.....

MEASURING AND EXPRESSING ENTHALPY CHANGES

Section Review

Objectives

- Construct equations that show the enthalpy changes for chemical and physical processes
- Calculate enthalpy changes in chemical and physical processes

Vocabulary

- calorimetry
- calorimeter
- enthalpy, (*H*)

- thermochemical equation
- heat of reaction
- heat of combustion

Key Equation

• $q_{sys} = \Delta H - q_{surr} = -m \times C \times \Delta T$, where $\Delta T = T_{f} - T_{i}$

Part A Completion

Use this completion exercise to check your understanding of the concepts and terms that are introduced in this section. Each blank can be completed with a term, short phrase, or number.

A $_$ 1 is a device used to measure the absorption or	1	
release of heat in chemical and physical processes. For systems at	2	
constant pressure, the heat changes that occur are the same as	3	
changes in 2 , symbolized as 3 . To measure the 4 .		
enthalpy change for a reaction in aqueous solution, it is necessary 5.		
to measure the 4 and 5 temperatures of the system 6.		
and the 6 of the water in the system		

Part B True-False

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

- **7.** When a substance dissolves in water, heat is released.
- **8.** The sign of ΔH is negative for an exothermic reaction.
 - 9. If 129 kJ of heat is required to decompose 2 moles of NaHCO₃, then 258 kJ is required to decompose 4 moles of NaHCO₃.

Name		Date	Class
	_ 10.	The physical state of the reactants and products in a thermoreaction are not important when calculating ΔH of the reaction	ochemical tion.
	_ 11.	In endothermic reactions, the potential energy of the producing higher than the potential energy of the reactants.	ıct(s) is
	_ 12.	The equation $CaO(s) + H_2O(l) \rightarrow Ca(OH)_2(s)$ $\Delta H = 65.2 \text{ kJ}$ is an example of a thermochemical equation.	

Part C Matching

Match each description in Column B to the correct term in Column A.

	Column A	Column B
13.	enthalpy (H)	a. the heat of reaction for the complete burning of 1 mole of a substance
14.	heat of combustion	b. a chemical equation that includes the enthalpy change (ΔH)
15.	thermochemical equation	c. the accurate and precise measurement of heat changes for chemical and physical processes
16.	calorimetry	d. an insulated device containing a sealed vessel that is used to measure the heat released during a combustion reaction
17.	bomb calorimeter	
		e. the amount of heat that a system has at a constant pressure

Part D Questions and Problems

Answer the following in the space provided.

- **18.** When 2 moles of nitric oxide, NO, burn in air to produce 2 moles of nitrogen dioxide, 113.04 kJ of heat is produced. Write a balanced thermochemical equation for this reaction.
- **19.** Calculate the amount of heat produced when 34.8 g of methane, CH₄, burns in an excess of oxygen, according to the following equation.

 $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(l)$ $\Delta H = -890.2 \text{ kJ}$