
constructor body, constructors of every superclass are called to initialize their part of the created object.

When we create an object with

 Point3D point(1, 2, 3);

the second constructor of Point3D is invoked. Prior to the execution of the constructor body, the
constructor Point() is invoked, to initialize the point part of object point. Fortunately, we have defined a
constructor which takes no arguments. This constructor initializes the 2D coordinates _x and _y to 0
(zero). As Point3D is only derived from Point there are no other constructor calls and the body of
Point3D(const int, const int, const int) is executed. Here we invoke methods setX() and setY() to
explicitly override the 2D coordinates. Subsequently, the value of the third coordinate _z is set.

This is very unsatisfactory as we have defined a constructor Point() which takes two arguments to
initialize its coordinates to them. Thus we must only be able to tell, that instead of using the default
constructor Point() the paramterized Point(const int, const int) should be used. We can do that by
specifying the desired constructors after a single colon just before the body of constructor Point3D():

 class Point3D : public Point {
 ...

 public:
 Point3D() { ... }
 Point3D(
 const int x,
 const int y,
 const int z) : Point(x, y) {
 _z = z;
 }
 ...
 };

If we would have more superclasses we simply provide their constructor calls as a comma separated list.

9 More on C++

http://www.gnacademy.org/text/cc/Tutorial/node10.html (3 of 12) [14/04/2002 15:23:21]

We also use this mechanism to create contained objects. For example, suppose that class Part only
defines a constructor with one argument. Then to correctly create an object of class Compound we must
invoke Part() with its argument:

 class Compound {
 Part part;
 ...

 public:
 Compound(const int partParameter) : part(partParameter) {
 ...
 }
 ...
 };

This dynamic initialization can also be used with built-in data types. For example, the constructors of
class Point could be written as:

 Point() : _x(0), _y(0) {}
 Point(const int x, const int y) : _x(x), _y(y) {}

You should use this initialization method as often as possible, because it allows the compiler to create
variables and objects correctly initialized instead of creating them with a default value and to use an
additional assignment (or other mechanism) to set its value.

9.1.3 Destruction
 If an object is destroyed, for example by leaving its definition scope, the destructor of the corresponding
class is invoked. If this class is derived from other classes their destructors are also called, leading to a
recursive call chain.

9.1.4 Multiple Inheritance
 C++ allows a class to be derived from more than one superclass, as was already briefly mentioned in
previous sections. You can easily derive from more than one class by specifying the superclasses in a
comma separated list:

 class DrawableString : public Point, public DrawableObject {
 ...

 public:
 DrawableString(...) :
 Point(...),
 DrawableObject(...) {

9 More on C++

http://www.gnacademy.org/text/cc/Tutorial/node10.html (4 of 12) [14/04/2002 15:23:21]

 ...
 }
 ~DrawableString() { ... }
 ...
 };

We will not use this type of inheritance in the remainder of this tutorial. Therefore we will not go into
further detail here.

9.2 Polymorphism
 In our pseudo language we are able to declare methods of classes to be virtual, to force their
evaluation to be based on object content rather than object type. We can also use this in C++:

 class DrawableObject {
 public:
 virtual void print();
 };

Class DrawableObject defines a method print() which is virtual. We can derive from this class other
classes:

 class Point : public DrawableObject {
 ...
 public:
 ...
 void print() { ... }
 };

Again, print() is a virtual method, because it inherits this property from DrawableObject. The function
display() which is able to display any kind of drawable object, can then be defined as:

 void display(const DrawableObject &obj) {
 // prepare anything necessary
 obj.print();
 }

When using virtual methods some compilers complain if the corresponding class destructor is not
declared virtual as well. This is necessary when using pointers to (virtual) subclasses when it is time to
destroy them. As the pointer is declared as superclass normally its destructor would be called. If the
destructor is virtual, the destructor of the actual referenced object is called (and then, recursively, all
destructors of its superclasses). Here is an example adopted from [1]:

 class Colour {
 public:

9 More on C++

http://www.gnacademy.org/text/cc/Tutorial/node10.html (5 of 12) [14/04/2002 15:23:21]

 virtual ~Colour();
 };

 class Red : public Colour {
 public:
 ~Red(); // Virtuality inherited from Colour
 };

 class LightRed : public Red {
 public:
 ~LightRed();
 };

Using these classes, we can define a palette as follows:

 Colour *palette[3];
 palette[0] = new Red; // Dynamically create a new Red object
 palette[1] = new LightRed;
 palette[2] = new Colour;

The newly introduced operator new creates a new object of the specified type in dynamic memory and
returns a pointer to it. Thus, the first new returns a pointer to an allocated object of class Red and assigns
it to the first element of array palette. The elements of palette are pointers to Colour and, because Red
is-a Colour the assignment is valid.

The contrary operator to new is delete which explicitly destroys an object referenced by the provided
pointer. If we apply delete to the elements of palette the following destructor calls happen:

 delete palette[0];
 // Call destructor ~Red() followed by ~Colour()
 delete palette[1];
 // Call ~LightRed(), ~Red() and ~Colour()
 delete palette[2];
 // Call ~Colour()

The various destructor calls only happen, because of the use of virtual destructors. If we would have not
declared them virtual, each delete would have only called ~ Colour() (because palette[i] is of type
pointer to Colour).

9 More on C++

http://www.gnacademy.org/text/cc/Tutorial/node10.html (6 of 12) [14/04/2002 15:23:21]

9.3 Abstract Classes
 Abstract classes are defined just as ordinary classes. However, some of their methods are designated to
be necessarily defined by subclasses. We just mention their signature including their return type, name
and parameters but not a definition. One could say, we omit the method body or, in other words, specify
``nothing''. This is expressed by appending ``= 0'' after the method signatures:

 class DrawableObject {
 ...
 public:
 ...
 virtual void print() = 0;
 };

This class definition would force every derived class from which objects should be created to define a
method print(). These method declarations are also called pure methods.

Pure methods must also be declared virtual, because we only want to use objects from derived
classes. Classes which define pure methods are called abstract classes.

9.4 Operator Overloading
 If we recall the abstract data type for complex numbers, Complex, we could create a C++ class as
follows:

 class Complex {
 double _real,
 _imag;

 public:
 Complex() : _real(0.0), _imag(0.0) {}
 Complex(const double real, const double imag) :
 _real(real), _imag(imag) {}

 Complex add(const Complex op);
 Complex mul(const Complex op);
 ...
 };

We would then be able to use complex numbers and to ``calculate'' with them:

 Complex a(1.0, 2.0), b(3.5, 1.2), c;

9 More on C++

http://www.gnacademy.org/text/cc/Tutorial/node10.html (7 of 12) [14/04/2002 15:23:21]

 c = a.add(b);

Here we assign c the sum of a and b. Although absolutely correct, it does not provide a convenient way
of expression. What we would rather like to use is the well-known ``+'' to express addition of two
complex numbers. Fortunately, C++ allows us to overload almost all of its operators for newly created
types. For example, we could define a ``+'' operator for our class Complex:

 class Complex {
 ...

 public:
 ...

 Complex operator +(const Complex &op) {
 double real = _real + op._real,
 imag = _imag + op._imag;
 return(Complex(real, imag));
 }

 ...
 };

In this case, we have made operator + a member of class Complex. An expression of the form

 c = a + b;

is translated into a method call

 c = a.operator +(b);

Thus, the binary operator + only needs one argument. The first argument is implicitly provided by the
invoking object (in this case a).

However, an operator call can also be interpreted as a usual function call, as in

 c = operator +(a, b);

In this case, the overloaded operator is not a member of a class. It is rather defined outside as a normal
overloaded function. For example, we could define operator + in this way:

 class Complex {
 ...

 public:
 ...

9 More on C++

http://www.gnacademy.org/text/cc/Tutorial/node10.html (8 of 12) [14/04/2002 15:23:21]

 double real() { return _real; }
 double imag() { return _imag; }

 // No need to define operator here!
 };

 Complex operator +(Complex &op1, Complex &op2) {
 double real = op1.real() + op2.real(),
 imag = op1.imag() + op2.imag();
 return(Complex(real, imag));
 }

In this case we must define access methods for the real and imaginary parts because the operator is
defined outside of the class's scope. However, the operator is so closely related to the class, that it would
make sense to allow the operator to access the private members. This can be done by declaring it to be a
friend of class Complex.

9.5 Friends
We can define functions or classes to be friends of a class to allow them direct access to its private data
members. For example, in the previous section we would like to have the function for operator + to have
access to the private data members _real and _imag of class Complex. Therefore we declare operator + to
be a friend of class Complex:

 class Complex {
 ...

 public:
 ...

 friend Complex operator +(
 const Complex &,
 const Complex &
);
 };

 Complex operator +(const Complex &op1, const Complex &op2) {
 double real = op1._real + op2._real,
 imag = op1._imag + op2._imag;
 return(Complex(real, imag));
 }

You should not use friends very often because they break the data hiding principle in its fundamentals. If
you have to use friends very often it is always a sign that it is time to restructure your inheritance graph.

9 More on C++

http://www.gnacademy.org/text/cc/Tutorial/node10.html (9 of 12) [14/04/2002 15:23:21]

9.6 How to Write a Program
 Until now, we have only presented parts of or very small programs which could easily be handled in
one file. However, greater projects, say, a calendar program, should be split into manageable pieces,
often called modules. Modules are implemented in separate files and we will now briefly discuss how
modularization is done in C and C++. This discussion is based on UNIX and the GNU C++ compiler. If
you are using other constellations the following might vary on your side. This is especially important for
those who are using integrated development environments (IDEs), for example, Borland C++.

Roughly speaking, modules consist of two file types: interface descriptions and implementation files. To
distinguish these types, a set of suffixes are used when compiling C and C++ programs. Table 9.2 shows
some of them.

Table 9.2: Extensions and file types.

In this tutorial we will use .h for header files, .cc for C++ files and .tpl for template definition files.
Even if we are writing ``only'' C code, it makes sense to use .cc to force the compiler to treat it as C++.
This simplifies combination of both, since the internal mechanism of how the compiler arrange names in

the program differs between both languages .

9.6.1 Compilation Steps

 The compilation process takes .cc files, preprocess them (removing comments, add header files)

and translates them into object files . Typical suffixes for that file type are .o or .obj.

After successful compilation the set of object files is processed by a linker. This program combine the

files, add necessary libraries and creates an executable. Under UNIX this file is called a.out if not other
specified. These steps are illustrated in Figure 9.1.

9 More on C++

http://www.gnacademy.org/text/cc/Tutorial/node10.html (10 of 12) [14/04/2002 15:23:21]

http://www.gnacademy.org/text/cc/Tutorial/footnode.html#1793
http://www.gnacademy.org/text/cc/Tutorial/footnode.html#1794
http://www.gnacademy.org/text/cc/Tutorial/footnode.html#1760
http://www.gnacademy.org/text/cc/Tutorial/footnode.html#1795

Figure 9.1: Compilation steps.

With modern compilers both steps can be combined. For example, our small example programs can be
compiled and linked with the GNU C++ compiler as follows (``example.cc'' is just an example name, of
course):

 gcc example.cc

9.6.2 A Note about Style
 Header files are used to describe the interface of implementation files. Consequently, they are included
in each implementation file which uses the interface of the particular implementation file. As mentioned
in previous sections this inclusion is achieved by a copy of the content of the header file at each
preprocessor #include statement, leading to a ``huge'' raw C++ file.

To avoid the inclusion of multiple copies caused by mutual dependencies we use conditional coding. The
preprocessor also defines conditional statements to check for various aspects of its processing. For
example, we can check if a macro is already defined:

 #ifndef MACRO
 #define MACRO /* define MACRO */
 ...
 #endif

9 More on C++

http://www.gnacademy.org/text/cc/Tutorial/node10.html (11 of 12) [14/04/2002 15:23:21]

The lines between #ifndef and #endif are only included, if MACRO is not already defined. We can
use this mechanism to prevent multiple copies:

 /*
 ** Example for a header file which `checks' if it is
 ** already included. Assume, the name of the header file
 ** is `myheader.h'
 */

 #ifndef __MYHEADER_H
 #define __MYHEADER_H

 /*
 ** Interface declarations go here
 */

 #endif /* __MYHEADER_H */

__MYHEADER_H is a unique name for each header file. You might want to follow the convention of
using the name of the file prefixed with two underbars. The first time the file is included,
__MYHEADER_H is not defined, thus every line is included and processed. The first line just defines a
macro called __MYHEADER_H. If accidentally the file should be included a second time (while
processing the same input file), __MYHEADER_H is defined, thus everything leading up to the #endif
is skipped.

9.7 Excercises
1.

Polymorphism. Explain why

 void display(const DrawableObject obj);

does not produce the desired output.

Next: 10 The List - Up: Introduction to Object-Oriented Programming Previous: 8 From C To P.
Mueller
8/31/1997

9 More on C++

http://www.gnacademy.org/text/cc/Tutorial/node10.html (12 of 12) [14/04/2002 15:23:21]

Next: References Up: Introduction to Object-Oriented Programming Previous: 9 More on C++

Subsections
10.1 Generic Types (Templates)●

10.2 Shape and Traversal●

10.3 Properties of Singly Linked Lists●

10.4 Shape Implementation

10.4.1 Node Templates❍

10.4.2 List Templates❍

●

10.5 Iterator Implementation●

10.6 Example Usage●

10.7 Discussion

10.7.1 Separation of Shape and Access Strategies❍

10.7.2 Iterators❍

●

10.8 Exercises●

10 The List - A Case Study

Peter Müller
Globewide Network Academy (GNA)

pmueller@uu-gna.mit.edu

10.1 Generic Types (Templates)
 In C++ generic data types are called class templates or just templates for short. A class template
looks like a normal class definition, where some aspects are represented by placeholders. In the
forthcoming list example we use this mechanism to generate lists for various data types:

 template <class T>
 class List : ... {
 public:
 ...
 void append(const T data);
 ...

10 The List - A Case Study

http://www.gnacademy.org/text/cc/Tutorial/node11.html (1 of 16) [14/04/2002 15:23:25]

mailto:pmueller@uu-gna.mit.edu
http://www.gnacademy.org/text/cc/Tutorial/footnode.html#2051

 };

In the first line we introduce the keyword template which starts every template declaration. The
arguments of a template are enclosed in angle brackets.

Each argument specifies a placeholder in the following class definition. In our example, we want class

List to be defined for various data types. One could say, that we want to define a class of lists . In this
case the class of lists is defined by the type of objects they contain. We use the name T for the
placeholder. We now use T at any place where normally the type of the actual objects are expected. For
example, each list provides a method to append an element to it. We can now define this method as
shown above with use of T.

An actual list definition must now specify the type of the list. If we stick to the class expression used
before, we have to create a class instance. From this class instance we can then create ``real'' object
instances:

 List<int> integerList;

Here we create a class instance of a List which takes integers as its data elements. We specify the type
enclosed in angle brackets. The compiler now applies the provided argument ``int'' and automatically
generates a class definition where the placeholder T is replaced by int, for example, it generates the
following method declaration for append():

 void append(const int data);

Templates can take more than one argument to provide more placeholders. For example, to declare a
dictionary class which provides access to its data elements by a key, one can think of the following
declaration:

 template <class K, class T>
 class Dictionary {
 ...
 public:
 ...
 K getKey(const T from);
 T getData(const K key);
 ...
 };

Here we use two placeholders to be able to use dictionaries for various key and data types.

Template arguments can also be used to generate parameterized class definitions. For example, a stack
might be implemented by an array of data elements. The size of the array could be specified dynamically:

 template <class T, int size>
 class Stack {
 T _store[size];

10 The List - A Case Study

http://www.gnacademy.org/text/cc/Tutorial/node11.html (2 of 16) [14/04/2002 15:23:25]

http://www.gnacademy.org/text/cc/Tutorial/footnode.html#1818

 public:
 ...
 };

 Stack<int,128> mystack;

In this example, mystack is a stack of integers using an array of 128 elements. However, in the following
we will not use parameterized classes.

10.2 Shape and Traversal
 In the following discussion we distinguish between a data structure's shape and its traversing strategies.
The first is the ``look'', which already provides plenty information about the building blocks of the data
structure.

A traversing strategy defines the order in which elements of the data structure are to be visited. It makes
sense to separate the shape from traversing strategies, because some data structures can be traversed
using various strategies.

Traversing of a data structure is implemented using iterators. Iterators guarantee to visit each data item
of their associated data structure in a well defined order. They must provide at least the following
properties:

1.

Current element. The iterator visits data elements one at a time. The element which is currently
visited is called ``current element''.

2.

Successor function. The execution of the step to the next data element depends on the traversing
strategy implemented by the iterator. The ``successor function'' is used to return the element which
is next to be visited: It returns the successor of the current element.

3.

Termination condition. The iterator must provide a mechanism to check whether all elements are
visited or not.

10.3 Properties of Singly Linked Lists
 When doing something object-oriented, the first question to ask is

What are the basic building blocks of the item to implement?

Have a look at Figure 10.1, which shows a list consisting of four rectangles. Each rectangle has a bullet
in its middle, the first three point to their right neighbour. Since the last rectangle have no right
neighbour, there is no pointer.

10 The List - A Case Study

http://www.gnacademy.org/text/cc/Tutorial/node11.html (3 of 16) [14/04/2002 15:23:25]

Figure 10.1: Basic building blocks of a singly linked list.

First let's choose names for these building blocks. Talking of rectangles is not appropriate, because one
can think of a figure using circles or triangles.

Within the scope of graphs the name node is used. A node contains a pointer to its successor. Thus, the
list in the figure consists of nodes, each of which has exactly one pointer associated with it.

Three types of nodes can be distinguished:

The first node (head), which has no predecessor,●

the middle nodes, which have exactly one predecessor and exactly one successor and●

the last node (tail), which has no successor.●

Note that the nodes do not carry any content. This is because the bare data structure list consists only of
nodes, which are strung together. Of course real applications need nodes, carrying some content. But in
the sense of object-orientation this is a specialization of the nodes.

From the figure we can see, that a list can only be used with one traversing strategy: forward cursor.
Initially, the head will be the first current element. The successor function simply follows the pointer of
the current node. The termination function checks the current element to be the tail.

Note that it is not possible to go back nor to start in the middle of the list. The latter would contradict the
requirement, that each element must be visited.

The next question is, what are the operations offered by a list? A list only defines two well known nodes
head and tail. Let's have a deeper look to them.

A new node can be put-in-front of the list such that:

its pointer is set to the current head,●

the new node becomes the new head.●

Similarly, a new node can easily be appended to the tail:

the tail pointer is set to the new node,●

the new node becomes the new tail.●

The inverse function to put in front is delete-from-front:

the successor node of the head becomes the new head,●

the formerly head node is discarded.●

10 The List - A Case Study

http://www.gnacademy.org/text/cc/Tutorial/node11.html (4 of 16) [14/04/2002 15:23:25]

You should be able to figure out why there is no cheap inverse append function.

Finally, there exist three other cheap primitives, whose meaning is straight forward. Thus, we will not
examine them any further. However, we present them here for completeness:

get-first: returns the (data of the) head node,●

get-last: returns the (data of the) tail node and●

is-empty: returns whether the list is empty or not.●

10.4 Shape Implementation

10.4.1 Node Templates
 The basic building block of a list is the node. Thus, let's first declare a class for it. A node has nothing
more than a pointer to another node. Let's assume, that this neighbour is always on the right side.

Have a look at the following declaration of class Node.

 class Node {
 Node *_right;

 public:
 Node(Node *right = NULL) : _right(right) {}
 Node(const Node &val) : _right(val._right) {}

 const Node *right() const { return _right; }
 Node *&right() { return _right; }

 Node &operator =(const Node &val) {
 _right = val._right;
 return *this;
 }

 const int operator ==(const Node &val) const {
 return _right == val._right;
 }
 const int operator !=(const Node &val) const {
 return !(*this == val);
 }
 };

A look to the first version of method right() contains a const just before the method body. When used
in this position, const declares the method to be constant regarding the elements of the invoking object.

10 The List - A Case Study

http://www.gnacademy.org/text/cc/Tutorial/node11.html (5 of 16) [14/04/2002 15:23:25]

Consequently, you are only allowed to use this mechanism in method declarations or definitions,
respectively.

This type of const modifier is also used to check for overloading. Thus,

 class Foo {
 ...
 int foo() const;
 int foo();
 };

declare two different methods. The former is used in constant contexts whereas the second is used in
variable contexts.

Although template class Node implements a simple node it seems to define plenty of functionality. We
do this, because it is good practice to offer at least the following functionality for each defined data type:

Copy Constructor. The copy constructor is needed to allow definition of objects which are
initialized from already existing ones.

●

operator =. Each object should know how to assign other objects (of the same type) to itself. In
our example class, this is simply the pointer assignment.

●

operator ==. Each object should know how to compare itself with another object.●

The unequality operator ``!='' is implemented by using the definition of the equality operator. Recall, that
this points to the invoking object, thus,

 Node a, b;
 ...
 if (a != b) ...

would result in a call to operator !=() with this set to the address of a. We dereference this using the
standard dereference operator ``*''. Now, *this is an object of class Node which is compared to another
object using operator ==(). Consequently, the definition of operator ==() of class Node is used. Using
the standard boolean NOT operator ``!'' we negate the result and obtain the truth value of operator !=().

The above methods should be available for each class you define. This ensures that you can use your
objects as you would use any other objects, for example integers. If some of these methods make no
sense for whatever reason, you should declare them in a private section of the class to explicitly mark
them as not for public use. Otherwise the C++ compiler would substitute standard operators.

Obviously, real applications require the nodes to carry data. As mentioned above, this means to
specialize the nodes. Data can be of any type, hence, we are using the template construct.

 template <class T>
 class DataNode : public Node {
 T _data;

 public:

10 The List - A Case Study

http://www.gnacademy.org/text/cc/Tutorial/node11.html (6 of 16) [14/04/2002 15:23:25]

 DataNode(const T data, DataNode *right = NULL) :
 Node(right), _data(data) {}
 DataNode(const DataNode &val) :
 Node(val), _data(val._data) {}

 const DataNode *right() const {
 return((DataNode *) Node::right());
 }
 DataNode *&right() { return((DataNode *&) Node::right()); }

 const T &data() const { return _data; }
 T &data() { return _data; }

 DataNode &operator =(const DataNode &val) {
 Node::operator =(val);
 _data = val._data;
 return *this;
 }

 const int operator ==(const DataNode &val) const {
 return(
 Node::operator ==(val) &&
 _data == val._data);
 }
 const int operator !=(const DataNode &val) const {
 return !(*this == val);
 }
 };

The above template DataNode simply specializes class Node to carry data of any type. It adds
functionality to access its data element and also offers the same set of standard functionality: Copy
Constructor, operator =() and operator ==(). Note, how we reuse functionality already defined by class
Node.

10.4.2 List Templates
 Now we are able to declare the list template. We also use the template mechanism here, because we
want the list to carry data of arbitrary type. For example, we want to be able to define a list of integers.
We start with an abstract class template ListBase which functions as the base class of all other lists. For
example, doubly linked lists obviously share the same properties like singly linked lists.

 template <class T>
 class ListBase {
 public:
 virtual ~ListBase() {} // Force destructor to be

10 The List - A Case Study

http://www.gnacademy.org/text/cc/Tutorial/node11.html (7 of 16) [14/04/2002 15:23:25]

 // virtual
 virtual void flush() = 0;

 virtual void putInFront(const T data) = 0;
 virtual void append(const T data) = 0;
 virtual void delFromFront() = 0;

 virtual const T &getFirst() const = 0;
 virtual T &getFirst() = 0;
 virtual const T &getLast() const = 0;
 virtual T &getLast() = 0;

 virtual const int isEmpty() const = 0;
 };

What we actually do is to describe the interface of every list by specifying the prototypes of required
methods. We do that for every operation we have identified in section 10.3. Additionally, we also include
a method flush() which allows us to delete all elements of a list.

For operations get-first and get-last we have declared two versions. One is for use in a constant context
and the other in a variable context.

With this abstract class template we are able to actually define our list class template:

 template <class T>
 class List : public ListBase<T> {
 DataNode<T> *_head, *_tail;

 public:
 List() : _head(NULL), _tail(NULL) {}
 List(const List &val) : _head(NULL), _tail(NULL) {
 *this = val;
 }
 virtual ~List() { flush(); }
 virtual void flush();

 virtual void putInFront(const T data);
 virtual void append(const T data);
 virtual void delFromFront();

 virtual const T &getFirst() const { return _head->data(); }
 virtual T &getFirst() { return _head->data(); }
 virtual const T &getLast() const { return _tail->data(); }
 virtual T &getLast() { return _tail->data(); }

 virtual const int isEmpty() const { return _head == NULL; }

10 The List - A Case Study

http://www.gnacademy.org/text/cc/Tutorial/node11.html (8 of 16) [14/04/2002 15:23:25]

 List &operator =(const List &val) {
 flush();
 DataNode<T> *walkp = val._head;
 while (walkp) append(walkp->data());
 return *this;
 }

 const int operator ==(const List &val) const {
 if (isEmpty() && val.isEmpty()) return 1;
 DataNode<T> *thisp = _head,
 *valp = val._head;
 while (thisp && valp) {
 if (thisp->data() != valp->data()) return 0;
 thisp = thisp->right();
 valp = valp->right();
 }
 return 1;
 }
 const int operator !=(const List &val) const {
 return !(*this == val);
 }

 friend class ListIterator<T>;
 };

The constructors initialize the list's elements _head and _tail to NULL which is the NUL pointer in C and
C++. You should know how to implement the other methods from your programming experience. Here
we only present the implementation of method putInFront():

 template <class T> void
 List<T>::putInFront(const T data) {
 _head = new DataNode<T>(data, _head);
 if (!_tail) _tail = _head;
 } /* putInFront */

If we define methods of a class template outside of its declaration, we must also specify the template
keyword. Again we use the new operator to create a new data node dynamically. This operator allows
initialization of its created object with arguments enclosed in parenthesis. In the above example, new
creates a new instance of class DataNode T . Consequently, the corresponding constructor is called.

Also notice how we use placeholder T. If we would create a class instance of class template List, say, List
int this would also cause creation of a class instance of class template DataNode, viz DataNode

int .

10 The List - A Case Study

http://www.gnacademy.org/text/cc/Tutorial/node11.html (9 of 16) [14/04/2002 15:23:25]

The last line of the class template declaration declares class template ListIterator to be a friend of List.
We want to separately define the list's iterator. However, it is closely related, thus, we allow it to be a
friend.

10.5 Iterator Implementation
In section 10.2 we have introduced the concept of iterators to traverse through a data structure. Iterators
must implement three properties:

Current element.●

Successor function.●

Termination condition.●

Generally speaking, the iterator successively returns data associated with the current element. Obviously,
there will be a method, say, current() which implements this functionality. The return type of this method
depends on the type of data stored in the particular data structure. For example, when iterating over List

int the return type should be int.

The successor function, say, succ(), uses additional information which is stored in structural elements of
the data structure. In our list example, these are the nodes which carry the data and a pointer to their right
neighbour. The type of the structural elements usually differs from that of the raw data. Consider again
our List int where succ() must use DataNode int as structural elements.

The termination condition is implemented by a method, say, terminate(), which returns TRUE if (and
only if) all data elements of the associated data structure have been visited. As long as succ() can find an
element not yet visited, this method returns FALSE.

Again we want to specify an abstract iterator class which defines properties of every iterator. The
thoughts above lead to the following declaration:

 template <class Data, class Element>
 class Iterator {
 protected:
 Element _start,
 _current;

 public:
 Iterator(const Element start) :
 _start(start), _current(start) {}
 Iterator(const Iterator &val) :
 _start(val._start), _current(val._current) {}
 virtual ~Iterator() {}

 virtual const Data current() const = 0;

10 The List - A Case Study

http://www.gnacademy.org/text/cc/Tutorial/node11.html (10 of 16) [14/04/2002 15:23:25]

 virtual void succ() = 0;
 virtual const int terminate() const = 0;

 virtual void rewind() { _current = _start; }

 Iterator &operator =(const Iterator &val) {
 _start = val._start;
 _current = val._current;
 return *this;
 }

 const int operator ==(const Iterator &val) const {
 return(_start == val._start && _current == val._current);
 }
 const int operator !=(const Iterator &val) const {
 return !(*this == val);
 }
 };

Again we use the template mechanism to allow the use of the iterator for any data structure which stores
data of type Data and which uses structural elements of type Element. Each iterator ``knows'' a starting
(structural) element and the current element. We make both accessible from derived classes because
derived iterators need access to them to implement the following iterator properties. You should already
understand how the constructors operate and why we force the destructor to be virtual.

Subsequently we specify three methods which should implement the three properties of an iterator. We
also add a method rewind() which simply sets the current element to the start element. However,
complex data structures (for example hash tables) might require more sophisticated rewind algorithms.
For that reason we also specify this method to be virtual, allowing derived iterators to redefine it for
their associated data structure.

The last step in the iterator implementation process is the declaration of the list iterator. This iterator is
highly related to our class template List, for example, it is clear that the structural elements are class
templates DataNode. The only ``open'' type is the one for the data. Once again, we use the template
mechanism to provide list iterators for the different list types:

 template <class T>
 class ListIterator : public Iterator<T, DataNode<T> *> {
 public:
 ListIterator(const List<T> &list) :
 Iterator<T, DataNode<T> *>(list._head) {}
 ListIterator(const ListIterator &val) :
 Iterator<T, DataNode<T> *>(val) {}

 virtual const T current() const { return _current->data(); }
 virtual void succ() { _current = _current->right(); }

10 The List - A Case Study

http://www.gnacademy.org/text/cc/Tutorial/node11.html (11 of 16) [14/04/2002 15:23:25]

 virtual const int terminate() const {
 return _current == NULL;
 }

 T &operator ++(int) {
 T &tmp = _current->data();
 succ();
 return tmp;
 }

 ListIterator &operator =(const ListIterator &val) {
 Iterator<T, DataNode<T> *>::operator =(val);
 return *this;
 }
 };

The class template ListIterator is derived from Iterator. The type of data is, of course, the type for which
the list iterator is declared, hence, we insert placeholder T for the iterator's data type Data. The iteration
process is achieved with help of the structural elements of type DataNode. Obviously the starting
element is the head of the list _head which is of type DataNode T *. We choose this type for the

element type Element.

Note that the list iterator actually hides the details about the structural elements. This type highly depends
on the implementation of the list. For example, if we would have chosen an array implementation, we
may have used integers as structural elements where the current element is indicated by an array index.

The first constructor takes the list to traverse as its argument and initializes its iterator portion
accordingly. As each ListIterator T is a friend of List T it has access to the list's private

members. We use this to initialize the iterator to point to the head of the list.

We omit the destructor because we do not have any additional data members for the list iterator.
Consequently, we do nothing special for it. However, the destructor of class template Iterator is called.
Recall that we have to define this destructor to force derived classes to also have a virtual one.

The next methods just define the required three properties. Now that we have structural elements defined
as DataNode T * we use them as follows:

the current element is the data carried by the current structural element,●

the successor function is to set the current structural element to its right neighbour and●

the termination condition is to check the current structural element if it is the NULL pointer. Note
that this can happen only in two cases:

1.

The list is empty. In this case the current element is already NULL because the list's head
_head is NULL.

2.

●

10 The List - A Case Study

http://www.gnacademy.org/text/cc/Tutorial/node11.html (12 of 16) [14/04/2002 15:23:25]

The current element reached the last element. In this case the previous successor function
call set the current element to the right neighbour of the last element which is NULL.

We have also included an overloaded postincrement operator ``++''. To distinguish this operator from the
preincrement operator, it takes an additional (anonymous) integer argument. As we only use this
argument to declare a correct operator prototype and because we do not use the value of the argument,
we omit the name of the argument.

The last method is the overloaded assignment operator for list iterators. Similar to previous assignment
operators, we just reuse already defined assignments of superclasses; Iterator T ::operator =() in this

case.

The other methods and operators, namely rewind(), operator ==() and operator !=() are all inherited
from class template Iterator.

10.6 Example Usage
 The list template as introduced in previous sections can be used as follows:

 int
 main() {
 List<int> list;
 int ix;

 for (ix = 0; ix < 10; ix++) list.append(ix);

 ListIterator<int> iter(list);
 while (!iter.terminate()) {
 printf("%d ", iter.current());
 iter.succ();
 }
 puts("");
 return 0;
 }

As we have defined a postincrement operator for the list iterator, the loop can also be written as:

 while (!iter.terminate())
 print("%d ", iter++);

10 The List - A Case Study

http://www.gnacademy.org/text/cc/Tutorial/node11.html (13 of 16) [14/04/2002 15:23:25]

10.7 Discussion

10.7.1 Separation of Shape and Access Strategies
The presented example focusses on an object-oriented view. In real applications singly linked lists might
offer more functionality. For example, insertion of new data items should be no problem due to the use of
pointers:

1.

Take the successor pointer of the new element and set it to the element which should become its
right neighbour,

2.

Take the successor pointer of the element after which the new element should be inserted and set it
to the new element.

Two simple operations. However, the problem is to designate the element after which the new element
should be inserted. Again, a mechanism is needed which traverse through the list. This time, however,
traversion stops at a particular element: It is the element where the list (or the data structure) is modified.

Similar to the existence of different traversing strategies, one can think of different modification
strategies. For example, to create a sorted list, where elements are sorted in ascending order, use an
ascending modifier.

These modifiers must have access to the list structural elements, and thus, they would be declared as
friends as well. This would lead to the necessity that every modifier must be a friend of its data structure.
But who can guarantee, that no modifier is forgotten?

A solution is, that modification strategies are not implemented by ``external'' classes as iterators are.
Instead, they are implemented by inheritance. If a sorted list is needed, it is a specialization of the general
list. This sorted list would add a method, say insert(), which inserts a new element according to the
modification strategy.

To make this possible, the presented list template must be changed. Because now, derived classes must
have access to the head and tail node to implement these strategies. Consequently, _head and _tail should
be protected.

10.7.2 Iterators
The presented iterator implementation assumes, that the data structure is not changed during the use of an
iterator. Consider the following example to illustrate this:

 List<int> ilist;
 int ix;

10 The List - A Case Study

http://www.gnacademy.org/text/cc/Tutorial/node11.html (14 of 16) [14/04/2002 15:23:25]

 for (ix = 1; ix < 10; ix++)
 ilist.append(ix);

 ListIterator<int> iter(ilist);

 while (!iter.terminate()) {
 printf("%d ", iter.current());
 iter.succ();
 }
 printf("\n");

 ilist.putInFront(0);

 iter.rewind();
 while (!iter.terminate()) {
 printf("%d ", iter.current());
 iter.succ();
 }
 printf("\n");

This code fragment prints

 1 2 3 4 5 6 7 8 9
 1 2 3 4 5 6 7 8 9

instead of

 1 2 3 4 5 6 7 8 9
 0 1 2 3 4 5 6 7 8 9

This is due to the fact, that our list iterator only stores pointers to the list structural elements. Thus, the
start element _start is initially set to point to the location where the list's head node _head points to. This
simply leads to two different pointers referencing the same location. Consequently, when changing one
pointer as it is done by invoking putInFront() the other pointer is not affected.

For that reason, when rewinding the iterator after putInFront() the current element is set to the start
element which was set at the time the iterator constructor was called. Now, the start element actually
references the second element of the list.

10 The List - A Case Study

http://www.gnacademy.org/text/cc/Tutorial/node11.html (15 of 16) [14/04/2002 15:23:25]

10.8 Exercises

1.

Similar to the definition of the postincrement operator in class template ListIterator, one could
define a preincrement operator as:

 T &operator ++() {
 succ();
 return _current->data();
 }

What problems occur?

2.

Add the following method

 int remove(const T &data);

to class template List. The method should delete the first occurrence of data in the list. The method
should return 1 if it removed an element or 0 (zero) otherwise.

What functionality must data provide? Remember that it can be of any type, especially user
defined classes!

3.

Derive a class template CountedList from List which counts its elements. Add a method count() of
arbitrary type which returns the actual number of elements stored in the list. Try to reuse as much
of List as possible.

4.

Regarding the iterator problem discussed in section 10.7. What are possible solutions to allow the
list to be altered while an iterator of it is in use?

Next: References Up: Introduction to Object-Oriented Programming Previous: 9 More on C++ P.
Mueller
8/31/1997

10 The List - A Case Study

http://www.gnacademy.org/text/cc/Tutorial/node11.html (16 of 16) [14/04/2002 15:23:25]

Next: A Solutions to the Up: Introduction to Object-Oriented Programming Previous: 10 The List -

References
1

Borland International, Inc.
Programmer's Guide.
Borland International, Inc., 1993.

2
Ute Claussen.
Objektorientiertes Programmieren.
Springer Verlag, 1993.
ISBN 3-540-55748-2.

3
William Ford and William Topp.
Data Structures with C++.
Prentice-Hall, Inc., 1996.
ISBN 0-02-420971-6.

4
Brian W. Kernighan and Dennis M. Ritchie.
The C Programming Language.
Prentice-Hall, Inc., 1977.

5
Dennis M. Ritchie.
The Development of the C Language .
In Second History of Programming Languages conference, Cambridge, Mass., Apr. 1993.

6
Bjarne Stroustrup.
The C++ Programming Language.
Addison-Wesley, 2nd edition, 1991.
ISBN 0-201-53992-6.

Next: A Solutions to the Up: Introduction to Object-Oriented Programming Previous: 10 The List - P.
Mueller
8/31/1997

References

http://www.gnacademy.org/text/cc/Tutorial/node12.html [14/04/2002 15:23:26]

http://sf.www.lysator.liu.se/c/chistory.ps

Next: About this document ... Up: Introduction to Object-Oriented Programming Previous: References

Subsections
A.1 A Survey of Programming Techniques●

A.2 Abstract Data Types●

A.3 Object-Oriented Concepts●

A.4 More Object-Oriented Concepts●

A.5 More on C++●

A.6 The List - A Case Study●

A Solutions to the Exercises
 This section presents example solutions to the exercises of the previous lectures.

A.1 A Survey of Programming
Techniques
1.

Discussion of module Singly-Linked-List-2.

(a)

Interface definition of module Integer-List

 MODULE Integer-List

 DECLARE TYPE int_list_handle_t;

 int_list_handle_t int_list_create();
 BOOL int_list_append(int_list_handle_t this,
 int data);
 INTEGER int_list_getFirst(int_list_handle_t this);
 INTEGER int_list_getNext(int_list_handle_t this);
 BOOL int_list_isEmpty(int_list_handle_t this);

 END Integer-List;

This representation introduces additional problems which are caused by not separating

A Solutions to the Exercises

http://www.gnacademy.org/text/cc/Tutorial/node13.html (1 of 9) [14/04/2002 15:23:28]

traversal from data structure. As you may recall, to iterate over the elements of the list, we
have used a loop statement with the following condition:

 WHILE data IS VALID DO

Data was initialized by a call to list_getFirst(). The integer list procedure int_list_getFirst()
returns an integer, consequently, there is no such thing like an ``invalid integer'' which we
could use for loop termination checking.

2.

Differences between object-oriented programming and other techniques. In object-oriented
programming objects exchange messages with each other. In the other programming techniques,
data is exchanged between procedures under control of a main program. Objects of the same kind
but each with its own state can coexist. This contrasts the modular approach where each module
only has one global state.

A.2 Abstract Data Types
1.

ADT Integer.

(a)

Both operations add and sub can be applied for whatever value is hold by N. Thus, these
operations can be applied at any time: There is no restriction to their use. However, you can
describe this with a precondition which equals true.

(b)

We define three new operations as requested: mul, div and abs. The latter should return the
absolute value of the integer. The operations are defined as follows:

 mul(k)
 div(k)
 abs()

The operation mul does not require any precondition. That's similar to add and sub. The
postcondition is of course res = N*k. The next operation div requires k to be not 0 (zero).
Consequently, we define the following precondition: k not equal 0. The last operation abs
returns the value of N if N is positive or 0 or -N if N is negative. Again it does not matter
what value N has when this operation is applied. Here is its postcondition:

if N >= 0 then

abs = N

else

abs = -N

2.

A Solutions to the Exercises

http://www.gnacademy.org/text/cc/Tutorial/node13.html (2 of 9) [14/04/2002 15:23:28]

ADT Fraction.

(a)

A simple fraction consists of numerator and denominator. Both are integer numbers. This is
similar to the complex number example presented in the section. We could choose at least
two data structures to hold the values: an array or a record.

(b)

Interface layout. Remember that the interface is just the set of operations viewable to the
outside world. We could describe an interface of a fraction in a verbal manner.
Consequently, we need operations:

to get the value of nominator/denominator,■

to set the value of nominator/denominator,■

to add a fraction returning the sum,■

to subtract a fraction returning the difference,■

...■

(c)

Here are some axioms and preconditions for each fraction which also hold for the ADT:

The denominator must not equal 0 (zero), otherwise the value of the fraction is not
defined.

■

If the nominator is 0 (zero) the value of the fraction is 0 for any value of the
denominator.

■

Each whole number can be represented by a fraction of which the nominator is the
number and the denominator is 1.

■

3.

ADTs define properties of a set of instances. They provide an abstract view to these properties by
providing a set of operations which can be applied on the instances. It is this set of operations, the
interface, which defines properties of the instances. The use of an ADT is restricted by axioms and
preconditions. Both define conditions and properties of an environment in which instances of the
ADT can be used.

4.

We need to state axioms and to define preconditions to ensure the correct use of instances of
ADTs. For example, if we do not declare 0 to be the neutral element of the addition of integers,
there could be an ADT Integer which do something weird when adding 0 to N. This is not what is
expected from an integer. Thus, axioms and preconditions provide a means to ensure that ADTs
``function'' as we wish them to.

5.

Description of relationships.

(a)

An instance is an actual representative of an ADT. It is thus an ``example'' of it. Where the
ADT declare to use a ``signed whole number'' as its data structure, an instance actually holds
a value, say, ``-5''.

A Solutions to the Exercises

http://www.gnacademy.org/text/cc/Tutorial/node13.html (3 of 9) [14/04/2002 15:23:28]

(b)

Generic ADTs define the same properties of their corresponding ADT. However, they are
dedicated to another particular type. For example, the ADT List defines properties of lists.
Thus, we might have an operation append(elem) which appends a new element elem to the
list. We do not say of what type elem actually is, just that it will be the last element of the
list after this operation. If we now use a generic ADT List the type of this element is known:
it's provided by the generic parameter.

(c)

Instances of the same generic ADT could be viewed as ``siblings''. They would be ``cousins''
of instances of another generic ADT if both generic ADTs share the same ADT.

A.3 Object-Oriented Concepts
1.

Class.

(a)

A class is the actual implementation of an ADT. For example, an ADT for integers might
include an operation set to set the value of its instance. This operation is implemented
differently in languages such as C or Pascal. In C the equal sign ``='' defines the set
operation for integers, whereas in Pascal the character string ``:='' is used. Consequently,
classes implement operations by providing methods. Similarly, the data structure of the
ADT is implemented by attributes of the class.

(b)

Class Complex

 class Complex {
 attributes:
 Real real,
 imaginary

 methods:
 :=(Complex c) /* Set value to the one of c */
 Real realPart()
 Real imaginaryPart()
 Complex +(Complex c)
 Complex -(Complex c)
 Complex /(Complex c)
 Complex *(Complex c)
 }

We choose the well-known operator symbols ``+'' for addition, ``-'' for subtraction, ``/'' for
division and ``*'' for multiplication to implement the corresponding operations of the ADT

A Solutions to the Exercises

http://www.gnacademy.org/text/cc/Tutorial/node13.html (4 of 9) [14/04/2002 15:23:28]

Complex. Thus, objects of class Complex can be used like:

 Complex c1, c2, c3
 c3 := c1 + c2

You may notice, that we could write the addition statement as follows:

 c3 := c1.+(c2)

You may want to replace the ``+'' with ``add'' to come to a representation which we have
used so far. However, you should be able to understand that ``+'' is nothing more than a
different name for ``add''.

2.

Interacting objects.

3.

Object view.

4.

Messages.

(a)

Objects are autonomous entities which only provide a well-defined interface. We'd like to
talk of objects as if they are active entities. For example, objects ``are responsible'' for
themselves, ``they'' might deny invocation of a method, etc.. This distinguishes an object
from a module, which is passive. Therefore, we don't speak of procedure calls. We speak of
messages with which we ``ask'' an object to invoke one of its methods.

(b)

The Internet provides several objects. Two of the most well known ones are ``client'' and
``server''. For example, you use an FTP client (object) to access data stored on an FTP server
(object). Thus, you could view this as if the client ``sends a message'' to the server asking
for providing data stored there.

(c)

In the client/server environment we really have two remotely acting entities: the client and
server process. Typically, these two entities exchange data in form of Internet messages.

A.4 More Object-Oriented Concepts
1.

Inheritance.

(a)

Definition of class Rectangle:

 class Rectangle inherits from Point {

A Solutions to the Exercises

http://www.gnacademy.org/text/cc/Tutorial/node13.html (5 of 9) [14/04/2002 15:23:28]

 attributes:
 int _width, // Width of rectangle
 _height // Height of rectangle

 methods:
 setWidth(int newWidth)
 getWidth()
 setHeight(int newHeight)
 getHeight()
 }

In this example, we define a rectangle by its upper left corner (coordinates as inherited from
Point) and its dimension. Alternatively, we could have defined it by its upper left and lower
right corner.

We add access methods for the rectangle's width and height.

(b)

3D objects. A sphere is defined by a center in 3D space and a radius. The center is a point in
3D space, thus, we can define class Sphere as:

 class Sphere inherits from 3D-Point {
 attributes:
 int _radius;

 methods:
 setRadius(int newRadius)
 getRadius()
 }

This is similar to the circle class for 2D space. Now, 3D-Point is just a Point with an
additional dimension:

 class 3D-Point inherits from Point {
 attributes:
 int _z;

 methods:
 setZ(int newZ);
 getZ();
 }

Consequently, 3D-Point and Point are related with a is-a relationship.

(c)

Functionality of move(). move() as defined in the section allows 3D objects to move on the
X-axis, thus only in one dimension. It does this, by modifying only the 2D part of 3D
objects. This 2D part is defined by the Point class inherited directly or indirectly by 3D

A Solutions to the Exercises

http://www.gnacademy.org/text/cc/Tutorial/node13.html (6 of 9) [14/04/2002 15:23:28]

objects.

(d)

Inheritance graph (see Figure A.1).

Figure A.1: Inheritance graph of some drawable objects.

(e)

Alternative inheritance graph. In this example, class Sphere inherits from Circle and simply
adds a third coordinate. This has the advantage that a sphere can be handled like a circle (for
example, its radius can easily be modified by methods/functions which handle circles). It
has the disadvantage, that it ``distributes'' the object's handle (the center point in 3D space)
over the inheritance hierarchy: from Point over Circle to Sphere. Thus, this handle is not
accessible as a whole.

2.

Multiple inheritance. The inheritance graph in Figure 5.9 obviously introduces naming conflicts by
properties of class A.

However, these properties are uniquely identified by following the path from D up to A. Thus, D
can change properties of A inherited by B by following the inheritance path through B. Similarly,
D can change properties of A inheritied by C by following the inheritance path through C.
Consequently, this naming conflict does not necessarily lead to an error, as long as the paths are
designated.

A Solutions to the Exercises

http://www.gnacademy.org/text/cc/Tutorial/node13.html (7 of 9) [14/04/2002 15:23:28]

A.5 More on C++
1.

Polymorphism. When using the signature

 void display(const DrawableObject obj);

First note, that in C++ function or method parameters are passed by value. Consequently, obj
would be a copy of the actual provided function call argument. This means, that DrawableObject
must be a class from which objects can be created. This is not the case, if DrawableObject is an
abstract class (as it is when print() is defined as pure method.)

If there exists a virtual method print() which is defined by class DrawableObject, then (as obj is
only a copy of the actual argument) this method is invoked. It is not the method defined by the
class of the actual argument (because it does no longer play any significant role!)

A.6 The List - A Case Study
1.

Preincrement operator for iterators. The preincrement operator as defined in the exercise does not
check for validity of _current. As succ() might set its value to NULL this may cause access to this
NULL-pointer and, hence, might crash the program. A possible solution might be to define the
operator as:

T &operator ++() {
 succ();
 return(_current ? _current->data() : (T) 0);
}

However, this does not function as we now assume something about T. It must be possible to cast
it to a kind of ,,NULL`` value.

2.

Addition of remove method. We don't give the code solution. Instead we give the algorithm. The
method remove() must iterate over the list until it reaches an element with the requested data item.
It then deletes this element and returns 1. If the list is empty or if the data item could not be found,
it return 0 (zero).

During the iteration, remove() must compare the provided data item successively with those in the
list. Consequently, there might exist a comparison like:

 if (data == current->data()) {
 // found the item
 }

A Solutions to the Exercises

http://www.gnacademy.org/text/cc/Tutorial/node13.html (8 of 9) [14/04/2002 15:23:28]

Here we use the equation operator ,,==`` to compare both data items. As these items can be of any
type, they especially can be objects of user defined classes. The question is: How is ,,equality``
defined for those new types? Consequently, to allow remove() to work properly, the list should
only be used for types which define the comparison operator (namely, ,,==`` and ,,!=``) properly.
Otherwise, default comparisons are used, which might lead to strange results.

3.

Class CountedList. A counted list is a list, which keeps track of the number of elements in it. Thus,
when a data item is added, the number is incremented by one, when an item is deleted it is
decremented by one. Again, we do not give the complete implementation, we rather show one
method (append()) and how it is altered:

 class CountedList : public List {
 int _count; // The number of elements
 ...
 public:
 ...
 virtual void append(const T data) {
 _count++; // Increment it and ...
 List::append(data); // ... use list append
 }
 ...
 }

Not every method can be implemented this way. In some methods, one must check whether _count
needs to be altered or not. However, the main idea is, that each list method is just expanded (or
specialized) for the counted list.

4.

Iterator problem. To solve the iterator problem one could think of a solution, where the iterator
stores a reference to its corresponding list. At iterator creation time, this reference is then
initialized to reference the provided list. The iterator methods must then be modified to use this
reference instead of the pointer _start.

Next: About this document ... Up: Introduction to Object-Oriented Programming Previous: References
P. Mueller
8/31/1997

A Solutions to the Exercises

http://www.gnacademy.org/text/cc/Tutorial/node13.html (9 of 9) [14/04/2002 15:23:28]

Up: Introduction to Object-Oriented Programming Previous: A Solutions to the

About this document ...
Introduction to
Object-Oriented Programming
Using C++

This document was generated using the LaTeX2HTML translator Version 97.1 (release) (July 13th, 1997)

Copyright © 1993, 1994, 1995, 1996, 1997, Nikos Drakos, Computer Based Learning Unit, University of
Leeds.

The command line arguments were:
latex2html -split +1 -html_version 3.0 -show_section_numbers
-bottom_navigation -t Introduction to Object-Oriented Programming
-antialias -toc_stars -local_icons tutorial.tex.

The translation was initiated by P. Mueller on 8/31/1997

Up: Introduction to Object-Oriented Programming Previous: A Solutions to the P. Mueller
8/31/1997

About this document ...

http://www.gnacademy.org/text/cc/Tutorial/node14.html [14/04/2002 15:23:30]

http://www-dsed.llnl.gov/files/programs/unix/latex2html/manual/
http://cbl.leeds.ac.uk/nikos/personal.html

	C++ Tutorial
	Introduction to Object-Oriented Programming Using C++
	Preface
	GNA - Distance learning open source catalog database
	1 Introduction
	2 A Survey of Programming Techniques
	3 Abstract Data Types
	4 Object-Oriented Concepts
	5 More Object-Oriented Concepts
	6 Even More Object-Oriented Concepts
	7 Introduction to C++
	8 From C To C++
	9 More on C++
	10 The List - A Case Study
	References
	A Solutions to the Exercises
	About this document ...

