.....

OXIDATION NUMBERS

Section Review

Objectives

- Determine the oxidation number of an atom of any element in a pure substance
- Define *oxidation* and *reduction* in terms of a change in oxidation number, and identify atoms being oxidized or reduced in redox reactions

Vocabulary

• oxidation number

Part A Completion

Use this completion exercise to check your understanding of the concepts and terms that are introduced in this section. Each blank can be completed with a term, short phrase, or number.

The oxidation number of an element in an uncombined state	1
is The oxidation number of a monatomic ion is the same	2
in magnitude and <u>2</u> as its ionic <u>3</u> . The sum of the	3
oxidation numbers of the elements in a neutral compound is	4
4 In a polyatomic ion, however, the sum is equal to the	5
5 Oxidation numbers help you keep track of6 –	6
transfer in redox reactions. An oxidation number increase is	7
, while a is reduction.	8

Part B True-False

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

- **9.** Oxygen is more electronegative than chlorine.
- **10.** The oxidation number of each oxygen atom in most compounds is -2.
- **11.** The oxidation number of Cl in $KClO_3$ is -1.
 - **12.** The oxidation number of each hydrogen atom in most compounds is -1.
- **13.** The oxidation number for copper in a copper penny is +2.

Name _		Date	Class
	_ 14.	In the reaction C + $H_2O \rightarrow CO + H_2$, the oxidation number hydrogen doesn't change.	of the
	_ 15.	In the reaction C + $H_2O \rightarrow CO + H_2$, the oxidation number carbon increases.	of the
	_ 16.	An increase in the oxidation number of an atom indicates o	xidation.

Part C Matching

ъ т

Match the oxidation number of nitrogen in each formula in Column B to the correct oxidation number in Column A.

	Column A		Column B
17.	-3	a.	N_2
18.	-2	b.	HNO_3
19.	-1	c.	NO
20.	0	d.	NH ₂ OH
21.	+1	e.	$\rm NH_3$
22.	+2	f.	N_2O_3
23.	+3	g.	N ₂ O
24.	+4	h.	N_2H_4
25.	+5	i.	NO_2

Part D Questions and Problems

Answer the following in the space provided.

- 26. Define oxidation and reduction in terms of a change in oxidation number.
- **27.** Use the change in oxidation number to determine which elements are oxidized and which are reduced in these reactions. (Note: It is not necessary to use balanced equations.)
 - **a.** $HNO_3 + HBr \rightarrow NO + Br_2 + H_2O$
 - **b.** $\text{KMnO}_4 + \text{HCl} \rightarrow \text{MnCl}_2 + \text{Cl}_2 + \text{H}_2\text{O} + \text{KCl}$
 - **c.** $\text{Sb} + \text{HNO}_3 \rightarrow \text{Sb}_2\text{O}_5 + \text{NO} + \text{H}_2\text{O}$
 - **d.** $C + H_2SO_4 \rightarrow CO_2 + SO_2 + H_2O$