ASSESSING THE IMPACT OF CLIMATE CHANGE ON GROUNDWATER RESOURCES

C. P. KUMAR
Scientist ‘F’, National Institute of Hydrology, Roorkee

ABSTRACT

Climate change poses uncertainties to the supply and management of water resources. The Intergovernmental Panel on Climate Change (IPCC) estimates that the global mean surface temperature has increased 0.6 ± 0.2 °C since 1861, and predicts an increase of 2 to 4 °C over the next 100 years. Temperature increases also affect the hydrologic cycle by directly increasing evaporation of available surface water and vegetation transpiration. Consequently, these changes can influence precipitation amounts, timings and intensity rates, and indirectly impact the flux and storage of water in surface and subsurface reservoirs (i.e., lakes, soil moisture, groundwater). In addition, there may be other associated impacts, such as sea water intrusion, water quality deterioration, potable water shortage, etc.

While climate change affects surface water resources directly through changes in the major long-term climate variables such as air temperature, precipitation, and evapotranspiration, the relationship between the changing climate variables and groundwater is more complicated and poorly understood. The greater variability in rainfall could mean more frequent and prolonged periods of high or low groundwater levels, and saline intrusion in coastal aquifers due to sea level rise and resource reduction. Groundwater resources are related to climate change through the direct interaction with surface water resources, such as lakes and rivers, and indirectly through the recharge process. The direct effect of climate change on groundwater resources depends upon the change in the volume and distribution of groundwater recharge. Therefore, quantifying the impact of climate change on groundwater resources requires not only reliable forecasting of changes in the major climatic variables, but also accurate estimation of groundwater recharge.

A number of Global Climate Models (GCM) are available for understanding climate and projecting climate change. There is a need to downscale GCM on a basin scale and couple them with relevant hydrological models considering all components of the hydrological cycle. Output of these coupled models such as quantification of the groundwater recharge will help in taking appropriate adaptation strategies due to the impact of climate change. This paper presents the likely impact of climate change on groundwater resources, recent research studies, and methodology to assess the impact of climate change on groundwater resources.

Keywords: Climate change; Hydrological cycle; Groundwater recharge; seawater intrusion; Numerical modeling; MODFLOW; UnSat Suite; WetSpass.

INTRODUCTION

Water is indispensable for life, but its availability at a sustainable quality and quantity is threatened by many factors, of which climate plays a leading role. The Intergovernmental Panel on Climate Change (IPCC) defines climate as “the average weather in terms of the mean and its variability over a certain time-span and a certain area” and a statistically significant variation of the mean state of the climate or of its variability lasting for decades or longer, is referred to as climate change.

Evidence is mounting that we are in a period of climate change brought about by increasing atmospheric concentrations of greenhouse gases. Atmospheric carbon dioxide levels have continually increased since the 1950s. The continuation of this phenomenon may significantly alter global and local climate characteristics, including temperature and precipitation. Climate change can have profound effects on the hydrologic cycle through precipitation, evapotranspiration, and soil moisture with increasing temperatures. The hydrologic cycle will be intensified with more evaporation and more precipitation. However, the extra precipitation will be unequally distributed around the globe. Some parts of the world may see significant reductions in precipitation...
or major alterations in the timing of wet and dry seasons. Information on the local or regional impacts of climate change on hydrological processes and water resources is becoming more important. The effects of global warming and climatic change require multi-disciplinary research, especially when considering hydrology and global water resources.

The Intergovernmental Panel on Climate Change (IPCC) estimates that the global mean surface temperature has increased 0.6 ± 0.2 °C since 1861, and predicts an increase of 2 to 4 °C over the next 100 years. Global sea levels have risen between 10 and 25 cm since the late 19th century. As a direct consequence of warmer temperatures, the hydrologic cycle will undergo significant impact with accompanying changes in the rates of precipitation and evaporation. Predictions include higher incidences of severe weather events, a higher likelihood of flooding, and more droughts. The impact would be particularly severe in the tropical areas, which mainly consist of developing countries, including India.

Coupled atmosphere-ocean global climate models (GCMs) are used to estimate changes in climate. These physically-based numerical models simulate synoptic-scale climate and hydrological processes, and are forced with greenhouse gas and aerosol emission scenarios. A wide diversity of GCMs developed by leading climate centres are available for other researchers to evaluate potential impacts of climate change. To ensure that the predictive elements from a GCM are realistic, a statistical downscaling technique should be employed to bridge the local- and synoptic-scale processes. Statistical downscaling uses a correlation between predictands (site measured variables, such as precipitation) and predictors (region-scale variables, such as GCM variables).

Changes in regional temperature and precipitation have important implications for all aspects of the hydrologic cycle. Variations in these parameters determine the amount of water that reaches the surface, evaporates or transpires back to the atmosphere, becomes stored as snow or ice, infiltrates into the groundwater system, runs off the land, and ultimately becomes base flow to streams and rivers.

Hydrological impact assessments of watersheds (and aquifers) require information on changes in evapotranspiration because it is a key component of the water balance. However, climate-change scenarios tend to be expressed in terms of changes in temperature and precipitation. Consequently, the effects of global warming on potential evaporation (or more inclusively, evapotranspiration) are not simple to estimate. Many global scenarios suggest an increase in potential evaporation, but these factors may be outweighed locally or regionally by other factors reducing evaporation. Various models may be used to calculate potential evaporation using data on net radiation, temperature, humidity, and wind speed, and sometimes plant physiological properties. The estimated effect of a change in climate on potential evaporation depends on the characteristics of the site.

Many rivers and streams that are fed by glacier runoff could be significantly impacted as a result of climate change. As glacier retreat accelerates, increased summer runoff could occur. However, when the glaciers have largely melted, the late summer and fall glacial input into streams and rivers may be lost, resulting in a significant reduction in flow in some cases.

Water resource management plans increasingly need to incorporate the affects of global climate change in order to accurately predict future supplies. Numerous studies have documented the sensitivity of streamflow to climatic changes for watersheds all over the world. Most of these studies involve watershed scale hydrologic models, of which validation remains a fundamental challenge. Moreover, outputs from general circulation models (GCM) can be rather uncertain and downscaling their predictions for local hydrologic use can produce inconsistent results. Therefore, the sensitivity of streamflow to climate changes is perhaps best understood by analyzing the historical records.

Building empirical models to link climate and regional hydrological regimes has a long history. In recent years, many researchers have used empirical rainfall–runoff model to study the impacts of climatic change on hydrology. However, applications of these empirical relationships to climate or basin conditions different from those used in the original development of these functions are questionable.

IMPACT OF CLIMATE CHANGE ON GROUNDWATER RESOURCES

Although the most noticeable impacts of climate change could be fluctuations in surface water levels and quality, the greatest concern of water managers and government is the potential decrease and quality of groundwater supplies, as it is the main available potable water supply source for human consumption and irrigation of agriculture produce worldwide. Because groundwater aquifers are recharged mainly by
precipitation or through interaction with surface water bodies, the direct influence of climate change on precipitation and surface water ultimately affects groundwater systems.

It is increasingly recognized that groundwater cannot be considered in isolation from the landscape above, the society with which it ‘interacts’, or from the regional hydrological cycle, but needs to be managed holistically. In understanding the likely consequences of possible future (climate and non-climate) changes on groundwater systems and the regional hydrological cycle, an important (but not exclusive) component to understand is the influence that these factors exert on recharge and runoff.

It is important to consider the potential impacts of climate change on groundwater systems. As part of the hydrologic cycle, it can be anticipated that groundwater systems will be affected by changes in recharge (which encompasses changes in precipitation and evapotranspiration), potentially by changes in the nature of the interactions between the groundwater and surface water systems, and changes in use related to irrigation.

(a) Soil Moisture

The amount of water stored in the soil is fundamentally important to agriculture and has an influence on the rate of actual evaporation, groundwater recharge, and generation of runoff. Soil moisture contents are directly simulated by global climate models, albeit over a very coarse spatial resolution, and outputs from the models give an indication of possible directions of change.

The local effects of climate change on soil moisture, however, will vary not only with the degree of climate change but also with soil characteristics. The water-holding capacity of soil will affect possible changes in soil moisture deficits; the lower the capacity, the greater the sensitivity to climate change. Climate change also may affect soil characteristics, perhaps through changes in waterlogging or cracking, which in turn may affect soil moisture storage properties. Infiltration capacity and water-holding capacity of many soils are influenced by the frequency and intensity of freezing.

(b) Groundwater Recharge and Resources

Groundwater is the major source of water across much of the world, particularly in rural areas in arid and semi-arid regions, but there has been very little research on the potential effects of climate change.

Aquifers generally are replenished by effective rainfall, rivers, and lakes. This water may reach the aquifer rapidly, through macro-pores or fissures, or more slowly by infiltrating through soils and permeable rocks overlying the aquifer. A change in the amount of effective rainfall will alter recharge, but so will a change in the duration of the recharge season. Increased winter rainfall, as projected under most scenarios for mid-latitudes, generally is likely to result in increased groundwater recharge. However, higher evaporation may mean that soil deficits persist for longer and commence earlier, offsetting an increase in total effective rainfall. Various types of aquifer will be recharged differently. The main types are unconfined and confined aquifers. An unconfined aquifer is recharged directly by local rainfall, rivers, and lakes, and the rate of recharge will be influenced by the permeability of overlying rocks and soils.

Macro-pore and fissure recharge is most common in porous and aggregated forest soils and less common in poorly structured soils. It also occurs where the underlying geology is highly fractured or is characterized by numerous sinkholes. Such recharge can be very important in some semi-arid areas. In principle, “rapid” recharge can occur whenever it rains, so where recharge is dominated by this process it will be affected more by changes in rainfall amount than by the seasonal cycle of soil moisture variability.

Shallow unconfined aquifers along floodplains, which are most common in semi-arid and arid environments, are recharged by seasonal streamflows and can be depleted directly by evaporation. Changes in recharge therefore will be determined by changes in the duration of flow of these streams, which may locally increase or decrease, and the permeability of the overlying beds, but increased evaporative demands would tend to lead to lower groundwater storage. The thick layer of sands substantially reduces the impact of evaporation.

It will be noted from the foregoing that unconfined aquifers are sensitive to local climate change, abstraction, and seawater intrusion. However, quantification of recharge is complicated by the characteristics of the aquifers themselves as well as overlying rocks and soils. A confined aquifer, on the other hand, is characterized by an overlying bed that is impermeable, and local rainfall does not influence the aquifer. It is normally recharged...
from lakes, rivers, and rainfall that may occur at distances ranging from a few kilometers to thousands of kilometers.

Aside from the influence of climate, recharge to aquifers is very much dependent on the characteristics of the aquifer media and the properties of the overlying soils. Several approaches can be used to estimate recharge based on surface water, unsaturated zone and groundwater data. Among these approaches, numerical modelling is the only tool that can predict recharge. Modelling is also extremely useful for identifying the relative importance of different controls on recharge, provided that the model realistically accounts for all the processes involved. However, the accuracy of recharge estimates depends largely on the availability of high quality hydrogeologic and climatic data. Determining the potential impact of climate change on groundwater resources, in particular, is difficult due to the complexity of the recharge process, and the variation of recharge within and between different climatic zones.

Attempts have been made to calculate the rate of recharge by using carbon-14 isotopes and other modeling techniques. This has been possible for aquifers that are recharged from short distances and after short durations. However, recharge that takes place from long distances and after decades or centuries has been problematic to calculate with accuracy, making estimation of the impacts of climate change difficult. The medium through which recharge takes place often is poorly known and very heterogeneous, again challenging recharge modeling. In general, there is a need to intensify research on modeling techniques, aquifer characteristics, recharge rates, and seawater intrusion, as well as monitoring of groundwater abstractions. This research will provide a sound basis for assessment of the impacts of climate change and sea-level rise on recharge and groundwater resources.

(c) Coastal Aquifers

When considering water resources in coastal zones, coastal aquifers are important sources of freshwater. However, salinity intrusion can be a major problem in these zones. Salinity intrusion refers to replacement of freshwater in coastal aquifers by saltwater. It leads to a reduction of available fresh groundwater resources. Changes in climatic variables can significantly alter groundwater recharge rates for major aquifer systems and thus affect the availability of fresh groundwater. Salinization of coastal aquifers is a function of the reduction of groundwater recharge and results in a reduction of fresh groundwater resources.

Sea-level rise will cause saline intrusion into coastal aquifers, with the amount of intrusion depending on local groundwater gradients. Shallow coastal aquifers are at greatest risk. Groundwater in low-lying islands therefore is very sensitive to change. A reduction in precipitation coupled with sea-level rise would not only cause a diminution of the harvestable volume of water; it also would reduce the size of the narrow freshwater lense. For many small island states, such as some Caribbean islands, seawater intrusion into freshwater aquifers has been observed as a result of overpumping of aquifers. Any sea-level rise would worsen the situation.

A link between rising sea level and changes in the water balance is suggested by a general description of the hydraulics of groundwater discharge at the coast. Fresh groundwater rides up over denser, salt water in the aquifer on its way to the sea (Figure 1), and groundwater discharge is focused into a narrow zone that overlaps with the intertidal zone. The width of the zone of groundwater discharge measured perpendicular to the coast, is directly proportional to the discharge rate. The shape of the water table and the depth to the freshwater/saline interface are controlled by the difference in density between freshwater and salt water, the rate of freshwater discharge and the hydraulic properties of the aquifer. The elevation of the water table is controlled by mean sea level through hydrostatic equilibrium at the shore.
To assess the impacts of potential climate change on fresh groundwater resources, we should focus on changes in groundwater recharge and sea level rise on the loss of fresh groundwater resources in water resources stressed coastal aquifers.

STATUS OF RESEARCH STUDIES

The increase of concentration of carbon dioxide and other greenhouse gases in the atmosphere will certainly affect hydrological regimes. Global warming is thus expected to have major implications on water resources management. The observation of long-term trends in climate for many regions of the world has led to considerable research on the impact of greenhouse gases on climate. To this end, several general circulation models (GCMs) have been used to simulate the type of climate that might exist if global concentrations of carbon dioxide (greenhouse gas) were twice their pre-industrial levels. Recent GCM estimates of the projected rise in long-term global average annual surface temperature are between 1 and 4.5 °C under simulated doubled concentrations of CO₂. On the subcontinent scale, there remains considerable uncertainty in the model results and it is not possible to know with confidence the fine details of how the climate will change regionally (Taylor 1997). Consequently, it is customary to use observational data as a baseline and adjust these by the GCM scenarios (Taylor 1997). Because precipitation patterns are significantly influenced by changes in the global-circulation patterns induced by climate change, regional projections for changes in precipitation under doubled CO₂ scenarios remain very uncertain.

There have been many studies relating the effect of climate changes on surface water bodies. However, very little research exists on the potential effects of climate change on groundwater, although groundwater is the major source of drinking water across much of the world and plays a vital role in maintaining the ecological value of an area. Available studies show that groundwater recharge and discharge conditions are reflection of the precipitation regime, climatic variables, landscape characteristics and human impacts such as agricultural drainage and flow regulation. Hence, predicting the behavior of recharge and discharge conditions under future climatic and other changes is of great importance for integrated water management.

Studies which consider the indirect effects derived from climate-change-induced alterations in soil, land cover, salt-water intrusion due to rising sea levels and changes in water demand are less common. These studies represent a move away from impact studies (which may be considered to be vertically integrated, in which climate change acts upon an environmental compartment) towards horizontally integrated studies in which environmental compartments interact with each other. However, they remain an incomplete assessment of the pressures facing groundwater resources associated with the direct and indirect effects of future climate and socio-economic change.

Previous studies have typically coupled climate change scenarios with hydrological models, and have generally investigated the impact of climate change on water resources in different areas. The scientific understanding of an aquifer’s response to climate change has been studied in several locations within the past decade. These studies link atmospheric models to unsaturated soil models, which, in some cases, were further linked into a
groundwater model. The groundwater models used were calibrated to current groundwater conditions and stressed under different predicted climate change scenarios. Few of the very recent studies on impact of climate change on groundwater resources have been discussed below.

Allen (2010) examined historical groundwater levels for selected observation wells in the south coastal region of British Columbia, Canada, to gain a better understanding of historical trends. Over a common period (1976-1999), negative trends in groundwater level dominate most records, and appear to be related to longer term negative regional trends in precipitation, although variable trends are evident at the shorter time periods used for this study. To explore potential consequences of varying recharge on groundwater quality, water chemistry data from selected monitoring wells on one island were examined. Chloride concentrations were observed to vary annually in one well by up to 4000 mg/L. Projections for future climate from one global climate model (CGCM1) were used as input to a recharge model to study the sensitivity of recharge to shifts in precipitation and temperature predicted for the region. The recharge model was driven by a stochastic daily weather series, calibrated to historic climate data. Daily weather series represent historic climate, and two future time periods (2020s) and (2050s). Simulated recharge increases progressively in the future using this particular global climate model; however, precipitation projections for this region of British Columbia are highly uncertain. Both positive and negative shifts in annual precipitation were predicted using a range of global climate models.

Allen et al. (2010) addressed variations in the prediction of recharge by comparing recharge simulated using climate data generated using a state-of-the-art downscaling method, TreeGen, with a range of global climate models (GCMs). The study site is the transnational Abbotsford- Sumas aquifer in coastal British Columbia, Canada and Washington State, USA, and is representative of a wet coastal climate. Sixty-four recharge zones were defined based on combinations of classed soil permeability, vadose zone permeability, and unsaturated zone depth (or depth to water table) mapped in the study area. One-dimensional recharge simulations were conducted for each recharge zone using the HELP hydrologic model, which simulates percolation through a vertical column. The HELP model is driven by mean daily temperature, daily precipitation, and daily solar radiation. For the historical recharge simulations, the climate data series was generated using the LARS-WG stochastic weather generator. Historical recharge was compared to recharge simulated using climate data series derived from the TreeGen downscaling model for three future time periods: 2020s (2010–2039), 2050s (2040–2069), and 2080s (2070–2099) for each of four GCMs (CGCM3.1, ECHAM5, PCM1, and CM2.1). Recharge results are compared on an annual basis for the entire aquifer area. Both increases and decreases relative to historical recharge are simulated depending on time period and model. By the 2080s, the range of model predictions spans −10.5% to +23.2% relative to historical recharge. This variability in recharge predictions suggests that the seasonal performance of the downscaling tool is important and that a range of GCMs should be considered for water management planning.

Crosbie et al. (2010) presented a methodology for assessing the average changes in groundwater recharge under a future climate. The method is applied to the 1,060,000 km² Murray-Darling Basin (MDB) in Australia. Climate sequences were developed based upon three scenarios for a 2030 climate relative to a 1990 climate from the outputs of 15 global climate models. Dryland diffuse groundwater recharge was modelled in WAVES using these 45 climate scenarios and fitted to a Pearson Type III probability distribution to condense the 45 scenarios down to three: a wet future, a median future and a dry future. The use of a probability distribution allowed the significance of any change in recharge to be assessed. This study found that for the median future, climate recharge is projected to increase on average by 5% across the MDB but this is not spatially uniform. In the wet and dry future scenarios the recharge is projected to increase by 32% and decrease by 12% on average across the MDB, respectively. The differences between the climate sequences generated by the 15 different global climate models makes it difficult to project the direction of the change in recharge for a 2030 climate, let alone the magnitude.

Dams et al. (2010) presented a methodology to predict the potential impact of climate change on quantitative groundwater characteristics determining GWDTEs (Groundwater Dependent Terrestrial Ecosystems). The developed methodology includes coupling a distributed hydrological model (WetSpa) with a transient groundwater flow model (MODFLOW) and is tested for the Kleine Nete basin, Belgium. Because the occurrence of phreatophytes is strongly determined by the dynamic properties of the groundwater system, a groundwater flow model with a high temporal and spatial distribution was developed using MODFLOW. The groundwater recharge and river heads are estimated with the WetSpa model using a daily time step to incorporate the impact of changes in rainfall intensity. Potential future hydrological changes are calculated by comparing the hydrological state corresponding to 1960-1991 with future scenarios developed for 2070-2101.
Since the uncertainty in the prediction of the future climate components such as potential evapotranspiration (PET) and precipitation is still high, an ensemble of 28 climate scenarios were chosen from the PRUDENCE database. For each of these scenarios, recharge, river stage, groundwater head and groundwater flow are estimated for 32 years with half monthly time steps. Comparison of the original measured PET with future PET shows that the PET during summer rises in all future scenarios with about 1 mm per day. For winter conditions the scenarios predict little change in PET. Future precipitation shows an increase in precipitation during winter and a decrease during summer. Future groundwater recharge decreases on average with 20 mm per year, the highest decreases are simulated from July until September. Average groundwater heads indicate an average decrease of 7 cm. Groundwater levels in interfluves generally show decreases up to 30 cm. The mean lowest groundwater level decreases on average with 6 cm, while the mean highest groundwater level decreases about 3 cm. On average, the groundwater discharge reduces with 4%, from 5 to 4.8 m³/s. GWDTES that currently receive a low groundwater discharge, are likely to disappear due to future climate changes.

McCallum et al. (2010) used a sensitivity analysis of climate variables using a modified version of WAVES, a soil-vegetation-atmosphere-transfer model (unsaturated zone), to determine the importance of each climate variable in the change in groundwater recharge for three points in Australia. This study found that change in recharge is most sensitive to change in rainfall. Increases in temperature and changes in rainfall intensity also led to significant changes in recharge. Although not as significant as other climate variables, some changes in recharge were observed due to changes in solar radiation and carbon dioxide concentration. When these variables were altered simultaneously, changes in recharge appeared to be closely related to changes in rainfall; however, in nearly all cases, recharge was greater than would have been predicted if only rainfall had been considered. These findings have implications for how recharge is projected to change due to climate change.

Okkonen et al. (2010) presented a literature review of the impacts of anticipated climate change on unconfined aquifers, along with a conceptual framework for evaluating the complex responses of surface and subsurface hydrology to climate variables in cold regions. The framework offers a way to conceptualize how changes in one component of the system may impact another by delineating the relationships among climate drivers, hydrological responses, and groundwater responses in a straight-forward manner. The model is elaborated in the context of shallow unconfined aquifers in the boreal environment of Finland. In cold conditions, climate change is expected to reduce snow cover and soil frost and increase winter floods. The annual surface water level maximum will occur earlier in spring, and water levels will decrease in summer due to higher evapotranspiration rates. The maximum recharge and groundwater level are expected to occur earlier in the year. Lower groundwater levels are expected in summer due to higher evapotranspiration rates. The flow regimes between shallow unconfined aquifers and surface water may change, affecting water quantity and quality in the surface and groundwater systems.

Oude Essink et al. (2010) focussed on a coastal groundwater system that is already threatened by a relatively high seawater level: the low-lying Dutch Delta. Nearly one third of the Netherlands lies below mean sea level, and the land surface is still subsiding up to 1 m per century. This densely populated delta region, where fresh groundwater resources are used intensively for domestic, agricultural, and industrial purposes, can serve as a laboratory case for other low-lying delta areas throughout the world. Their findings on hydrogeological effects can be scaled up since the problems the Dutch face now will very likely be the problems encountered in other delta areas in the future. They calculated the possible impacts of future sea level rise, land subsidence, changes in recharge, autonomous salinization, and the effects of two mitigation counter-measures with a three-dimensional numerical model for variable density groundwater flow and coupled solute transport (MOCDENS3D). They considered the effects on hydraulic heads, seepage fluxes, salt loads to surface waters, and changes in fresh groundwater resources as a function of time and for seven scenarios.

Their numerical modeling results show that the impact of sea level rise is limited to areas within 10 km of the coastline and main rivers because the increased head in the groundwater system at the coast can easily be produced though the highly permeable Holocene confining layer. Along the southwest coast of the Netherlands, salt loads will double in some parts of the deep and large polders by the year 2100 A.D. due to sea level rise. More inland, ongoing land subsidence will cause hydraulic heads and phreatic water levels to drop, which may result in damage to dikes, infrastructure, and urban areas. In the deep polders more inland, autonomous upcoining of deeper and more saline groundwater will be responsible for increasing salt loads. The future increase of salt loads will cause salinization of surface waters and shallow groundwater and put the total volumes of fresh groundwater volumes for drinking water supply, agricultural purposes, industry, and ecosystems under pressure.
Payne (2010) observed that sea-level rise and changes in precipitation patterns may contribute to the occurrence and affect the rate of saltwater contamination in the Hilton Head Island, South Carolina area. To address the effects of climate change on saltwater intrusion, a three-dimensional, finite-element, variable-density, solute-transport model (SUTRA 2.1) was developed to simulate different rates of sea-level rise and variation in onshore freshwater recharge. Model simulation showed that the greatest effect on the existing saltwater plume occurred from reducing recharge, suggesting recharge may be a more important consideration in saltwater intrusion management than estimated rates of sea-level rise. Saltwater intrusion management would benefit from improved constraints on recharge rates by using model-independent, local precipitation and evapotranspiration data, and improving estimates of confining unit hydraulic properties.

Rozell and Wong (2010) investigated the effects of climate change on Shelter Island, New York State (USA), a small sandy island, using a variable-density transient groundwater flow model (SEAWAT). Predictions for changes in precipitation and sea-level rise over the next century from the Intergovernmental Panel on Climate Change 2007 report were used to create two future climate scenarios. In the scenario most favorable to fresh groundwater retention, consisting of a 15% precipitation increase and 0.18-m sea-level rise, the result was a 23-m seaward movement of the freshwater/salt-water interface, a 0.27-m water-table rise, and a 3% increase in the fresh-water lens volume. In the scenario supposedly least favorable to groundwater retention, consisting of a 2% precipitation decrease and 0.61-m sea-level rise, the result was a 16-m landward movement of the freshwater/salt-water interface, a 0.59-m watertable rise, and a 1% increase in lens volume. The unexpected groundwater-volume increase under unfavorable climate change conditions was best explained by a clay layer under the island that restricts the maximum depth of the aquifer and allows for an increase in freshwater lens volume when the water table rises.

Vandenbohede and Lebbe (2010) evaluated the effects of sea level rise and future recharge changes on the coastal aquifer of the western Belgian coastal plain with a 3D density dependent groundwater flow model (MOCDENS3D). The area is characterised by a wide dune belt. Sea level rise results in a landward enlargement of the fresh water lens under the dunes and an increase of flow towards the dune-polder transition’s drainage system. Recharge increase results also in an enlargement of the dune’s fresh water lens and an increase of the amount of water which must be evacuated by the polder’s drainage system. Recharge decrease has the reverse effect.

Zhou et al. (2010) reported that climate change affects not only water resources but also water demand for irrigation. A large proportion of the world’s agriculture depends on groundwater, especially in arid and semi-arid regions. In several regions, aquifer resources face depletion. Groundwater recharge has been viewed as a by-product of irrigation return flow, and with climate change, aquifer storage of such flow will be vital. A general review, for a broadbased audience, is given of work on global warming and groundwater resources, summarizing the methods used to analyze the climate change scenarios and the influence of these predicted changes on groundwater resources around the world (especially the impact on regional groundwater resources and irrigation requirements). Future challenges of adapting to climate change are also discussed. Such challenges include water-resources depletion, increasing irrigation demand, reduced crop yield, and groundwater salinization. The adaptation to and mitigation of these effects is also reported, including useful information for water-resources managers and the development of sustainable groundwater irrigation methods. Rescheduling irrigation according to the season, coordinating the groundwater resources and irrigation demand, developing more accurate and complete modeling prediction methods, and managing the irrigation facilities in different ways would all be considered, based on the particular cases.

These studies are still at infancy and more data, in terms of field information are to be generated. This will also facilitate appropriate validation of the simulation for the present scenarios. In summary, climate change is likely to have an impact on future recharge rates and hence on the underlying groundwater resources. The impact may not necessarily be a negative one, as evidenced by some of the investigations. Quantifying the impact is difficult, however, and is subject to uncertainties present in the future climate predictions. Simulations based on general circulation models (GCMs) have yielded mixed and conflicting results, raising questions about their reliability in predicting future hydrologic conditions. However, it is clear that the global warming threat is real and the consequences of climate change phenomena are many and alarming.

METHODOLOGY TO ASSESS THE IMPACT OF CLIMATE CHANGE ON GROUNDWATER RESOURCES

The potential impacts of climate change on water resources have long been recognized although there has been comparatively little research relating to groundwater. The principle focus of climate change research with regard
to groundwater has been on quantifying the likely direct impacts of changing precipitation and temperature patterns. Such studies have used a range of modelling techniques such as soil water balance models, empirical models, conceptual models and more complex distributed models, but all have derived changes in groundwater recharge assuming parameters other than precipitation and temperature remaining constant.

There are two main parameters that could have a significant impact on groundwater levels: recharge and river stage/discharge. To assess the impact on the groundwater system to changes in these two parameters, it is necessary to have a calibrated flow model and to conduct a sensitivity analysis by varying these two parameters and calculating changes to the water balance (e.g., differences in water levels). The research objectives can be:

- To develop a conceptual model of the hydrogeology of the study region;
- To investigate how regional and local weather events affect recharge;
- To determine potential impacts of climate change on recharge for the study area, and to assess the sensitivity of the results to different global climate models;
- To develop and calibrate a regional-scale three-dimensional groundwater flow model of the region and to use that model to assess the impacts of climate change on groundwater resources; and
- To develop and calibrate a local-scale three-dimensional groundwater flow model, and to undertake a well capture zone analysis for the local community water supply wells for the region.

The methodology consists of three main steps. To begin with, climate scenarios can be formulated for the future years such as 2050 and 2100. This is done by assigning percentage or value changes of climatic variables on a seasonal and/or annual basis only for the future years relative to the present year. Secondly, based on these scenarios and present situation, seasonal and annual recharge, evapotranspiration and runoff are simulated with the WHI UnSat Suite (HELP module for recharge) and/or WetSpass model. Finally, the annual recharge outputs from WHI UnSat Suite or WetSpass model are used to simulate groundwater system conditions using steady-state MODFLOW model setups for the present condition and for the future years.

The main tasks that are involved in such a study are:

1. Describe hydrogeology of the study area.
2. Undertake a statistical analysis to separate climate into regional and local events and determine the role of each in contributing to groundwater recharge.
3. Analyze climate data from weather stations and modelled GCM, and build future predicted climate change datasets with temperature, precipitation and solar radiation variables.
4. Define methodology for estimating changes to recharge in the model under both current climate conditions and for the range of climate-change scenarios for the study area.
5. Use of a computer code (such as WHI UnSat Suite or WetSpass) to estimate recharge based on available precipitation and temperature records and anticipated changes to these parameters.

Recharge estimation by WHI UnSat Suite

UnSat Suite contains the subprogram, Visual HELP, which contains a more user-friendly interface for the program HELP that is approved by the United States Environmental Protection Agency (US EPA) for designing landfills. Visual HELP enables the modeler to generate estimates of recharge using a weather generator and the properties of the aquifer column.

Recharge estimation by WetSpass

WetSpass is a quasi physically distributed seasonal-water balance model, which takes into account detailed soil, land-use, slope, groundwater depth, and hydro-climatological distributed maps with associated parameter tables for estimating groundwater recharge. The model uses seasonal (summer
and winter) geographical information systems (GIS) input grids of the mentioned inputs to estimate annual and seasonal groundwater recharge values.

6. Quantify the spatially distributed recharge rates using the climate data and spatial soil survey data.

7. Development and calibration of a three-dimensional regional-scale groundwater flow model (such as Visual MODFLOW). Since one of the inputs required for WetSpass is the groundwater depth data, which is predicted with the MODFLOW model, an interface may be developed in an ArcView GIS platform to couple the two models, facilitating exchange of data between the two models. The coupled WetSpass-MODFLOW model is run for the present situation and for each of the climate change scenarios on an annual basis.

8. Simulate groundwater flow using each recharge data set and evaluate the changes in groundwater flow and levels through time.

9. Undertake sensitivity analysis of the groundwater flow model.

10. Develop a local scale groundwater model for the specific study area and conduct a well capture zone analysis.

Figure 2: Flow Chart of Tasks (Toews et al., 2007)

A typical flow chart for various aspects of such a study is shown in Figure 2. The figure shows the connection from the climate analysis, to recharge simulation, and finally to a groundwater model. Recharge is applied to a three-dimensional groundwater flow model, which is calibrated to historical water levels. Transient simulations are undertaken to investigate the temporal response of the aquifer system to historic and future climate periods.

Tasks in the upper part of the chart assemble several climate data sets for current and future predicted conditions, which are used to simulate recharge using HELP module of WHI UnSat Suite. The soil layers are parameterized using a pedotransfer function program, which utilizes detailed soil survey measurements. Mapped monthly recharge from HELP is then used in a three-dimensional MODFLOW model to simulate transient saturated groundwater flow.
CONCLUDING REMARKS

- Precipitation is commonly downscaled in climate change impact studies; however, the reliability of the downscaled result is often poor or unreliable, as there is often little correlation between the predictors and the predictands. A poor correlation is often attributed to mesoscale processes occurring at the site-scale that are not represented in regional models due to their representative spatial and temporal sizes in comparison to larger-scale regional precipitation. Mesoscale precipitation processes generally occur in the summer season in the form of convective clouds, which are a result of local-scale evapotranspiration from elevated temperatures and solar radiation magnitudes. As a result, global-scale models may underestimate the summer precipitation measured at a site.

- Although climate change has been widely recognized, research on the impacts of climate change on the groundwater system is relatively limited. The reasons may be that long historical data are required to analyze the characteristics of climate change. These data are not always available. Also, the driving forces that cause such changes are yet unclear. The climatic abnormality may occur frequently and last for a period of time. Even if the required data exist, uncertainty is embedded in model parameters, structure and driving force of the hydrological cycle. Predicting the long-term effect of a dynamic system is very difficult because of limitations inherent in the models, and the unpredictability of the forces that drive the earth. A physically based model of a groundwater system under possible climate change based on available data is very important to prevent the deterioration of regional water-resource problems in the future. Although uncertainties are inevitable, new response strategies in water resource management based on the model may be useful.

- The investigation of the relationship between climate change and loss of fresh groundwater resources is important for understanding the characteristics of the different regions. The impact of future climatic change may be felt more severely in developing countries such as India, whose economy is largely dependent on agriculture and is already under stress due to current population increase and associated demands for energy, freshwater and food. In spite of the uncertainties about the precise magnitude of climate change and its possible impacts, particularly on regional scales, measures must be taken to anticipate, prevent or minimize the causes of climate change and mitigate its adverse effects.

- Groundwater recharge is influenced not only by hydrologic processes, but also by the physical characteristics of the land surface and soil profile. Many climate change studies have focused on modelling the temporal changes in the hydrologic processes and ignored the spatial variability of physical properties across the study area. While knowing the average change in recharge and groundwater levels over time is important, these changes will not occur equally over a regional catchment or watershed. Long-term water resource planning requires both spatial and temporal information on groundwater recharge in order to properly manage not only water use and exploitation, but also land use allocation and development. Studies concerned with climate change should therefore also consider the spatial change in groundwater recharge rates.

- If the likely consequences of future changes of groundwater recharge, resulting from both climate and socio-economic change, are to be assessed, hydrogeologists must increasingly work with researchers from other disciplines, such as socio-economists, agricultural modelers and soil scientists.

REFERENCES

19. Shah, Tushaar (2009), Climate change and groundwater: India’s opportunities for mitigation and adaptation, Environmental Research Letter 4, IOP Publishing Ltd, UK.
BRIEF PROFILE OF THE AUTHORS

Mr. C. P. Kumar post-graduated in Hydraulic Engineering from University of Roorkee in 1985. From 1985, he has been working for National Institute of Hydrology (NIH), Roorkee - 247667 (Uttarakhand). He is at present Scientist ‘F’ and Head of Hydrological Investigations division at NIH, Roorkee. His major research areas of interest include assessment of groundwater potential; saline water intrusion in coastal aquifers; numerical modelling of unsaturated flow, groundwater flow and contaminant transport; management of aquifer recharge; and impact of climate change on groundwater. He is owner and moderating few technical groups on Yahoo! Groups, such as Hydrology Forum - http://tech.groups.yahoo.com/group/hydforum/ , Ground Water Modelling - http://tech.groups.yahoo.com/group/gwmodel/ , Hydrological Modelling - http://in.groups.yahoo.com/group/hydrologymodel/ etc.