
PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 1

CHAPTER 1 – SOUND BASICS AND SIGNAL CONCEPTS

1.0 Introduction

This chapter provides some basic principles of sound so the physical aspects
are no longer an unknown. It contains first objective that have been set earlier
in project specification. It took a lot of time and effort of studying and
produces statement of understanding from the literature review. The author
could not determine if the information is sufficient to apply in the project, but
at least it acts as a foundation of the project.

1.1 Sound Basics

According to David J. MacKenzie (1996), Craig A. (2000) and Gilbert (2000),
sound is vibrations of the air that our eardrums perceive, convert to nerve
impulses and send to the brain. It is our brains that interpret the nerve energy
and allow us to hear. Vibrating objects like guitar strings, guitar soundboards,
and speakers create periodic changes in air pressure, where it is alternately
increased above the normal value (when there's no sound) as they move
toward people, and then decreased below the normal value as they move
away from that person.

The number of times that the air pressure changes in any given period of time
determines what pitch we hear the tone as how high or low the tone is. Each
movement back and forth is called a cycle. Usually pitch is measured in
cycles per second, also known as Hertz (named after a 19th century
physicist). The pitch of a tone is also called its frequency, because it is
determined by how frequently the air pressure is changing, which is
determined by the frequency at which the part of the instrument that created it
was vibrating.

The middle A key of a piano is a string vibrating at 440 Hertz; that is the
standard pitch that orchestras tune their instruments to, so tunings based on it
are said to be in concert pitch. When a tone has a frequency that is twice as
high as another tone, we hear it as being "the same note", only an octave
higher. The next A above the middle A on a piano is vibrating at 880 Hertz,
and the next A below the middle A is 220 Hertz.

If one vibrating object (such as guitar string) is half as long as another one
that has the same thickness and is tightened to the same tension, that shorter
object will vibrate at twice the speed as the other one--one octave higher than
it. Therefore, the 12th fret of a guitar, which is one octave higher in pitch than
the open string, is located in the middle of the string.

The amount of difference in the air pressure determines how loud we hear a
sound as being. If the pressure changes are large, we hear a loud noise. So if

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 2

the air molecules (and thus our eardrums) are vibrating rapidly but only a
short distance, we hear a high-pitched but quiet sound.

It was Jean-Baptiste Fourier (1768-1830) who first proposed that all sounds
could be represented by the summation of a series of simpler sine (and
cosine) waves. This gives rise to the concept of a frequency spectrum that
describes the set of sine waves that makes up a given sound. A sound has a
fundamental frequency which is the frequency of the sine wave with the
greatest amplitude of all those that make up the sound. The simplest of
sounds tend to be periodic, whereas more complex sounds may have non-
periodic tendencies. Overtones or harmonics are frequencies that are near
multiples of the fundamental frequency. The harmonic content of a sound
determines its complexity. The Fourier transform is a mathematical device
used to extract the frequency content of a complex sound.

1.1.1 Sampled Sound

Most sound processing occurs in the digital domain (via digital circuitry and
microprocessors) instead of in the analog domain (using capacitors and
inductors). The reasons for this include:

? Digital circuitry is more stable than the equivalent analog circuitry.
? Digital signal processing does not introduce the noise into the processed

sound as analog signal processing tends to do.
? High speed processor today can process sound in software (in real time)

instead of building custom hardware to do so.
? Digital circuitry is cheaper to produce and maintain.

An Analog-to-Digital converter converts the analog signal in its input to a
series of samples that represent the signal in the digital domain. Once a
sample is acquired it must be stored in a known format for processing. Many
sampling systems use Pulse Coded Modulation (PCM) as the standard for
storage.

PCM only implies the quantization and digitization of analog signal. The range
of values the signal can achieve (quantization range) is divided into segments
and each segment is assigned a unique code word (a sequence of bits). The
value that the signal achieved at a certain point in time is called sample.
Pulse code modulation is what compact discs and most WAV files use. For
example, in a compact disc audio recording, there are exactly 44,100
samples taken every second. Each sampled voltage gets converted into a 16-
bit integer.

According to Henry Nyquist (1889-1976), the sampling rate determines the
maximum frequency information that is preserved in the sampled signal.
Nyquist established the fact that in order to recreate an analog waveform

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 3

accurately from digital samples, it must have been sampled at a rate that was
at least twice the frequency of the highest frequency component. This number
is referred to as the “Nyquest rate”. Sampling at a lower rate than 2x the
highest frequency will cause aliasing to occur. A good rule is to sample at
something above twice the highest frequency.

1.1.2 Structure of Wave File

The project focuses how to analyze wave type of file. Hence, in order to be
read data from the wav file, the structure of the wav files needed to be known.
The structure of wav files is based on a file format known as Resource
Interchange File Format (RIFF) defined by Microsoft.

This format was designed so that data in a file is broken up into self-
described, independent "chunks". Each chunk has a prefix which describes
the data in that chunk. The prefix is a four-character chunk ID which defines
the type of data in the chunk, followed by a 4-byte integer which is the size of
the rest of the chunk in bytes. The size does not include the 8 bytes in the
prefix. The chunks can be nested. In fact, a RIFF file contains a single chunk
of type "RIFF", with other chunks nested inside it. Therefore, the first four
bytes of a WAV file are "RIFF", and the four bytes after that contain the size
of the whole file minus 8 bytes. [Don Cross, 2000]

After the RIFF header is the WAV data, consisting of the string "WAVE" and
two important chunks: the format header and the audio data itself. There may
also be other chunks in a WAV file that contain text comments, copyrights,
etc., but they are not needed to play the recorded sound.

1.1.3 The Wave File Format Header

The format header describes how the audio data is formatted in the
file. The WAV format header description is stated below:

Name size
[bytes] description

ckID 4
The ASCII string "fmt ". Note the single trailing space
character. All chunk ID's have to be 4 characters, so
trailing spaces are used to pad shorter strings.

nChunkSize 4

This is a 32-bit unsigned integer which holds the
length of the entire 'fmt ' chunk in bytes. Note that this
and all other multi-byte integer data in a WAV file are
expressed with the least significant byte first. For
example, if a WAV file's the chunk size is 16, then a
hex dump of nChunkSize would print out 10 00 00 00.

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 4

wFormatTag 2
This defines how the audio data is encoded in the
WAV file. This value will almost always be 1, which
means Pulse Code Modulation (PCM).

nChannels 2

This is the number of channels of audio present in
the WAV file. For monaural sounds there is 1
channel; for stereo sounds, there are 2 channels. It is
possible to have more than 2 channels but this is
rare. The number of channels should never be less
than 1.

nSamplesPerSec 4

The sampling rate expressed in samples per second,
or Hz. The reciprocal of this number is the amount of
time between samples expressed in seconds. Typical
values are 11025 (telephone quality), 22050 (radio
quality), and 44100 (CD quality). No sampling rates
less than 8000 Hz or higher than 48000 Hz.

nAvgBytesPerSec 4

The average number of bytes per second that a
player program would have to process to play this
audio in real time. For PCM audio, this is redundant
because we can calucate it by multiplying together
the sampling rate, number of channels, and number
of bytes per sample.

nBlockAlign 2

This number shows how many bytes there are to
output at a single time. In PCM, this is the same as
the number of bytes per sample multiplied by the
number of audio channels.

nBitsPerSample 2

This field is present only in PCM recordings. It
defines the number of bits per sampled audio
amplitude. It will usually be either 8 or 16. Eight-bit
audio files have only 256 different amplitude levels
possible, so they are low quality and contain inherent
"hiss" known as quantization distortion. Sixteen-bit
audio files sound much better but are twice as large
(assuming the same sampling rate and number of
channels).

 Table 1.1 Types of wave file header
 [Adopted from Don Cross, www.intersrv.com]

Wav files are compatible with sampling rates of up to 44100 samples per
second which is equivalent to that of a CD, that is to say it gives high quality
sound.

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 5

1.2 Signal Concept

Signals play an important role in our daily life. Examples of signals that we
encounter frequently are speech, music, picture, and video signals. A signal is
a function of independent variables such as time, distance, position,
temperature, and pressure. For example, speech and music signals represent
air pressure as a function of time at a point in space. [Sanjit K., 2001; John
G. and Dimitris G., 1996]

The signal contains loudness information, frequency information, and in any
real instrument harmonics and some noise. The simplified example does not
do justice to a real guitar note, which is much less of a sine wave, at least in
the simple case where only one note has been struck. If two or more strings
have been played, both base frequencies and both sets of harmonics are
present, and the supposed regularity gets really rough. Frequency and
harmonics are very hard to extract useful info from, so almost all note
processing goes for the amplitude envelope. [R.G. Keen, 2001]

The types of signals can be defined depends on the nature of the
independent variables and the value of the function. For example,
independent variables can be continuous or discrete. Here the author only
discusses continuous- time signals, discrete-time signals and digital signals.

1.2.1 Continuous-Time Signals

Continuous-time signals also referred to as analog signals. A signal is said to
be continuous if its derivative is defined everywhere, and is said to be
discontinuous if it is not. It is important to note that “continuous time” does not
imply that a signal is a mathematically continuous function, but rather that it is
a function of a continuous-time variable. [A speech signal is an example of an
analog signal. [Fred J., 1994; Rodger E., William H. and D. Ronald, 1998;
Sanjit K., 2001]

1.2.2 Discrete-Time Signals

A discrete-time signal is a signal defined by specifying the value of the signal
only at discrete times, called sampling instants. If the sample values are then
quantized and encoded, a digital signal results. A digital signal is formed from
a continuous-time signal through the process of analog-to-digital conversion.
In this project, the author is going to do analysis on those discrete-time
signals which stored in wave file. [Fred J., 1994; Rodger E., William H. and D.
Ronald, 1998; Sanjit K., 2001; John G. and Dimitris G., 1996]

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 6

1.2.3 Digital Signals

Digital signals are discrete-time signals that are also quantized along the
dependent axis. One way to produce digital signals is to pass a discrete-time
sample signal through an analog-to-digital converter. ADC will quantize a
sample value into one of 2n finite values. [Fred J., 1994] Examples of these
three classes of signals can be found in Figure 1.1.

Figure 1.1 [Fred J., 1994] Signal hierarchy consisting of analog, discrete-time or
sampled, and digital or quantized processes

1.3 Summary

After studying on those sound basics and signal concept, the author gained
more understanding the underlying background knowledge of digital field.
This is essential in order to develop digital signal processing system. In the
next chapter, the author moved on discuss what digital signal concept is and
neural network is also included.

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 7

Chapter 2 UNDERSTAND DSP
CONCEPT AND NEURAL
NETWORK CONCEPT

2.0 Introduction

2.1 DSP Concept

 2.1.1 Definition
 2.1.2 Features

2.2 Neural Network Concept

 2.1.1 Structure of neuron
 2.1.2 Neural Net

2.3 Summary

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 8

CHAPTER 2 – UNDERSTAND DSP CONCEPT AND NEURAL
NETWORK CONCEPT

2.0 Introduction

There are some DSP topics that used in this project. One is the spectral
analysis. This is an idea of transformations – mathematical tools that allow
moving between two descriptions of signal. This is how we determine the
frequencies are present in a signal.

Other topics such as filtering (to modify the frequency content of a signal),
synthesis (generate tones, speech) and correlation (to identify periodicity in a
signal). However, it does not apply to the project. The DSP algorithms are
those essential things that would be discussed in next phase. [Dale Grover
and John R.Deller, 1999]

DSP needs electrical engineering background; it uses the language of
electrical engineering and many concepts from electronics and signals.
Therefore the author sometimes met difficulties in understanding the terms.
There are no fixed formulas for coefficients; and an experimental approach is
required. This project also required mathematical basis to deal with DSP
application. Although we don’t need to be expert in every aspect of DSP but
due to the contribution of each area, the author find that horizons widen as
got deeper into DSP.

2.1 DSP Concept

Digital Signal Processing (DSP) is used in a wide variety of applications, and
it is hard to find a good definition that is general, hence the author start by
dictionary definition of the words. Digital means operating by the use of
discrete signals to represent data in the form of numbers. Signal is a variable
parameter by which information is conveyed through an electronic circuit. And
finally, processing is some kind of operations which performed on data
according to programmed instructions. Therefore, in short, DSP is changing
or analyzing information which is measured as discrete sequences of
numbers.

DSP is used in a very wide variety of applications but most share some
common features:

a) They require a lot of math (multiplying and adding signals)
b) They deal with signals that come from the real world.
c) They require a response in a predetermined time period.

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 9

2.1.1 Definition

According to www.whatis.techtarget.com, Digital signal processing (DSP) refers to
various techniques for improving the accuracy and reliability of digital
communications. The theory behind DSP is quite complex. Basically, DSP
works by clarifying, or standardizing, the levels or states of a digital signal. A
DSP circuit is able to differentiate between human-made signals, which are
orderly, and noise, which is inherently chaotic.

All communications circuits contain some noise. This is true whether the
signals are analog or digital, and regardless of the type of information
conveyed. Traditional methods of optimizing S/N ratio include increasing the
transmitted signal power and increasing the receiver sensitivity. Digital signal
processing dramatically improves the sensitivity of a receiving unit. The effect
is most noticeable when noise competes with a desired signal. A good DSP
circuit can sometimes seem like an electronic miracle worker. But there are
limits to what it can do. If the noise is so strong that all traces of the signal are
obliterated, a DSP circuit cannot find any order in the chaos, and no signal
will be received.

If a received signal is digital, for example computer data, then the ADC and
DAC are not necessary. The DSP acts directly on the incoming signal,
eliminating irregularities caused by noise, and thereby minimizing the number
of errors per unit time.
(Quoted from
http://www.whatis.techtarget.comdefinition/0,,sid9_gci213898,00.html)

2.1.2 Features

The features of DSP are common to many digital systems are shown in the
following table:

2.2 Neural Network Concept

No Features Details

1 Versatility a) Digital systems can be reprogrammed for
other applications (at least where
programmable DSP chips are used)

b) Digital systems can be ported to different
hard-ware (for example a different DSP chip
or board level product)

2 Repeatability a) Digital system responses do not drift with
temperature.
b) Digital systems can be easily duplicated.
c) Digital systems do not depend on strict
component tolerances.

3 Simplicity Some things can be done more easily digitally
than with analog systems

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 10

Neural networks are simple a class of mathematical algorithms, since a
network can be regarded essentially as a graphic notation for a large class of
algorithm. Such algorithms produce solutions to a number of specific
problems. Artificial neural networks have undoubtedly been biologically
inspired, but the close correspondence between them and real neural
systems is still rather weak. Architectures and capabilities of both networks
are very much different. No models have been successfully in duplicating the
performance of the human brain. Therefore, the brain has been and still is
only a metaphor for a wide variety of neural network configurations that have
been developed. [Durbin, 1989]

The area of Neural Networks probably belongs to the borderline between the
Artificial Intelligence and Approximation Algorithms. Think of it as of
algorithms for "smart approximation". The NNs are used in universal
approximation (mapping input to the output), tools capable of learning from
their environment, tools for finding non-evident dependencies between data
and so on.

Some of the Neural Networking algorithms are modeled after the brain and
processes the information. The brain is a multi layer structure (think 6-7 layers
of neurons) that works as a parallel computer capable of learning from the
"feedback" it receives from the world and changing its design by growing new
neural links between neurons or altering activities of existing ones. The brain
is composed of neurons, interconnected. [Jarek M., 1992]

2.2.1 Structure of neuron

Figure 2.1 Structure of neuron
(adopted from http://www.geocities.com/neuralbug/index.html)

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 11

Our "artifficial" neuron will have inputs (all N of them) and one output: Set of
nodes that connects it to inputs, output, or other neurons, also called
synapses.

A Linear Combiner, which is a function that takes all inputs and produces a
single value. A simple way of doing it is by adding together the dInput (a "d"
prefix means "double", we use it so that the name (dInput) represents the
floating point number) multiplied by the Synaptic Weight dWeight:

for(int i = 0; i < nNumOfInputs; i++)
 dSum += dInput[i] * dWeight[i];

We do not know what the Input will be. The human ear can function near the
working jet engine and in the same time. If it was only ten times more
sensitive, we would be able to hear a single molecule hitting the membrane in
our ears! It means that the input should not be linear. When we go from 0.01
to 0.02, the difference should be comparable with going from 100 to 200.

By applying the Activation function. It will take ANY input from minus infinity to
plus infinity and squeeze it into the -1 to 1 or into 0 to 1 interval. Then we can
get non-linear input.

Finally, we have a treshold. What the internal activity of a neuron should be
when there is no input? Should there be some treshold input before we have
the activity? Or should the activity be present as some level (in this case it is
called a bias rather than a treshold) when the input is zero?

For simplicity, we will replace the treshold with an EXTRA input, with weight
that can change during the learning process and the input fixed and always
equal (-1). The effect, in terms of mathematical equations, is exactly the
same, but the programmer has a little more breathing room. [Jarek M., 1992]

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 12

2.2.2 Neural Net

Figure 2.2 Neural Net
(adopted from http://www.geocities.com/neuralbug/index.html)

A single neuron by itself is not a very useful pattern recognition tool. The real
power of neural networks comes when we combine neurons into the
multilayer structures, is called neural networks.

There are 3 layers in our network. There are N neurons in the first layer,
where N equals number of inputs. There are M neurons in the output layer,
where M equals number of outputs. For example, building the network
capable of predicting the stock price, we might want the (yesterday's) hi, lo,
close, volume as inputs and close as the output.

We may have any number of neurons in the inner ("hidden") layers. The
quality of a prediction will drop if the net doesn't have enough "brains". But if
we make it too many, it will have a tendency to "remember" the right answers,
rather than predicting them. Then the neural net will work very well on the
familiar data, but will fail on the data that was never presented before. Finding
the compromise is more of an art, than science.

The NN receives inputs, which can be a pattern of some kind. In the case of
an image recognition software, it would be pixels from the photo sensitive
matrix of some kind, in the case of a stock price it would be the "hi" (input 1),
"low" (input 2) and so on. [Jarek M., 1992]

The basic unit of the brain is the neuron. Similarly the brain as a neuron or
processing element at it’s core. The first of these was developed by
McCulloch & Pitts. The unit has a number of inputs and a number of outputs.
Each input and output has a weight. The unit sums the product of the input
value and its weight. The unit then has a function to determine whether or not

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 13

to output a value and if so what that value should be. A neural net consists of
lots of there neuron arranged in different ways depending on the architecture
of the net.

The weights that the interconnections have are of crucial importance this is
what gives the net memory. There are three different ways that the weights
can be obtained: Fixed weight networks where no learning is required and
weight are assigned and not changed. Supervised learning consists of many
pairs of input and output training patterns the error computed, which is the
difference between the desired response to an input pattern and the actual
response, is used to determine the appropriate changes to be made.
Unsupervised learning involves training without any teacher; there are no
output patterns to compare against. The network learns to adapt based on
experiences collected through the previous training patterns.

The type of network used in this project should be a multilayer network with
three layers. An input layer with six inputs for the six harmonics will be used
to determine the instrument type. The hidden layer with four elements and an
output layer with two outputs are used to determine if the harmonics are for a
guitar or not.

2.3 Summary

This project focuses on implementation of DSP. After studying the material,
the author discovered that DSP has several drawbacks. One obvious
disadvantage is the increased system complexity in the digital processing of
analog signals. Another disadvantage is the limited range of frequencies
available for processing. For instance, an analog continuous-time signal must
be sampled at a frequency that is at least twice the highest frequency
component present in the signal. The third disadvantage is that digital
systems (active devices) are consuming electrical power. However,
algorithms can be implemented using passive circuit employing inductors,
capacitors, and resistors that do not need power. Moreover, the active
devices are less reliable compared to the passive component.

The author has gained the basic idea and background knowledge to do the
project through literature review. In the next chapter, the author is going to
study DSP algorithm and neural network to implement in the project.

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 14

Chapter 3 DSP ALGORITHMS AND NEURAL
NETWORK SYSTEM

3.0 Introduction

3.1 DSP algorithms

 3.1.1 Fourier Transform
 3.1.2 Fast Fourier Transform
 3.1.3 Applications of FFT

3.2 Neural Network

 3.2.1 Multilayer Feedforward Networks
 3.2.2 Single-Layer Feedback Networks

3.3 Summary

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 15

CHAPTER 3 – DSP ALGORITHMS AND NEURAL NETWORK
SYSTEM

3.0 Introduction

This chapter focuses on study on various algorithms that applied to the
project and also programming tools which is suitable for the project. There are
many algorithms for manipulating the digital signals; however, we are going to
discuss two types of famous algorithm which are fourier transform and fast
fourier transform.

For programming tools, there are a few programming tools that has been
learnt by the author. The author will discuss features of several programming
tools and make comparison between them.

3.1 DSP algorithms

Basically we going to cover two fast algorithms for computing the Discrete
Fourier transform (DFT). In 1965, J.W. Cooley and J.W. Tukey published a
milestone paper defining what is now called the fast Fourier transform or FFT.
If the continuous-time signal can be sampled to produce a time-series x [n],
an estimate of the fourier transform can be produce using equations which we
will discuss later. Obviously, this has enormous importance, since it makes
spectral analysis works. [Fred J., 1994]

3.1.1 Fourier Transform

The Fourier transform is a mathematical concept used for determining the
frequencies, and their amplitudes, of any data which can represented by a
wave or for image data. The main principle behind this concept is that any
wave is made up of N frequencies each with a certain amplitude, which may
be zero, all added together. [Fred J., 1994; Rodger E., William H. and D.
Ronald, 1998; Sanjit K., 2001; John G. and Dimitris G., 1996]

If the product of two waves of frequency k and m are taken then the result is a
new wave of frequency k-m. If we then take the sum of all the points in this
new frequency we get zero because all the positives in the wave have
corresponding negatives which cancel each other out.

However if we took the product of two waves of the same frequency then we
would get a wave of frequency zero which is equal the one. Summing all N
values in this frequency we get a value of N.

In order to calculate the amplitude of a frequency m the wave is multiplied by
a wave of frequency m. This has the affect of setting all the frequencies to
zero except that of m that is all other frequencies are eliminated.

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 16

The equation for the fourier transform is:

(source from http://www.icaen.uiowa.edu/~dip/LECTURE/LinTransforms.html)

x[n] = the values of the wave at sample point n.
N = total number of samples.
n = current sample value.
X[m] = amplitude of the frequency m.

Further detail, the Fourier Transform is based on the discovery that it is
possible to take any periodic function of time x(t) and resolve it into an
equivalent infinite summation of sine waves and cosine waves with
frequencies that start at 0 and increase in integer multiples of a base
frequency f0 = 1/T, where T is the period of x(t). Here is what the expansion
looks like:

 (adapted from http://www.intersrv.com/~dcross/index.html)

An expression of the form of the right hand side of this equation is called a
Fourier Series. The job of a Fourier Transform is to figure out all the ak and bk
values to produce a Fourier Series, given the base frequency and the function
x(t). Assume that the a0 term outside the summation as the cosine coefficient
for k=0. There is no corresponding zero-frequency sine coefficient b0 because
the sine of zero is zero, and therefore such a coefficient would have no effect.

Of course, we cannot do an infinite summation of any kind on a real
computer, so we have to settle for a finite set of sines and cosines. It turns out
that this is easy to do for a digitally sampled input, when we stipulate that
there will be the same number of frequency output samples as there are time
input samples. Also, we are fortunate that all digital audio recordings have a
finite length. We can pretend that the function x(t) is periodic, and that the

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 17

period is the same as the length of the recording. In other words, imagine the
recording repeating forever, and call this repeating function x(t). The duration
of the repeated section defines the base frequency f0 in the equations above.
In other words, f0 = samplingRate / N, where N is the number of samples in
the recording.

For example, take a sampling rate of 44100 samples/second, and the length
of the recording is 1024 samples, the amount of time represented by the
recording is 1024 / 44100 = 0.02322 seconds, so the base frequency f0 will be
1 / 0.02322 = 43.07 Hz. If process these 1024 samples with the FFT, the
output will be the sine and cosine coefficients ak and bk for the frequencies
43.07Hz, 2*43.07Hz, 3*43.07Hz, etc. To verify that the transform is
functioning correctly, generate all the sines and cosines at these frequencies,
multiply them by their respective ak and bk coefficients, add these all together,
and this will get the original recording back. [Don Cross, 2001]

3.1.2 Fast Fourier Transform (FFT)

The Fourier Transform is very useful in many applications however it is very
computationally expensive. To illustrate this, take an example if fourier
transform a wave with 1024 sample points would require 1024 loops to sum
the sample values of the wave, this would have to be done 1024 times for
each frequency component this would lead to over one millions loops. It is
obvious then that what is needed is a more feasible method. This comes with
the fast fourier transform.

The main idea behind the fast fourier transform is that of decomposition. This
is where the original signal is broken down into smaller and smaller,
interleaved subsequences. This process is done by taking the entire even
valued sample and evaluating them and then taking all the odd values and
evaluating then. The odd values must be multiplies by a factor to take account
of the fact that the odd values are shifted on space to the right relative to the
even values. This will later be referred to as the twiddle factor. The odd and
even values are then added to get the original fourier transform value. The
process of decomposing the values can be repeated on each subsequence
until only two values remain in the subsequences. [Richard G.Lyons, 1997]

If all the decomposed equations are written out for a small four element
example transform, then it could easily be seen that there is a lot of redundant
calculations that is where the same calculations are preformed repeatedly.
The fast fourier transform eliminates this by calculating a value once but using
it more than once.

The basic computational element of the FFT is the butterfly. As discussed the
transform has been decomposed into its two element parts. The butterfly
provides the way for them to be recombined to obtain the amplitude of the

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 18

frequency. Each butterfly is not only providing a solution to one of the
frequency but it also provides data for all the other frequency amplitudes to be
calculated at the same time. The butterfly consists of one addition, a
subtraction and a multiplication by a twiddle factor. A fourier transform which
has 2^n input values will have n stages to it and each stage will have (2^n)/2
butterflies. This is a lot better than (2^n)*(2^n) loops needed for the original
transform.

The following FFT algorithm basically consists of two for loops inside of which
a butterfly, which was mentioned earlier, is performed. This consists of taking
two of the inputs adding then to produce on of the outputs and subtracting
them to produce another which is then multiplied by a twiddle factor.

There are various different twiddle factor values which depends on the
position in the sequence the butterfly and also on its stage. In order to
improve speed all the possible twiddle factor values are stored in an array of
data. This is efficient because the some values are used over and over again
and this saves us from having to calculate the values repeatedly. Other
values which need to be calculated on numerous occasions are also placed
into variables which are used in their place.

Diagram 3.1 butterfly calculation

The above diagram gives an illustration of a bufferfly where x[a] and X[b] are
two of the inputs. Both a and b are used twice to work out the outputs of
X+1[a] and X+1[b]. Tw represents the twiddle factor multiplied by X[a] – X[b].
The outputs are used as the input values to the next stage.

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 19

3.1.3 Applications of FFT

The FFT algorithm tends to be better suited to analyzing digital audio
recordings than for filtering or synthesizing sounds. A common example is
when one wants to do the software equivalent of a device known as a
spectrum analyzer, which electrical engineers use for displaying a graph of
the frequency content of an electrical signal. He can use the FFT to determine
the frequency of a note played in recorded music, to try to recognize different
kinds of birds or insects, etc. The FFT is also useful for things which have
nothing to do with audio, such as image processing, scientific/statistical
applications, analyzing seismographic information to take "sonograms" of the
inside of the Earth or even analyze DNA sequences.

The main problem with using the FFT for processing sounds is that the digital
recordings must be broken up into chunks of n samples, where n always has
to be an integer power of 2. One would first take the FFT of a block, process
the FFT output array then perform the inverse FFT to get a filtered time-
domain signal back. When the audio is broken up into chunks like this and
processed with the FFT, the filtered result will have discontinuities which
cause a clicking sound in the output at each chunk boundary. For example, if
the recording has a sampling rate of 44,100 Hz, and the blocks have a size n
= 1024, then there will be an audible click every 1024 / (44,100 Hz) = 0.0232
seconds, which is extremely annoying to say the least. [Don Cross, 2001]

3.2 Neural Network

A neural network is basically an attempt to model the workings of the brain
and how it is believed to learn. Although this is the underlying principle neural
nets are implemented in many different ways some of which are not
biologically sound. Neural network concept has been discussed in earlier
chapter. The following are types of neural network being studied.

3.2.1 Multilayer Feedforward Networks

Multilayer networks are often called layered network. They can implement
arbitrary complex input/output mappings or decision surfaces separating
pattern classes.

Each layer of a multilayer network is composed of a linear network. It is based
in the original concept of the linear discriminant function. Multilayered
networks are of the feedforward type and are functionally similar to the
networks such as single-layer continuous perceptron networks and
multicategory single-layer perceptron networks.

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 20

Although multilayer learning machines have exits for more than 25 years, the
lack of appropriate training algorithms has prevented their successful
applications for practical tasks. The most important attribute of a multilayer
feedforward network is that it can learn a mapping of any complexity. The
network learning is based on repeated presentations of the training samples.
[Jarek M., 1992]

3.2.2 Single-Layer Feedback Networks

Single-layer neural networks are inherently feedback-type nonlinear networks.
Neurons with either a hard-limiting activation function or with a continuous
activation function can be used in such systems.

In the case of a discrete-time operation, also called recursive, single-layer
feedback networks can be termed as recurrent. A recurrent network is a
discrete-time dynamical system, which, at any given instant of time, is
characterized by a binary output vector.

Fully coupled single-layered neural networks represent nonlinear feedback
systems. Such systems are known to possess rather complex dynamics.
Fortunately, single-layer feedback networks represent a class of networks
that allows for great reduction of the complexity. As a result, their properties
can be controlled and solutions utilized by neural network designers. This
presents possibilities for solving optimization problems and applying such
networks to modeling of technological and economical system.[Jarek M.,
1992]

3.3 Summary

The basic ideas behind the fast Fourier transform (FFT) used for faster
computation of the DFT samples are explained and several commonly used
FFT algorithms are derived. From the findings, it is very obvious that Fast
Fourier transform is better than fourier transform. Hence, the author is going
to implement the Fast Fourier transform algorithm in the coding of the project.
After comparison of two types of neural networks, the author decided to use
multilayer network with three layers. An input layer with six inputs for the six
harmonics will be used to determine the instrument type. The hidden layer
with four elements and an output layer with two outputs is used to state if the
harmonics are for a guitar or not. The learning algorithm used is backward
error back propagation.

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 21

Chapter 4 DEVELOPMENT TOOLS

4.0 Introduction

4.1 Comparison of C, C++, and Java programming languages

4.2 Microsoft Visual C++ 6.0 (Microsoft Foundation Class)

4.3 Features and Advantages of C++

4.3.1 Object-Oriented Programming (OOP)
4.3.2 Benefits of Object-Oriented Programming
4.3.3 C++ Standard Libraries
4.3.4 Named Constants
4.3.5 Enumerated Constants

4.4 Summary

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 22

CHAPTER 4 – DEVELOPMENT TOOLS

4.0 Introduction

To develop this system, the author must select the most appropriate
programming language that suits him. The author must have sufficient
knowledge and able to create system by using that language. So, before the
author makes his decision, he has selected a few programming language that
might be used. The languages that were most likely to be used are C,
Microsoft Visual C++ (MFC), and Java.

4.1 Comparison of C, C++ and Java programming languages

 (Please refer Table 1 in Appendix D1)

The table shows the comparison of three programming languages (C, C++,
and Java). Those were the comparison the author is able to give to date when
he done the research earlier.

Java cannot directly control hardware; Java programs must declare native
methods and implement such operations in another language. C was not, and
can easily be used to make impenetrable code. C (and hence C++ and Java)
includes a great deal of terse notation, which reduces readability (e.g. the
“for” loop notation, using “&&” instead of “and”, and operators such as “<<”).
Object-oriented features in C++ are likely to improve maintainability (because
they force interfaces to be defined and used). Java's document comments
(//*) and standard documentation conventions aid in readability. Note that
“readability” of a programming language is extremely subjective as well-
structured programs can be read and maintained in any language by
someone who knows the language, and no language can prevent all poor
approaches. At issue in this requirement is how strongly the language
encourages readable and maintainable code.

C++ implicit conversion operations may be activated in situations not easily
recognizable by its users. C/C++ pointer arithmetic and aliasing prohibit some
optimizations. Java's garbage collection raises questions about efficiency and
guaranteed timing, especially in real-time systems. C/C++ pre-processor can
be used to create some (obscure) syntactic forms. A pre-processor (such as
.cpp or m4) can be used with any language, including Java, but neither
includes a pre-processor in their definition. Note that C, C++, and Java
identifiers are case-sensitive. In C, C++, and Java the exponentiation
operator is pow(), not the usual infix operator, and the built-in operation only
takes arguments of type double (not int). C provides an absolute value
function for int but not double. C, C++, and Java don't support fixed-point

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 23

numbers. C++ and Java classes could be used to build fixed-point
functionality. C and C++ permit implicit truncation in integer computations.

C, C++, and Java array indexes may only start at zero and cannot use
enumerations to define array subscripts. In C enumerations may be used to
access array elements. In C++ enumerations can be cast into int's to access
array values, while Java has no enumeration types. C, C++, and Java
specifications do not require all literals to be evaluated at compile time, but
compilers typically do so.

After doing so thorough research and going through many literatures, the
author has made his decision to choose C++ by Microsoft to develop his
system, using Microsoft Foundation Class (MFC Programming).

4.2 Microsoft Visual C++ 6.0 (Microsoft Foundation Class)
 (Adapted from http://www.s-direktnet.de/homepages/neumann/langcomp.en.html)

C++ is a highly structured, object-oriented computer programming language.
It allows programs to be built out of small, easy to understand pieces of code.
It incorporates all the best aspects of structured programming. Besides, C++
also includes concepts such as structures and classes. This is called object-
oriented programming, classes create the objects. An object gathers
information that belongs together, and functions that work on those items of
information. Many of the programmers preferred using object oriented
programming because of it is more structured and thus provide easy
maintainability.

Microsoft introduced Microsoft Foundation Class (MFC) library. The MFC is
an extraordinary package of prewritten, ready-to-use code. Besides, Visual
C++ also introduced many programming tools such as the menu editor for
designing the menus, the dialog editor for designing the dialog boxes, etc.
Files that are needed by a windows program will be organized into projects.
The author will use this software to design and code the interface. By default
the MFC will provide resource file for all the dialog boxes, string tables, icon,
toolbars and other interface which required in a system.

(Please refer to a table of new and updated MFC Classes in Appendix D2).

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 24

4.3 Features and Advantages of C++

4.3.1 Object-Oriented Programming (OOP)

The primary goal of OOP is to make working software objects as easy and
productive as an engineer working with physical components.

C++ fully supports OOP, including the four pillars of OO development, they
are: encapsulation, data hiding, inheritance, and polymorphism.

? Encapsulation means the property of being a self-contained unit. By
using the encapsulation, it will make the class more reliable, self-
reliant, and reusable. Software developer can accomplish data hiding
with encapsulation.

? Data hiding is a highly-valued characteristic that an object can be used

without the user knowing or caring how it works internally. C++
supports the idea of reuse through inheritance.

? A new type, which is an extension of an existing type, can be declared.

This new subclass is said to derive from the existing and is sometimes
called a derived type. By using the inheritance to create families of
classes, it can exploit the advantages offered by polymorphism. “Is a”
relationship is allowed by the inheritance which will make the families
of classes possible.

? C++ supports the idea that different objects do “the right thing” through

what is called function polymorphism and class polymorphism. Poly
means many, and morph means form. Polymorphism refers to the
same name taking many forms.

Data and procedures are attached to an object within the OOP language. For
example, the class data type is used to create objects.

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 25

4.3.2 Benefits and drawbacks of Object-Oriented Programming

There are a lot of benefit can be gained from the object-oriented
programming. The author listed three main benefits below.

(a) Reusability

By applying OOP concept, one can easily create an object for the first
time and later reused it in other class or different program. This will
save a lot of time of redundant work.

(b) Reliability

OOP applications are far more reliable because they incorporate
standard tested components. One can use it without many worries.
Developer just has to write less new codes for each application.
Besides, the standard libraries also provide the routines that are used
extensively.

(c) Continuity

OOP software applications written in C++ are compatible with existing
C programs. As a result, an experienced C programmer just needed to
take a short period of time to learn the object-oriented principles of
C++.

However, there are some drawbacks to OOP, however. If a class is modified,
all code depending on that class must be retested and potentially modified to
support the changes. Also, if documentation is not diligently maintained, it can
be difficult to determine what code uses a parent class (code that is
inherited). If one discovers a bug late in development, it could potentially
affect a large portion of the application.

4.3.3 C++ Standard Libraries

Another feature of the C++ is the standard libraries. The C++ standard
libraries have numerous classes and functions. The author not only need to
know how to use the language syntax to develop C++ program but also need
to know how to incorporate the best features of the libraries into the
programs. By using inheritance, developers can customize and expand
existing libraries for their programs.

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 26

4.3.4 Named Constants

C++ used the const qualifier to define a name constant. The constant may
appear anywhere that a compiler time integer constant expression is required.
Unlike in C programming language, it needed to use the #define. In general,
it’s best to use const rather than #define in C++. This is because the
developer can limit the scope of a const-qualified object. However, the
#define can’t help to limit the scope. Qualifying an object’s declaration with
const is a promise that its value will not be altered during the program’s
execution. The purpose of this is to encourage the compiler to use storage
format, which is more suited to constants.

4.3.5 Enumerated Constants

Enumerated constants are widely used in C++. This is because they provide
straightforward documentation and implicit range checking on constants. If
the programmer consistently uses the constant names, he or she can declare
them without a tag. If the programmer wishes to create an enumerated type,
the programmer needs to declare them with a tag name.

(Please refer to Appendix G3 article for more feature of C++ over C
language).

4.4 Summary

After compared the three languages, the author noticed that C++ is really
powerful language to support this type of multimedia application as it provides
hardware control. Even though Java also support in playing wave file, one
needs to download java sound bank or java media framework in order to
create such system. In recent version of Java (probably jdk1.4.1), it supports
playing more media files than only able to play .au file in earlier time. On the
other hand, one needs not worried that c++ need to download any plugin to
support such application development. C++ can retrieve information from the
soundcard and transform the data from it.

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 27

Chapter 5 STUDY SOFTWARE
 METRICES

5.0 Introduction

5.1 Complexity of the problem and its solutions.

5.2 Some Metrics of solution complexity

5.3 Metrics of Problem Complexity

5.4 Difficulties with complexity software metrics

5.5 Complexity

5.6 Complexity and Computer programs

5.7 Quantitative properties of Holistic Complexity

5.8 Summary

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 28

CHAPTER 5 – Study Software Metrics

5.0 Introduction

The aim of this study is to analyze the several metrics used in software
engineering to assess the complexity of software products. First the author
discuss the differences between the complexity of the problem and the
complexity of the solution (implementation) setting up several metrics that can
be used in measuring both of above aspects. The author defines what the
difference in complexity is between a problem and a solution.

Next the author describes the software development process as a series of
successive transformations. The first model constructed is the requirements
document and the last model is the code, which represents the particular
solution. Then the author analyse the relation between complexity, effort and
efficiency and the author will describe some metrics, which can be used to
measure them. The author notice that conventional software metrics doesn't
reflect the all aspects of problem/solution complexity. It is shown that no
single metric alone could measure all the complexity aspects of the product.

Finally the author describe the metrics used in the complexity fields like
algorithmic complexity, logical complexity, information theory, Shannon
entropy, statistical complexity, grammatical complexity, etc. The author
compares each one with others and shows that the last ones are suitable for
measuring the global aspect of complexity in the software problem/solution.

The author concludes that it is possible to use complexity metrics used in
complex systems in software engineering with some advantages.

5.1 Complexity of the problem and its solutions.

According to the Many Lehman software process definition, [M.Lehman,
1985]
a solution of a problem is an operational model obtained from a set of
transformations applied to the initial model of that problem. So behind each
solution there is a problem.

However the complexity of the problem differs from the complexity of the
solution. Complex solutions may exist for simple problems.

The complexity of a problem is the amount of resources required for an
optimal solution of the problem. On the other hand, the complexity of a
solution is the amount of resources required for that solution of the problem.

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 29

In order to evaluate the complexity of a solution several types of metrics are
frequently used:

? Algorithmic Complexity
It is required to reflect the algorithmic complexity in each solution. There
are two types of metrics in this class: one is the complexity based on the
algorithmic efficiency, the other is the complexity on the structure of the
algorithm. [Fenton N E, 1991]

? Cognitive Complexity
It is required to reflect the amount of effort needed to understand the
problem. In order to assess problem complexity [Wegner P, Israel M
(Eds.), 1995], metrics of Computational Complexity are used.

5.2 Some Metrics of solution complexity

The assessment of effort necessary to implement a product is frequently
measured on the algorithm. It may be calculated based on the Algorithmic
Efficiency. We measure efficiency in terms of the number of primitive
operations required for a given output.

Using the “Big O” notation, the algorithm is considered to have a constant
complexity when it's efficiency is O(I), logarithmic complexity when it’s
efficiency is O(logn), and so on. [Fenton N E, 1991]

The reasoning behind this is that the fewer primitive operations are needed
the less complex is the algorithm. It can also be calculated based on the
structure of an algorithm. There are tree types of Structural Metrics.

? The control flow that addresses the sequence in which instructions are
executed in a program.

? The data flow that follows the trail of data as it is handled by a
program.

? The data structure that evaluate the organization of the data itself.

According to To measure control-flow structure complexity of an algorithm, it
must be transformed into a flowgraph. It has been proved that every flow
graph has a unique decomposition into a hierarchy of primes. [Conte S D,
Dunsmore H F, Shen V Y, 1986], [Fenton N E, 1991], [Pressman, Roger S.,
2001], [Zuse, H., 1991]

The so-called Hierarchical Metrics are constructed based on that tree.
They are:

? The number of nodes
? The number of edges

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 30

? The largest prime measure
? The d-structured measure

One of the best known metrics of this type is the McCabe Cyclomatic
Complexity Measure, it is also calculated on the flow graph and represents
the number of independent pahts needed to reach each node on the graph.

An Essential Complexity metric was also produced by McCabe in order to
measure the overall level of the algorithmic structuredness. A more intuitive
notion of essential complexity may simply be the cyclomatic number of the
largest print in the decomposition tree.

Several other metrics were proposed for this type of measurement. Vinap and
Knot metrics can be studied under the given references. [Bache, R., 1990 and
Woodward, M.R., 1993]

Another approach used to measure structural complexity is to measure the
testing difficulty of the model. Those metrics measure the minimum number of
test cases and the test effectiveness ratio.

In order to the measure the data flow structure complexity we analyzed the
relationship between the models of the program. We worked on the
transformation of the design in a call-graph, which represented the modular
hierarchy and showed the exchange of information between the modules.

Coupling and Cohesion metrics of the modules can also be used as
complexity metrics: designs showing tight coupling and lack of module
cohesion are complex.

We can also use the total level of information flow through a system and the
total level of information flow between individual modules and the rest of the
system. As an example: The information flow complexity that uses the length,
the fan-in and fan-out of the module, whose authors are Henry and Kafura.

Based on this method Shepherd [Shepperd, M.J. and Ince, D., 1993]
developed the Shepherd complexity, which is concentrated solely on the flow
information of a module.

There is a high correlation between this measure and the development time.
The reasoning behind this is that the more complex is a module the longer is
the time required for its development.

Metrics analogous with the algorithmic structure were used to measure data
structure complexity. Thus each data type was considered as a primitive and
the resulting primitive hierarchy was measured for data structure.

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 31

5.3 Metrics of Problem Complexity

To find the optimum solution is the relevant issue in measuring problem
complexity. So we must use compression techniques. We compress data in
order to use less memory in order to stock it and less time for its
manipulation.
The reasoning behind the compression process consists in finding strings of
frequently used characters and substituting them by a shorter code. Problem
complexity is defined as the number of bites that can represent a product
after compression.

5.4 Difficulties with complexity software metrics

In the field of product and software process the existing individual complexity
metrics described in previous sections are not successful. In our opinion the
main reasons are:

? Metrics are language and form dependent: a different metrics has to be
used for different programming languages, different metric for the
machine code, object code, etc. Software can be represented in many
forms: requirements, specification, documentation, user interfaces,
help files, and all that representations can be manifested in very
different appearances: written text, graphical, symbolic, formal
languages, etc. Again many different (incompatible and incomparable)
metrics has to be used to measure all of them. As a consequence we
are not able to measure the software in the holistic manner, compare
various products, trace complexity trough the design steps, etc.

? The output of a traditional complexity metric is a number, usually

without any “physical” meaning and unit.(we don’t know what are we
measuring), without critical values indicating what is large or small – no
fundamental conclusions can be deducted or induced

? The relations metrics? Software is rarely known. Thereafter such

metrics are a poor basis for stating fundamental laws.

So in order to improve the software process we need other types of metrics.

5.5 Complexity

According to Morowitz the complex systems share certain features like having
a large number of elements, possessing high dimensionality and representing
an extended space of possibilities. Such systems are hierarchies consisting of
different level each having its own principles, laws and structures. The most

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 32

powerful approach for studying such systems was reductionism, the attempt
to understand each level in terms of the next lower level. Weakness of the
reductionistic approach is that it is unable to explain how properties at one
level emerge from the next lower level and how to understand the emergence
at all. The problem is not the poverty of prediction, but its richness. The
operations applied to the entities of one level generate so enormous many
possibilities at the next level that it is very difficult to conclude anything. This
demands radical pruning and the main task of a complexity as a discipline is
to find out common features of pruning (or more generally selection)
algorithms across hierarchical levels and diverse subject matters.

Like systems in management science and economics, software development
is a complex, dynamic, non-linear and adaptive, consequently we need to
gain fundamental understanding of the software product and process using
the science of complexity, theory of chaos, fractals and other not yet tried
“physically based” methodologies.

5.6 Complexity and Computer programs

Computer programs, including popular information systems, usually consist of
(or at least they should) number of entities like subroutines, modules,
functions, etc., on different hierarchical levels [Watt D A, 1990] and [Cohen B,
Harwood W T, Jackson M, 1986] Concerning “laws of software engineering”
or the concepts of programming languages the emergent characteristics of
above entities must be very different from the emergent characteristics of the
program as the whole. Indeed, programming techniques as stepwise
refinement, top-down design, bottom up design or more modern object
oriented programming are only meaningful if different hierarchical levels of a
program have distinguishable characteristics.

So there is another more complete way to asses holistic complexity using
Fractal Metrics or Entropy Based Metrics [Harrison W, IEEE Trans. on Software18
(11)1025:1029] and [Samadzadeh-Hadidi, M., May 1987]

5.7 Quantitative properties of Holistic Complexity

Great many quantities have been proposed as metrics of complexity. Gell-
Mann suggests there have to be many different metrics to capture all our
intuitive ideas about what is meant by complexity. Some of the quantities are
computational complexity, information content, algorithmic information
content, the length of a concise description of a set of the entity’s regularities,
logical depth, etc., (in contemplating various phenomena we frequently have
to distinguish between effective complexity and logical depth. For example
some very complex behavior patterns can be generated from very simple
formula like Mandelbrot’s fractal set, energy levels of atomic nuclei, the
unified quantum theory, etc. That means that they have little effective

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 33

complexity and great logical depth). [Pines D (Ed.), 1988], [Morowitz H, 1995]
and [Gell-Mann M, 1995]

A more concrete measure of complexity, based on the generalization of the
entropy, is correlation, which can be relatively easy to calculate for a special
kind of systems, namely the systems which can be represented as strings of
symbols.

5.8 Summary

The author noticed that it is possible to use holistic complexity metrics in
software engineering with following advantages:

1. To have a holistic view of the product that enables us to control the process
more efficiently.

2. To compare several solutions in terms of complexity and information
content and find the most optimal one (to have as more as possible
information with as less as possible complexity).

3. To have more accuracy because in this metrics all the levels of the
solutions are taken into account, then we can make better estimation about
the development cost time and faults.

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 34

Chapter 6 DESIGN PHASE

6.1 Requirements Specification

6.1.1 Functional Requirements
6.1.2 Non-functional Requirements

6.2 Use CASE

6.3 System Flow chart

6.4 Environmental Model

6.4.1 Event List
6.4.2 Context Diagram

6.5 Behavioral Model

6.5.1 Data Flow Diagram
6.5.2 Data Dictionary

6.6 Prototype Design

6.6.1 User Interface Prototyping
6.6.2 Usability of a User Interface
6.6.3 System Component Design
6.6.4 Output Design

6.7 FFT Algorithm Design

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 35

CHAPTER 6 – SYSTEM DESIGN

6.1 Requirements Specification

The specification for the ‘Development of Guitar Note Recognizer using
Digital Signal Processing’ contains functional and non-functional
requirements.

6.1.1 Functional Requirements

The program will take the data it needs from a wav file. This file will be read in
by the program and the necessary data will be passed on for the next stage of
processing. The data from the wav file will analyzed for the frequency
components that are contained in it. This will be done by a digital signal
processing technique known as fast fourier transform (FFT). The sampled
data which is read in from the file represents data in sound wave formation.
Digital signal processing allows for the analysis of waves not just sound but
any data which can be represented in wave formation. FFT converts the wave
from one plotted in terms of time to one plotted in terms of frequency. A
sound wave can be made up of many different sine waves all added together.
FFT tells us how much of each wave is contained in the total. As well as the
fundamental frequency of each note being given the various harmonics are
also shown. It is the amplitudes of the harmonics which determine the type of
instrument being played. Problems may occur where fundamental
frequencies of on note overlap with the harmonics of others.

However because you will probably be dealing with several different
instruments being played at once it is necessary to be able to determine
which one is the guitar. This part of the process will be done with neural
networks. An artifcial neural network (ANN) is a system which attempts to
simulate the neural activity of the brain. An ANN consists of a number of
interconnected processing elements (PEs) or neurons. How the inter-neuron
connections are arranged and the nature of the connections determines the
structure of a network. How the strengths of the connections are adjusted or
trained to achieve a desired overall behaviour of the network is governed by
its learning algorithm. Neural nets can be classified according to their
structures and learning algorithms. A multilayered preceptron will probably be
used or the identification process with three layers input, hidden and output.

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 36

The following specifications must be agreed upon by all devices in the audio
processing chain before processing can begin:

? Sample word size
? Sample rate
? Number of channels

In this project, the author going to perform all processing on samples that are
16-bit signed integers (shorts). Therefore, the range of valid sample values is
from -32768 to +32767. Sample rate vary from 11025 samples per second to
44100 samples per second. The number of channels that make up a sample
stream is either one for a mono signal or two for a stereo signal.

6.1.2 Non-functional Requirements

This system must be completed before Week 13th of the semester, August
2002. This system needs to provide user-friendly interface to help music
specialist or non-music background people both to manage the system.

6.2 Use CASE

Use Case Diagrams graphically depict the interactions between the system
and external systems and users. In other words, they graphically describe
who will use the system and in what ways the user expects to interact with the
system.

Use case modelling is the process of modelling a system’s functions in
terms of business events, which initiated the events, and how the system
responds to the events. Use Case Modelling identifies and describes the
system functions from the perspective of external users using a tool called
use cases.

A use case is a behaviourally related sequence of steps (a scenario), both
automated and manual, for the purpose of completing a single business task.
Use cases are the results of decomposing the scope of system functionality
into many smaller statements of functionality. The author claims that the
creation of use cases has proven to be an excellent technique in order to
better understand and document system requirements. A use case itself is
not considered a functional requirement, but the scenario the use case tells
captures the essence of one or more requirements. Use case are initiated or
triggered by external users or systems called actors.

An actor represents anything that needs to interact with the system to
exchange information. An actor is a user, a role, which could be an external
system as well as a person. An actor initiates system activity, a use case, for

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 37

the purpose of completing some task. An actor represents a role fulfilled by a
user interacting with the system and is not meant to portray a single individual
or job title (Jeffrey L. Whitten, Lonnie D. Bentley, Kevin C. Dittman, 2001).

Diagram 6.1 Use Case Diagram

6.3 System Flow chart

System flow chart is basically a diagram that shows the flow of the program
from one screen interface to another or from one function to another.

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 38

Diagram 6.2 System Flow Chart

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 39

6.4 Environmental Model

Environmental model defines the interaction between the system and the
world, and the scope of the system. It should be incorporated, ensuring that
all relevant information about the environment is captured. There are four
components of environmental model:

1. Statement of purpose – Short and simple statements about what the
 system is supposed to do.
2. Context diagram – A type of data flow diagram that represents the system
 by a single node and connected to external actors by events. This diagram
 is used to identify the system boundaries.
3. Event lists – A list of actions that occur in the outside world and the
 system must respond to all of the possible actions.
4. Use Cases – The main purpose is to identify the system boundaries and
 the messages that a system has to respond to. It gives an atomic action
 from an outside point of view.

6.4.1 Event List

Menu Event

The menu bar at the top of the window provides access to the commands
available on screen. Related commands are grouped under the same menu.
To select a menu, click the menu name required. For example, ‘File’. It
displays a drop-down list containing commands available from the selected
menu. To select an option from the menu, click the menu option you require.
For example, ‘Save As’. User may also access some of the commands from
the toolbar.

File: A list of file menu items pops up.
Open: Open File Dialog pops up.
Close:
 Close current wave file displayed on screen.

Save: Save the current named wave file in a certain directory. Saved as ‘all
file’ type.

Exit: Stop and Exit from musical editor program.

View: A list of view menu items pops up.
Status bar Activate or deactivate status bar at bottom of screen
Channel
Separate Activate or deactivate separation of wave channels

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 40

Help: A list of help menu items pops up.
About: Display about information of the Guitar Note Recognizer program.

Toolbar Event
The buttons available from the toolbar provide quick access to the most
commonly used commands as shown below.

Back Button: The cursor is moved to the beginning of the wave file.
Pause Button: Temporary stop the wave file which is being played
Play Button: Play the current wave file.
Stop Button: Stop playing the current wave file.

Shortcut Key Event

Ctrl-O: Open File Dialog pops up.
Ctrl-C: Close current wave file displayed on screen.

Ctrl-S: Save the current non-named wave file in a certain directory. Saved as
‘all file’ type.

Alt-F4 Windows default shortcut key, to close the application.

6.4.2 Context Diagram

A context Diagram is a data flow diagram that shows the boundaries or scope of
the particular system. The context diagram is a top-level view of the information
system.

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 41

Diagram 6.3 Context Diagram of System

Control
Panel

User
command
s

Guitar Note
Recognizer

Display
notes
info

Guitar Notes
Display

Wave Sound
Output

Display
notes
info

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 42

6.5 Behavioral Model

Behavioral model define the required internal behavior of the system in order
to react with the environment. Behavioral Model consists of data dictionary,
data flow diagrams, entity relationship diagrams, and state transition
diagrams.

? Data Dictionary – It is a repository that lists all the data in alphabetical
order. The meanings and compositions of all the data are described in a
rigorous and precise manner. The content of the data dictionary includes
name, alias, use, content description and additional information. There are
also specialized notation that is used to express things such as relationship,
optional, comments, either/or, etc.

? Data flow diagram – It provides a function-oriented view of how the
processes interact with each other. The components of DFD are process
(transform input data to output data), data flow (movement of data), data
storage (represents data at rest), and terminator (external entities).

? State transition diagram – The diagram describes the states of an object in
time and it is consist of events, actions and states. The diagram should cover
all the possible states that were caused externally.

? Entity relationship diagram – ERD is an object-oriented approach. This
data model is highly conceptual and implementation independent. This
diagram identifies objects types, classes, relationships, and labeling of
relationships in the system.

6.5.1 Data Flow Diagram

As graphical aids, DFD shows how data moves through an information
system. DFD represents a logical model that shows what the system does,
not how it does. Data Flow Diagram does not show program logic or
processing steps. Two popular versions of DFD are usually used, Gane and
Sarson and Yourdon. Data Flow Diagram of Music editor program is draw by
Yourdon in this document.

There are four basic components in Data Flow Diagram.

? Process: A process receives input data and produces output that has a

different content or form or both. The Yourdon symbol for a process is a
circle. The process name can be used to identify the function it performs,
consists of a verb followed by a singular noun.

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 43

? Data Flow: A data flow is a path for data to move from one part of the
information system to another. A data flow in a DFD represents one or
more pieces of data. The symbol for a data flow is a line with an
arrowhead that shows the direction in which the data flows. The data flow
name which should identify the data it represents, is placed above, below,
or alongside the line. A data flow name consists of a singular noun and an
adjective, if needed.

? Data Store: A data store is used in a data flow diagram to represent a

situation when the system must retain data because one or more
processes need to use the stored data at a later time. The symbol for a
data store is a flat rectangle that is open on the right side and closed on
the left side. A data store must be connected to a process with a data flow.
In each case, the data store has at least one incoming and one outgoing
data flow and is connected to a process symbol with a data flow.
Violations of the rule that a data store must have at least one incoming
and one outgoing data flow.

? External Entity: An external entity is a person, department, outside

organization, or other information system that provides data to the system
or receives output from the system. The symbol for an external entity is
placed inside the square. External entities show the boundaries of the
information system and how the information system interacts with the
outside world. An external entity must be connected to a process by a
data flow.

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 44

Diagram 6.4 Data Flow Diagram of the System

4

Generate
Guitar
Notes
Info

 Guitar Notes Info (file)

5

Soundcard

Device

6

Play
Wave

Wave Sound
Output

Notes details

Users command

Notes details

Graphics info wave info

Wave

sound

Data of notes info

Data of notes

Info

Control
Panel

1

Interact
With

Users

Wave
Form

Display

Collection of graphic notes

3

Display
Wave
Form

2

Generate
Graphic
Musical

Notes

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 45

6.5.2 Data Dictionary

A set of data flow diagrams produces a logical model of the system, but all
details within these DFDs must be documented carefully. The DFD details are
stored and organized in the data dictionary. A data dictionary is a central
storehouse of information about the system’s data. A data dictionary is used
to collect, document, and organize specific facts about the system, including
the contents of data flows, data stores, external entities, and processes. The
data dictionary also defines and describes all data elements and meaningful
combinations of data elements.

A data element is the smallest piece of data that has meaning within an
information system. Data elements are combined into records or data
structures. A record is a meaningful combination of related data elements that
is included in a data flow or retained in a data store.

6.6 Prototype Design

Graphical User Interfaces (GUIs) were born in this high-tech era in response
to users' demands for computers to be easy to use and understand. Graphical
User Interface (GUI) is used for most of the screen designs. A GUI uses
graphics, such as windows, menus, and boxes, to allow users to
communicate with the system. Those in the Windows series are currently the
most widely known and used GUI applications. The menu are very similar in
different application program if using GUI programs so that users can be able
to manage to operate system easier. Compared with traditional DOS and
UNIX systems, GUI applications have been better received by the public for
their visibility, ease of use, intuitable operation, and so on. The user interface
is typically employed for two purposes: displaying information and acquiring
information. By clicking on one or more command buttons, the user interacts
with a set of similar codes for a specific user interface, which allows the user
to control program flow in an event-driven manner. However, the most
significant advantage of a GUI is the ease of learning the system, but this
advantage will be lost if users must work with inconsistent GUIs. And all
application system within a particular company should have a similar look and
feel.

The user actions are all considered as events and usually result in particular
program codes in the user interface being executed. How program execution
operates is therefore determined by the sequence of user actions. A user
interface can vary in style types; single document interface and multiple
document interfaces are most common, and single document interface being
even more popular.

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 46

A user interface can be devised using programming languages such as Visual
C++ and Visual Basic. Microsoft's Visual C++ provides a programming
environment that is more than just point-and-click like Visual Basic. Visual
C++ involves the modification and extension of the Microsoft Foundation
Classes (MFC), a common application framework and a class library that is
not related to the development environment.

6.6.1 User Interface Prototyping

A prototype is an early working version of the information system that can be
used to discuss and evaluate one or more aspects of the product. It is a
rapidly constructed working version of the proposed information system that is
used to verify user requirements. The prototype can serve as a model of user
requirements or as the initial version of an information system. Either way,
prototyping can speed up the SDLC process significantly. It is to ensure that
system will satisfy user needs. To avoid problem, the analyst seeks the input
and feedback from users at every stage of the development process.
Sometimes users have difficulty in evaluating the system requirements
document because it is only a paper model of the system. Prototype is used
to help user to understand it better. The prototype process is often used in the
engineering field, where a less expensive working model is created to solve
problems before the final version is produced.

User Interface prototypes simulate the look and behavior of a potential
product. They can range in image version of a proposed interface through to
functional versions of the final application. The biggest advantages of UI
prototyping are that:

? Quickly discover what not to put in the product
? Have something truth to discuss
? Communicate with the vision of what the product is (and is not) to

marketing, development and management
? Use prototypes as a catalyst to discover some new ideas
? Save lots of time and money

6.6.2 Usability of a User Interface

There are four usability of a user interface:
1. Achieve the completion of developing this system before deadline.
2. Fulfill user requirements and interact with system successfully.
3. Try to make system error free.
4. Easy to understand and convenient to use.

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 47

6.6.3 System Component Design

Diagram 6.5 System Component Design

Guitar Note Recognizer

Wave Form

Joined
Channel

Soundcard Device

Menu

File

View

Help

Short out
icons

Graphical Display

Control Panel

Musical Output

Splitted
Channel

Notes Text File

User Command

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 48

6.6.4 Output Design

Outputs are the most visible component of a working information system and
the justification for the system. During system analysis, output needs and
requirements were defined, but those output designs were not complete.
A system is aimed to provide users with the information they need to perform
their jobs. Output design is to design the physical layout for each systems
output and define the physical characteristics and handling of the output.
Output design can be used to help system to carry out functions correctly.
What user will see must be a finalized system so they will measure how the
system works from the system output only.
In Guitar Note Recognizer, there are only two types of output: screen output
and sound output.

6.6.4.1Screen Output

The author is using Microsoft Visual C++ as the programming language.
Hence, by using MFC standard application format, SDI (Single Document
Interface) is used.

The screen will split into two rectangular window, where top rectangular will
display wave form and bottom rectangular will generate the notes being
recognized. Furthermore, there will be a toolbar which provide open, close,
save, note generator icon, about me icon, back, pause, play and stop
function.

Music Note Output Type: (at bottom rectangular)
Numbers are written on the lines to show you where to fret the string with the
left hand. If a zero appears , this means play the open string. Like standard
musical notation, you read from left to right to find out what order to play the
notes. The following piece of TAB would mean play the sequence of notes (E
F F# G G# A) on the bottom E string by moving up a fret at a time, starting
with the open string.

E--
B--
G--
D--
A--
E---0--1--2--3--4--5---

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 49

6.6.4.2 Sound Output

The wave file being played will show in the top rectangular which uses
polyline to draw it.

6.7 FFT Algorithm Design

The standard strategy to speed up an algorithm is to divide and conquer. See
the equation below:

V[k] = �n=0..N-1 WN
kn v[n]

Let's separate odd ns from even ns (Assume that N is even):

V[k] = �n even WN
kn v[n] + �n odd WN

kn v[n]
= �r=0..N/2-1 WN

k(2r) v[2r] + �r=0..N/2-1 WN
k(2r+1) v[2r+1]

= �r=0..N/2-1 WN
k(2r) v[2r] + �r=0..N/2-1 WN

k(2r) WN
k v[2r+1]

= �r=0..N/2-1 WN
k(2r) v[2r] + WN

k �r=0..N/2-1 WN
k(2r) v[2r+1]

= (�r=0..N/2-1 WN/2
kr v[2r])

+ WN
k (�r=0..N/2-1 WN/2

kr v[2r+1])

As we know that (WN
k(2r) = e-2�i*2kr/N = e-2�i*kr/(N/2) = WN/2

kr)

Notice an interesting thing: the two sums are nothing else but N/2-point
Fourier transforms of, respectively, the even subset and the odd subset of
samples. Terms with k greater or equal N/2 can be reduced using another
identity:

 WN/2
m+N/2 = WN/2

mWN/2
N/2 = WN/2

m

which is true because Wm
m = e-2�i = cos(-2�) + i sin(-2�)= 1.

If start with N that is a power of 2, we can apply this subdivision recursively
until we get down to 2-point transforms.

We can also go backwards, starting with the 2-point transform:

 V[k] = W2
0*k v[0] + W2

1*k v[1], k=0,1

The two components are:

V[0] = W2
0 v[0] + W2

0 v[1] = v[0] + W2
0 v[1]

V[1] = W2
0 v[0] + W2

1 v[1] = v[0] + W2
1 v[1]

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 50

We can represent the two equations for the components of the 2-point
transform graphically using the, so called, butterfly

Figure 6.1 Butterfly calculation

Furthermore, using the divide and conquer strategy, a 4-point transform can
be reduced to two 2-point transforms: one for even elements, one for odd
elements. The odd one will be multiplied by W4

k. Diagrammatically, this can
be represented as two levels of butterflies. Notice that using the identity WN/2

n
= WN

2n, we can always express all the multipliers as powers of the same WN
(in this case we choose N=4).

Figure 6.2 Diagrammatical representation of the 4-point Fourier transform
calculation

Take N=8. What will become obvious is that all the butterflies have similar
form:

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 51

Figure 6.3 Generic butterfly graph

This graph can be further simplified using this identity:

 WN
s+N/2 = WN

s WN
N/2 = -WN

s

which is true because WN
N/2 = e-2�i(N/2)/N = e-�i = cos(-�) + isin(-�) = -1

Here's the simplified butterfly:

Figure 6.4 Simplified generic butterfly

Using this result, we can now simplify our 4-point diagram.

Figure 6.5 4-point FFT calculation

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 52

Figure 6.5 is the essence of the FFT algorithm. The main trick is that we don't
calculate each component of the Fourier transform separately. That would
involve unnecessary repetition of a substantial number of calculations.
Instead, you do your calculations in stages. At each stage we start with N (in
general complex) numbers and "butterfly" them to obtain a new set of N
complex numbers. Those numbers, in turn, become the input for the next
stage. The calculation of a 4-point FFT involves two stages. The input of the
first stage are the 4 original samples. The output of the second stage are the
4 components of the Fourier transform. Notice that each stage involves N/2
complex multiplications (or N real multiplications), N/2 sign inversions
(multiplication by -1), and N complex additions. So each stage can be done in
O(N) time. The number of stages is log2N (which, since N is a power of 2, is
the exponent m in N = 2m). Altogether, the FFT requires on the order of O(N
logN) calculations.

Moreover, the calculations can be done in-place, using a single buffer of N
complex numbers. The trick is to initialize this buffer with appropriately
scrambled samples. For N=4, the order of samples is v[0], v[2], v[1], v[3]. In
general, according to our basic identity, we first divide the samples into two
groups, even ones and odd ones. Applying this division recursively, we split
these groups of samples into two groups each by selecting every other
sample. For instance, the group (0, 2, 4, 6, 8, 10, ... 2N-2) will be split into (0,
4, 8, ...) and (2, 6, 10, ...), and so on. If we write these numbers in binary
notation, we'll see that the first split (odd/even) is done according to the
lowest bit; the second split is done according to the second lowest bit, and so
on. So if we start with the sequence of, say, 8 consecutive binary numbers:

000, 001, 010, 011, 100, 101, 110, 111

we will first scramble them like this:

[even] (000, 010, 100, 110), [odd] (001, 011, 101, 111)

then we'll scramble the groups:

((000, 100), (010, 110)), (001, 101), (011, 111))

which gives the result:

000, 100, 010, 110, 001, 101, 011, 111

This is equivalent to sorting the numbers in bit-reversed order. If we reverse
bits in each number (for instance, 110 becomes 011, and so on), we'll get a
set of consecutive numbers.

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 53

So this is how the FFT algorithm works (more precisely, this is the
decimation-in-time in-place FFT algorithm).

1. Select N that is a power of two. We'll be calculating an N-point FFT.

2. Gather the samples into a buffer of size N

3. Sort the samples in bit-reversed order and put them in a complex N-
point buffer (set the imaginary parts to zero)

4. Apply the first stage butterfly using adjacent pairs of numbers in the
buffer

5. Apply the second stage butterfly using pairs that are separated by 2

6. Apply the third stage butterfly using pairs that are separated by 4

7. Continue butterflying the numbers in the buffer until we get to
separation of N/2

8. The buffer will contain the Fourier transform

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 54

Chapter 7 SYSTEM DEVELOPMENT

7.1 Development Phase of the Project

7.1.1 Copy wave data into buffer
7.1.2 Draw wave form
7.1.3 Get Data from microphone

7.2 Implementation of FFT algorithm

7.3 Summary

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 55

CHAPTER 7 – SYSTEM DEVELOPMENT

7.1 Development Phase of the Project

The author starts the coding phase at the analyzing wave data part. The
application that will be developed is a note recognition system. The most
important part of this technology is the recognition. The recognition will be
implemented using FFT algorithm.

7.1.1 Copy wave data into buffer

When the wave data is in, we create an iterator&emdash;sort of like a tape
deck loaded with the "tape" of samples. After the iterator is created we
immediately notify the recorder that we are done with the buffer. We then
copy the data into the FFT transformer, transform it and update the two views.

void NoteGenerator::LokWaveInData()
{
 //An iterator class used to access the Listener data
 SampleIter iter (_pListener.GetAccess());
 // Quickly release the buffer
 if (!_pListener->BufferDone ())
 return;

 //Copy the data into the FFT buffer and perform transform on it
 _pFftTransformer->CopyIn (iter);
 _pFftTransformer->Transform();

 //Update the spectrograph
 char ret[3];

 _specView->Update (_pFftTransformer.GetAccess(), ret);
}

7.1.2 Draw Wave Form

Here's what the AuNewView does with the new data. It get the sample rate,
total bytes and number of channels from the wave file then draw the polyline
accordingly.

void CAuNewView::OnDraw(CDC* pDC)
{
 //Get the total samples
 double total_samples=GetDocument()-total_bytes/GetDocument()-
 >SampleBytes/GetDocument()->channels;

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 56

 //For 2 bytes per sample wave forms
 short *the_buffer_16;
 the_buffer_16 = (short *)GetDocument()->pcm_data;

 //For 1 byte per sample wave forms
 unsigned char *the_buffer_8;
 the_buffer_8 = (unsigned char *)GetDocument()->pcm_data;

 //Depending on the number of bytes per sample draw the waveform
 if (GetDocument()->channels == 1){
 if(GetDocument()->SampleBytes == 2){
 for (double x = scroll_start ; x < scroll_end ; x++)
 {
 //Select a different pen and draw the waveform
 //scaling the value to fit in the view
 pDC->SelectObject(light_blue);
 index = ((double)total_samples *
x)/(double)total_scroll_size;
 nexty = the_buffer_16[(long)index] *
box.Height()/DIV16;
 pDC->LineTo((int)x, nexty + box.Height()/2);
 }
 }else{
 for (double x=scroll_start;x<scroll_end;x++)
 {
 //Select a different pen and draw the waveform
 //scaling the value to fit in the view
 pDC->SelectObject(light_blue);
 index=((double)total_samples*x)
 /(double)total_scroll_size;
 nexty=(the_buffer_8[(long)index]-
 128)*box.Height()/DIV8;
 pDC->LineTo((int)x,nexty+box.Height()/2);
 }
 }

7.1.3 Get Data From Microphone

To start the recorder, the author first initialize the data structure WaveFormat
that contains the parameters of our recording: number of channels, number of
samples per second (sampling frequency) and number of bits per sample. he
then check if the format is supported by the sound input device 0, the
microphone. If one wants to use some other input device, CD drive, line-in,
etc., he should change this number. Next, he opens device 0 to record data in
a given format. Then pass it the event that is to be used for asynchronous
communication. That's the event the multimedia subsystem will trigger

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 57

whenever a new buffer full of data is ready. And that's the event our captive
thread is waiting on inside the Run method.

The author initialize WaveHeaders one by one by attaching data buffers and
calling the device to prepare them (whatever that means). He sends all but
one buffer to the device, so that it can make use of them to store a continuous
stream of samples. Let’s leave the last buffer unprepared, so that it's ready for
recycling when the first buffer arrives with data. Finally, the device starts
recording.

BOOL Listener::Start (Event& event)
{
 WaveFormat format (
 _nChannels,
 _cSamplePerSec,
 _bitsPerSample);

 _waveInDevice.Open (WAVE_MAPPER, format, event);

 if (!_waveInDevice.Ok())
 {
 char buf[164];
 if (_waveInDevice.isInUse())
 strcpy (buf, "Another application is recording audio. Stop recording
with this other application and then try again.");
 else
 _waveInDevice.GetErrorText (buf, sizeof (buf));
 MessageBox (0, buf, "Listener", MB_OK);
 return FALSE;
 }

 // Don't initialize the last buffer
 // It will be initialized in the
 // first call to BufferDone
 for (int i = 0; i < NUM_BUF - 1; i++)
 {
 _header[i].lpData = &_pBuf [i * _cbBuf];
 _header[i].dwBufferLength = _cbBuf;
 _header[i].dwFlags = 0;
 _header[i].dwLoops = 0;

 _waveInDevice.Prepare (&_header[i]);

 _waveInDevice.SendBuffer (&_header [i]);
 }
 _isStarted = TRUE;

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 58

 _iBuf = 0;
 _waveInDevice.Start();
 return TRUE;
}

7.2 Implementation of FFT Algorithm
The author start by initializing some data structures and pre-computing some
constants in the constructor of the FFT object. After doing FFT, the author
match the frequency got from the FFT class with the FreValue that contains
twelve frequencies value then output the notes accordingly.

// Use complex numbers from Standard Library
#include <complex>
typedef std::complex<double> Complex;

// Points must be a power of 2
Fft::Fft (int Points, long sampleRate)
 : _Points (Points), _sampleRate (sampleRate)
{
 _sqrtPoints = sqrt((double)_Points);
 // calculate binary log
 _logPoints = 0;
 Points--;
 while (Points != 0)
 {
 Points >>= 1;
 _logPoints++;
 }

// This is where the original samples will be stored
 _aTape = new double [_Points];
 for (int i = 0; i < _Points; i++)
 _aTape[i] = 0;

 // This is the in-place FFT buffer
 _X = new Complex [_Points];

 // Precompute complex exponentials for each stage
 _W = new Complex * [_logPoints+1];
 int _2_l = 2;
 for (int l = 1; l <= _logPoints; l++)
 {
 _W[l] = new Complex [_Points];

 for (int i = 0; i < _Points; i++)
 {

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 59

 double re = cos (2. * PI * i / _2_l);
 double im = -sin (2. * PI * i / _2_l);
 _W[l][i] = Complex (re, im);
 }
 _2_l *= 2;
 }

 // prepare bit-reversed mapping
 _aBitRev = new int [_Points];
 int rev = 0;
 int halfPoints = _Points/2;
 for (i = 0; i < _Points - 1; i++)
 {
 _aBitRev[i] = rev;
 int mask = halfPoints;
 // add 1 backwards
 while (rev >= mask)
 {
 rev -= mask; // turn off this bit
 mask >>= 1;
 }
 rev += mask;
 }
 _aBitRev [_Points-1] = _Points-1;
}

The FFT buffer is filled with samples from the "tape" in bit-reversed order
 for (i = 0; i < _Points; i++)
 PutAt (i, _aTape[i]);

The bit reversal is done inside PutAt, which also converts real samples into
complex numbers (with the imaginary part set to zero):
void Fft::PutAt (int i, double val)
{
 _X [_aBitRev[i]] = Complex (val);
}

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 60

The calculation of the FFT is relatively simple
void Fft::Transform ()
{
 // step = 2 ^ (level-1)
 // increm = 2 ^ level;
 int step = 1;
 for (int level = 1; level <= _logPoints; level++)
 {
 int increm = step * 2;
 for (int j = 0; j < step; j++)
 {
 // U = exp (- 2 PI j / 2 ^ level)
 Complex U = _W [level][j];
 for (int i = j; i < _Points; i += increm)
 {
 // in-place butterfly
 // Xnew[i] = X[i] + U * X[i+step]
 // Xnew[i+step] = X[i] - U * X[i+step]
 Complex T = U;
 T *= _X [i+step];
 _X [i+step] = _X[i];
 _X [i+step] -= T;
 _X [i] += T;
 }
 }
 step *= 2;
 }
}
The variable step is the "spread" of the butterfly--distance between the two
inputs of the butterfly. It starts with 1 and doubles at every level.

At each level we have to calculate step bunches of butterflies, each bunch
consisting of butterflies separated by the distance of increm (increm is twice
the step). The calculation is organized into bunches, because each bunch
shares the same multiplier W.

7.3 Summary

Basically, after coding those crucial parts of the system, the author proceeds
on to the other parts/modules of the project such as canvas object and device
context. While the author develops the system, he encountered various
problems especially in the recognition section. Some of the problems have
been solved at this point and is discussed in the System Testing chapter.
(The full source code is available in the CD.)

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 61

Chapter 8 IMPLEMENTATION OF
 SOFTWARE METRICES

8.0 Introduction

8.1 Applying Software Metrics

8.2 Applying Big-O notation

8.3 Summary

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 62

8.0 Introduction

After studying software metrics, the author decided to use function-oriented
metrics and Big-O notation to prove the correctness and order complexity of
the system developed.

8.1 Applying Software Metrics

Using the function-oriented metrics, the author is going to implement it to
measure his system. The equation:

FP = count total ? [0.65 + 0.01 ? �(Fi)]

where count total is the sum of all FP entries obtained from (Figure 8.1). Fi (i
= 1 to 14) are the complexity adjustment values based on responses to a set
of questions prepared. Answers to the questions are rated on a scale of 0 (not
applicable) to 5 (absolutely essential).

No. Questions Result
1. Does the system require reliable backup and recovery? 3
2. Are data communications required? 0
3. Are there distributed processing functions? 0
4. Is performance critical? 5
5. Will the system run in an existing, heavily utilized

operational environment?
4

6. Does the system require on-line data entry? 0
7. Does the on-line data entry require the input transaction

to be built over multiple screens or operations?
0

8. Are the master files updated on-line? 0
9. Are the inputs, outputs, files, or inquiries complex? 5

10. Is the internal processing complex? 5
11. Is the code designed to be reusable? 5
12. Are conversion and installation included in the design? 5
13. Is the system designed for multiple installations in

different organizations?
0

14. Is the application designed to facilitate change and ease
of use by the user?

5

Total [�(Fi)] 37

Source: Pressman, R.S., (2001). Software Engineering: A Practitioner's
Approach, 5th Edition, McGraw-Hill, New York, p. 91.

The values of the Fi (complexity adjustment values) are entered by the
author himself as he evaluates his own system. Hence the �(Fi) is 37. He

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 63

also assumes that his system should be based on the average weighting
factor as his system is quite complex rather than just a simple application.

 Weighting Factor
Measurement Parameter Count Simple Average Complex
Number of user inputs 7 ? 3 4 6 = 28
Number of user outputs 4 ? 4 5 7 = 20
Number of user inquiries 2 ? 3 4 6 = 8
Number of files 1 ? 7 10 15 = 10
Number of external interfaces 1 ? 5 7 10 = 7
Count Total 73

User inputs – wave data, activate/deactivate note generator, note generator
button, play button, pause button, back button, stop button.

User outputs – wave form, note generated, messages, status bar

User Inquires – wave information inquiry and about author inquiry

Files – guitar notes info (refer to context diagram 6.4)

External interfaces – view separated channels in upper rectangular

Metrics calculation:

Using, FP = count total ? [0.65 + 0.01 ? �(Fi)]
So, FP = 73 ? [0.65 + 0.01 ? 37]
 FP = 74.46

Hence, the function point, FP is 74.46

8.2 Applying Big-O Notation

Order Complexity for multiplying polynomials (DFT)
Line Number of operations required
1 for (int l = 1; l <= _logPoints; l++) N + 1
2 {_W[l] = new Complex [_Points]; (N) * 1
3 for (int i = 0; i < _Points; i++) (N – 1 +1) * (N)
4 {double re = cos (2. * PI * i / _2_l); (N – 1) * N * 1
5 double im = -sin (2. * PI * i / _2_l); (N – 1) * N * 1
6 _W[l][i] = Complex (re, im);} (N – 1) * N * 1
7 _2_l *= 2;} N
 Total 4n2 + 1 = O(n2)

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 64

These points which we are going to choose are going to be the n nth roots of
unity. This is what is Discrete Fourier Transform(DFT).

Now, A(x)=a_0 + a_1(x) + a_2(x^2) ++a_(n-1)(x^(n-1)).

This can be split-up into two polynomials: the first one containing the first n/2
terms and the second one containing the second n/2 terms.

So we take A_0(x) = a_0 + a_1(x) + a_2(x^2)+......+ a_(n/2-1)(x^(n/2-1))

and A_1(x) = a_(n/2) + a_(n/2+1)(x) + a_(n/2+2)(x^2)+......+a_(n-1)(x^(n/2-1)).
Hence, we can write A(x) as

 A(x)=A_0(x) + x^(n/2)A_1(x)-----------> (1).

Now, on substituting w in place of x , we see that x^(n/2) in the equation (1)
becomes

 (x^(n/2)) = (w^(n/2)) = +1,-1 ie the two roots of unity.

We can deciminate the samples into two samples of even and odd terms.
The whole n-point DFT has now become two n/2-point DFTs.

These two n/2 point DFTs can further be divided into two n/4 point DFTs and
so
on. Hence, the complexity of the resultant algorithm is O(nlogn).

The recrursive algorithm can be given as:
 Recursive_FFT(a){
 n <- length(a)
 if(n=1) return a

 w <- e^(2*pi*i/n)
 a[0] <- (a_0,a_1,......,a_(n/2-1))
 a[1] <- (a_n/2,a_(n/2 + 1),........,a_(n-1))

 y[0] <- Recursive_FFT(a[o])
 y[1] <- Recursive_FFT(a[1])

 for k <- 0 to n/2 -1
 do begin
 y_2k <- y_k[0] + y_k[1]
 y_2k+1 <- y_k[0] - y_k[1]
 end
 return y
 }

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 65

The recurrent equation is: T(n) = 2T(n/2) + O(n), if we take O(n) for each
recursive call.
 Hence,T(n) = O(nlogn).

Once we get the point-value form, we can perform multiplication in O(n) time.

The conversion of point-value to co-efficient form can be done similarly in
O(nlogn). This is called interpolation. The whole process of multiplication thus
takes O(nlogn).

Fast-Fourier Transform (FFT), which is a method for multiplying two
polynomials together. The ordinary method for multiplying polynomials is
O(n2). FFT involves transforming the polynomials into an intermediate format.
This takes O(n lg n). Pointwise multiplication on this intermediate format is
done, which takes O(n) time. Lastly, the resulting pointvalue intermediate
format is transformed back into a polynomial representation, which takes O(n
lg n) time. Putting this altogether, O(n lg n) + O(n) + O(n lg n) = O(n lg n)
which is much better than O(n2).

8.3 Summary

Software metrics provide a quantitative way to assess the quality of internal
product attributes, thereby enabling the software engineer to assess quality
before the product is built. Metrics provide the insight necessary to create
effective analysis and design models, solid code, and thorough tests. To be
useful in a real world context, software metrics must be simple and
computable, persuasive, consistent, and objective. It should be programming
language independent and provide effective feedback to the software
engineer. The author has chosen function-oriented software metrics and Big-
O notation for his project as it is easier to normalize measures of software
productivity and quality.

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 66

Chapter 9 SYSTEM TESTING

9.0 Introduction

9.1 Types of Testing Done

9.1.1 Alpha Testing
9.1.2 Beta Testing
9.1.3 Unit Testing
9.1.4 Integration Testing
9.1.5 Acceptance Testing
9.1.6 System Testing
9.1.7 Test Plan

9.2 Summary

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 67

CHAPTER 9 – SYSTEM TESTING

9.0 Introduction

The author has planned a few types of testing for the system to make sure
that the system is free from any errors so that it could be implemented “error-
free”. The types of testing will include the alpha testing, beta testing, unit
testing, integration testing, and acceptance testing.

9.1 Types of Testing Done (Pressman, R.S., 2001)

The author had used many testing strategies during the development of his
system and even after the coding phase. This is to ensure that the system will
work properly as expected and not going wrong in between the execution
time.

9.1.1 Alpha Testing

This type of testing is actually done at the developer’s site in order to track
any bugs or errors before releasing the initial version of the system out to the
users. Alpha testing could be done by anyone as long as the system
developer is there on the site to observe and record any testing result. The
author has conducted alpha testing during and upon finishing the coding of
his system. The author will select a few friends and lecturers to help testing
the system, and at the same time note the errors or weaknesses that may
occur.

9.1.2 Beta Testing

This type of testing is normally done outside the control of the developer. The
developer will release the system to be tested and evaluated in the real-world
by the public. As it is understood that the developer will not be present among
with the testers, this is called off-site testing. However, the beta tester will
have to note down any errors or bugs encountered while using the system.
These error reports should be submitted back to the developer in order to
make any debugging and modification or amendment. The author will beta
test his system once he completely finishes the coding phase.

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 68

9.1.3 Unit Testing

Unit testing is the test whereby all the modules that have been coded and
stud tested as an integrated unit, and all modules will have been implemented
and that unit equals the program itself.

In this level, the author has carried out unit testing in the course of developing
the system and coding errors found were workable and meet the
requirements that the author stated. If the requirements do not match or there
are any problems occurred then modification correction will straight away be
carried out.

In this unit testing, the author has tested on the each function of menu bar,
the tool bar, status bar and progress bar. Below show the unit testing of each
function of menu bar, the tool bar, status bar and progress bar.

Function of the
system Description Percentage

 Main Menu
 File Menu

 Open Command
Allow the user to open the wave
file format only in certain folder Complete (100%)

 Close Command
Allow the user to close the wave
file opened Complete (100%)

 Save Command

Allow the user to save the notes
that generated with the notepad
file format

Incomplete (Error
Occurs)

 Exit Command
Allow the user to exit the
program Complete (100%)

 View Menu

 Status Bar

Allow the user to view the status
bar which shows file size and
sample rate Complete (100%)

Channel Separate
Allow the user to separate the
wave file into two channels Complete (100%)

 Help Menu
About Guitar Note
Recognizer

Allow the user to view the
author's information Complete(100%)

Play Toolbar

Back Command
Used to go back to initial position
of wave file. Complete (100%)

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 69

Play Command Used to play the wave file Complete (100%)

Pause Command
Used to stop at a certain position
which can be resumed later on. Complete (100%)

Stop Command
Used to stop the wave file
entirely. Complete (100%)

9.1.4 Integration Testing

After all classes have been tested in isolation, we need to confirm that they
work together properly. To the extent possible, it is best to bring classes into
the test environment one at a time. If classes are integrated too soon, it is
difficult to track down the source of errors. By bringing new classes into the
test environment one at a time, we have a better chance of isolating errors
quickly.

9.1.5 Acceptance Testing

Once the system has been completed, it must go through one final phase of
testing which it will eventually be used on a daily basis. It must be determined
if the system functions adequately in a real-life setting. The author will test his
system before VIVA presentation in order to see the overall output or
outcome of the execution and make suitable changes if error occurs.

Problem Solving:

When the author discovers the problem, he will immediately refer to the
reference in order to solve the problem. If the problem that author confronted
still cannot be solved, he will try to call help from his friends and his lecturers.
Besides that, the author also posts the problem to the Internet to look for
external guidance.

9.1.6 System Testing

After the author done testing in the unit tested, he can proceed to this system
testing. System testing is individual modules tested in the unit test were
combined together and tested. This is because a single program work
properly does not mean that it will works properly with other programs.

In this testing level, the author tested the function via every possible element
of the user interface. By using debug tools that offered by Visual C++, the
author easily can identify the errors that contained in the coding and thus
make correction accordingly.

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 70

For opening wave files, the result of checking exception is shown below in
table 9.1
No File Name File

Type
File
Size

Sample
Rate

Result

1 Craig1distortion wave 2.01MB - Invalid file format:
RIFF header missing

2 Craig1eq1 wave 2.01MB 44100 Play successfully
3 Testing1 wave 10KB - Invalid file format:

WAVE header missing
4 Testing2 wave 13KB - Length of format

header is not 16 or 18.
Can't continue

5 Testing3 wave 20KB - Non-fact/data block
detected. Illegal block
format

6 Testing4 wave 19KB - Data not in PCM
format. Can't continue

Table 9.1 Testing exception handling

For accuracy of note detection, the result is shown below in table 9.2
No File Name File

Type

File

Size

Sample Rate Result of accuracy

1 Craig2 wave 1.75MB 44100 85%

2 Craig1eq1 wave 2.01MB 44100 85%

3 Craig1eq2 wave 2.01MB 44100 80%

4 Craig1eq3 wave 2.01MB 44100 90%

5 Craig1eq4 wave 2.01MB 44100 80%

6 Craig1eq5 Wave 2.01MB 44100 80%

Table 9.2 Accuracy of Note recognized

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 71

Diagram 9.1 Sample testing output

9.17 Test Plan

Finally, the author conducted a test plan, also known as verification testing
that runs the system in a simulated environment using simulated environment
using simulated data, which to ensure that users are satisfied with the
functions and user interface of the application.

In this application test plan, the author has asked some of his friends to test
on his application and they was given the appreciate comment and
suggestion to the author in order to let his make improvement on his
application.

9.2 Summary

The author has completed most of the coding of his system at the moment
this report was produced. He has included some problem encountered in this
chapter along with some of the solutions. He will further continue the
development of his project. After completing his development only then he
could implement the software metrics to measure the correctness and quality
of this application. In addition, further testing like acceptance testing and beta
testing could be carried out only if the whole system has completed or
finished coding.

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 72

Chapter 10 FUTURE ENHANCEMENT

10.0 Introduction

10.1 Future Enhancement

10.1.1 Play other media file
10.1.2 Recognized more than one type of instrument
10.1.3 Develop a more standard tab notation
10.1.4 Provide error checking
10.1.5 Provide function such as filter effects

10.2 Recommendation for improvement

10.3 Summary

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 73

CHAPTER 10 – FUTURE ENHANCEMENT

10.0 Introduction

This chapter discusses about the system’s future enhancement and
recommendation to improve its functionalities and properties.

10.1 Future Enhancement

For future enhancement, the author has suggested some that is quite
interesting but due to time limitation, he could not actually implement it in the
project. Below are some of the enhancements that were suggested by the
author to further enhance his system.

10.1.1 Play other media file

The system currently is able to play wave file type only. If time is sufficient,
other audio file structure such as mp3 should be studied and apply to the
system as nowadays mp3 is so popular. Mp3 file is compressed audio file but
with same quality of CD. Apart from it, it is also good to include read in data
from CD rom. This saves user’s time to copy the wave file from the CD rom to
hard disk.

10.1.2 Recognized more than one type of instrument

Basically this scope of the system has been narrowed down to focus on guitar
players only. Hence, it can be broaden by adding more types of musical
instrument to be recognized. For instance, by pressing note generator button,
the system will able to differentiate the type of musical instrument and
generate the notes or scores respectively in its own window.

10.1.3 Develop a more standard tab notation

Due to time limitation, the author unable to create a perfect notation form for
the wave file that being recognized. The standard practice is to write extra
letters or symbols between notes to indicate how to play them. Here are the
letters/symbols most often used:

 h - hammer on
 p - pull off
 b - bend string up
 r - release bend
 / - slide up
 \ - slide down
 v - vibrato (sometimes written as ~)
 t - right hand tap

PLEASE VISIT WEBSITE::http://www.angelfire.com/moon/guitar2004

 74

 x - play 'note' with heavy damping

Using bar lines is an effective way of conveying timing information. For
example, with bar lines it looks like this:

E--------|---------------|0--------4--2-|0-------------|--------
B---0---|----------0----|----------------|---------------|0-------
G------1|-----1--------|----------------|-----1----3---|--------
D--------|2-------------|----------------|---------------|--------
A--------|---------------|----------------|---------------|--------
E--------|---------------|----------------|---------------|--------

10.1.4 Provide error checking

Every system should have error checking to control user input. Due to time
limitation, the author has only able to make error checking for wave input
type. There are many parts did not include error checking.

10.1.5 Provide function such as filter effects

It is good to provide user function such as filter for them to edit the wave file,
add in effects for his own convenience, and functions such as copy, cut and
paste can also be implemented.

10.2 Recommendation for Improvement

There is no recommendation thought or given to the author to further improve
his system. At the moment, he had not shown his supervisors his workable
prototype yet as there was so much coding and debugging to do. He will
continue to update this section once he gets the feedback from his
supervisors.

10.3 Summary

As to conclude this chapter and report, the author really hopes he could think
of other interesting enhancements that could be implemented in the future
development of his project. The author hopes to get feedbacks and
recommendations to improve his system but that depend on his ability to
implement it. Furthermore, it must be within the scope of his project, if he ever
planning to enhance it.

Certainly the author had gained a lot of proficiency in terms of researching,
critically writing literature reviews and reports, and handling a system
development. This will be the stepping-stone to proceed on with more
projects to come in the working world.

