.....

THE GAS LAWS

Section Review

Objectives

- Describe the relationship among the temperature, volume, and pressure of a gas
- Use the combined gas law to solve problems

Vocabulary

- Boyle's law
- Charles's law

- Gay-Lussac's law
- combined gas law

Key Equations

- Boyle's law: $P_1 \times V_1 = P_2 \times V_2$
- Charles's law: $\frac{V_1}{T_1} = \frac{V_2}{T_2}$

• Gay-Lussac's law: $\frac{P_1}{T_1} = \frac{P_2}{T_2}$ • combined gas law: $\frac{P_1 \times V_1}{T_1} = \frac{P_2 \times V_2}{T_2}$

Part A Completion

Use this completion exercise to check your understanding of the concepts and terms that are introduced in this section. Each blank can be completed with a term, short phrase, or number.

The pressure and volume of a fixed mass of gas are $__1$	1
related. If one decreases, the other <u>2</u> . This relationship is	2
known as <u>3</u> law. The volume of a fixed <u>4</u> of a gas is	3
directly proportional to its <u>5</u> temperature. This relationship	4
is known as <u>6</u> law. <u>7</u> law states that the pressure of a	5
gas is8 proportional to the Kelvin temperature if the	6
volume remains constant.	7
These three separate gas laws can be written as a single	8
expression called the <u>9</u> gas law. It can be used in situations	9
in which only the <u>10</u> of gas is constant.	10.

Date _____

Part B True-False

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

11.	According to Charles's law, $T_2 = \frac{V_1 \times V_2}{T_2}$.
12.	According to Boyle's law, when the volume of a gas at constant temperature increases, the pressure decreases.
13.	A balloon with a volume of 60 L at 100 kPa pressure will expand to a volume of 120 L at a pressure of 50 kPa.
14.	In an inverse relationship, the ratio of two variable quantities is constant.
15.	When using the combined gas law, pressure must always be in kilopascals but temperature can be in kelvins or degrees Celsius.
16.	When 20.0 L of O_2 is warmed from -30.0° C to 85.0° C at constant pressure, the new volume is 29.5 L.

Part C Matching

Match each description in Column B to the correct term in Column A.

	Column A	Column B
17.	Boyle's law a	The volume of a fixed mass of gas is directly proportional to its Kelvin temperature if the pressure is kept constant
18.	combined gas law b	$\frac{P_1 \times V_1}{T_1} = \frac{P_2 \times V_2}{T_2}$
19.	absolute zero c	For a fixed mass of gas at constant temperature, the volume of gas varies inversely with pressure.
20.	Charles's law d	The pressure of a gas is directly proportional to the Kelvin temperature if the volume remains constant.
21.	Gay-Lussac's law e	-273.15°C

Part D Questions and Problems

Answer the following in the space provided.

- **22.** A rigid container holds a gas at a pressure of 55 kPa and a temperature of -100.0° C. What will the pressure be when the temperature is increased to 200.0°C?
- **23.** What is the volume of a sample of CO_2 at STP that has a volume of 75.0 mL at 30.0°C and 91 kPa?