Molecular Cloning and Complete cDNA Sequence of \textit{UBH1} in Mouse Testis

KWANG-HYUN BAEK*, KYU-HYUNG PARK, YONG-SOO KIM, MYUNG-SUN KIM and HEE-KYUNG CHOI

College of Medicine, Pochon CHA University, Cell and Gene Therapy Research Institute, CHA General Hospital, Seoul, South Korea

(Received 22 November 2001)

We have identified a full-length mouse \textit{UBH1} cDNA, encoding a putative deubiquitinating enzyme, from the testis by RT-PCR using primers prepared from sequences conserved amongst deubiquitinating enzymes. Sequence analysis predicts that the \textit{UBH1} cDNA encodes a 355 amino acid polypeptide with the molecular weight of approximately 39 kDa containing the highly conserved Cys, Asp, and His domains characteristic of the ubiquitin-specific processing proteases. Biochemical assay revealed that the mouse \textit{UBH1} has deubiquitinating enzyme activity and sequence analysis showed 98.3\% amino acid identity with human \textit{UBH1}.

\textbf{Keywords}: Deubiquitination; DUB-1; UBH1; Ubiquitin

\textbf{Database Accession No.}: AF441835

A number of biological metabolisms are regulated by ubiquitination and deubiquitination. Ubiquitin (Ub), consisted of 76 amino acids, encodes an 8.5 kDa polypeptide and is found either free or covalently conjugated to cellular proteins (Varshavsky, 1997). Conjugation of ubiquitin is modulated by a series of cascade reactions involving ubiquitin-activating E1 enzymes, ubiquitin-conjugating E2 enzymes, and ubiquitin ligases (E3) (DeSalle and Pagano, 2001). These ubiquitinated proteins are recognized and degraded by the 26S proteasome (Hochstrasser, 1996). The conjugation of ubiquitin is a reversible process, which is mediated by deubiquitinating enzymes. We have recently demonstrated that conserved aspartic acid is required for deubiquitinating enzyme activity (Baek \textit{et al.}, 2001; Lee \textit{et al.}, 2001). Using the conserved amino acid residue and its adjacent residues, we screened putative murine deubiquitinating enzymes registered on GenBank.

We report here that the \textit{UBH1}, identified in murine testis, encodes a deubiquitinating enzyme, showing functional enzymatic activity.

In order to screen putative deubiquitinating enzymes that contain an aspartic acid motif in mouse, databases from GenBank were accessed and searched using the BLAST algorithm (Altschul \textit{et al.}, 1997) at the National Center for Biotechnology Information (NCBI, http://www.ncbi.nlm.nih.gov/BLAST/). The amino acids for the motif used for searching is QEDAHEFL (amino acids between 131–138 of DUB-1, DUB-2, and DUB-2A) (Zhu \textit{et al.}, 1996; Zhu \textit{et al.}, 1997; Baek \textit{et al.}, 2001). We found a total number of 11 proteins including DUB-1, DUB-2, and DUB-2A. The \textit{UBH1} cDNA, encoding one of these proteins, was isolated by RT-PCR from murine testis and subcloned into an expression vector, which was subjected to further analysis. We performed RT-PCR using a pair of primers designed with reference to sequences from cDNA library clone (GenBank accession number AK006739). The nucleotide sequences of these primers are following: 5'-CGCG-GATCCTCCATCTGACC-3' and 5'-CTCGAGCGTCGGCTCTCTCAG-3'. Total RNA isolated from mouse testis using TRIzol (Gibco BRL) served as the template for reverse transcription. The PCR amplified fragment with a predicted size was subcloned into pGEM-T Easy vector (Promega) and introduced into \textit{Escherichia coli} DH5α. \textit{Escherichia coli} DH5α harboring pGEM-UBH1 clone was cultured to prepare supercoiled recombinant plasmid DNA using a MaxiPrep kit (Qiagen). The DNA sequences were established by automated sequencing (ABI Prism). Both strands were analyzed, confirming the fidelity of the sequence information.

*Corresponding author. Tel: +82-2-3468-3197. Fax: +82-2-3468-3399. E-mail: baek@cha.ac.kr

ISSN 1042-5179 © 2002 Taylor & Francis Ltd
DOI: 10.1080/10425170290023383
To determine whether UBH1 has deubiquitinating enzyme activity, *Escherichia coli* MC1061 cells containing pACYC184-Ub-b-gal and pGEX-4T-1-UBH1 were grown, induced with IPTG (isopropyl-β-thiogalactopyranoside), and lysed in lysis buffer (0.01 M phosphate (pH 7.4), 8 M urea, 1% SDS, and 1% β-mercaptoethanol). The assay with these whole cell lysates, based on the cleavage of ubiquitin-b-galactosidase fusion protein, was performed by immunoblotting with a rabbit anti-b-gal antiserum (Cappel, Durham, NC), a rabbit anti-GST antiserum (Santa Cruz Biotechnology, CA), and the ECL system (Amersham, Buckinghamshire, UK).

A potentially significant gene, UBH1, was identified in the mouse testis using RT-PCR with primers designed based on the conserved aspartic acid and adjacent amino acids among deubiquitinating enzymes. The complete 1068 bp ORF and the deduced amino acid sequence of 355 amino acids are shown as Fig. 1. The amino acid sequence revealed that UBH1 contains not only conserved Asp domain, but also conserved Cys and His domains (Fig. 2), suggesting that this UBH1 is a putative deubiquitinating enzyme. The amino acid sequence is highly homologous to human UBH1 (98.3% amino acid similarity) and a partial sequence of mouse UBH1 has been identified (Hansen-Hagge et al., 1998). As shown by immunoblot analysis, a cDNA clone encoding GST-UBH1 fusion protein showed the cleavage of Ub-Met-b-gal similar to that observed with GST-DUB-1 (Fig. 3, lanes 2 and 3). As a control, cells transformed with pGEX vector...
failed to cleave Ub-Met-β-gal. Therefore, these results demonstrate that UBH1 has deubiquitinating enzyme activity. An anti-GST immunoblot confirmed that the GST-DUB-1 and UBH1 proteins synthesized at comparable levels (Fig. 3, lower blot). In the present study, we have isolated the murine UBH1 cDNA from adult male testis and the predicted protein revealed conserved domains (Cys, Asp, and 2 His).
His) and the deubiquitinating activity. The nucleotide sequence of mouse UBH1 has been submitted to the GenBank nucleotide databases under the accession number AF441835. While the biological function of the UBH1 cDNA remains unknown, the isolation of the full-length UBH1 cDNA should facilitate investigations of cellular functions in mammalian systems. In addition, finding its substrates and the molecular mechanism of deubiquitination by this enzyme will clarify to understand its biological roles.

Acknowledgements

The authors thank members of the Cell & Gene Therapy Research Institute at Pochon CHA University/CHA General Hospital for their critical comments on the manuscript. This work was supported by Korea Research Foundation Grant (KRF-2000-015-DP0411).

References

