\qquad

A measurement can only be as accurate and precise as the instrument that produced it. A scientist must be able to express the accuracy of a number, not just its numerical value. We can determine the accuracy of a number by the number of significant figures it contains.

1) All digits 1-9 inclusive are significant. Example: 129 has 3 significant figures.
2) Zeros between significant digits are always significant. Example: 5,007 has 4 significant figures.
3) Trailing zeros in a number are significant only if the number contains a decimal point.
Example: 100.0 has 4 significant figures.
100 has 1 significant figure.
4) Zeros in the beginning of a number whose only function is to place the decimal point are not significant.
Example: 0.0025 has 2 significant figures.
5) Zeros following a decimal significant figure are significant.
Example: 0.000470 has 3 significant figures.
0.47000 has 5 significant figures.

Determine the number of significant figures in the following numbers.

1. 0.02 \qquad 6. 5,000 .
2. 0.020 \qquad 7. 6,051.00
\qquad
\qquad
3. 501 \qquad 8. 0.0005 \qquad
4. 501.0 \qquad 9. 0.1020
5. 5,000 \qquad 10. 10,001 \qquad

Determine the location of the last significant place value by placing a bar over the digit. (Example: 1.700̄)

1. 8040 \qquad
2. 0.0300 \qquad
3. 699.5 \qquad
4. 2.000×10^{2} \qquad
5. 0.90100
6. 3.01×10^{21}
7. 90,100
8. 4.7×10^{-8}
9. $10,800,000$.
10. 0.000410
