

DESCRIBING CHEMICAL REACTIONS

Section Review

Objectives

- Explain how to write a word equation
- Describe how to write a skeleton equation
- List the steps for writing a complete chemical equation

Vocabulary

- chemical equation
- coefficients
- skeleton equation
- balanced equation

• catalyst

Part A Completion

Use this completion exercise to check your understanding of the concepts and terms that are introduced in this section. Each blank can be completed with a term, short phrase, or number.

A chemical reaction can be concisely represented by a chemical	1.	
The substances that undergo a chemical change are the	2.	
<u>2</u> . The new substances formed in a chemical reaction are the	3.	
$_3$. In accordance with the law of conservation of $_4$,	4.	
a chemical equation must be balanced. When balancing an	5.	
equation, you place <u>5</u> in front of reactants and products so	6.	
that the same number of atoms of each <u>6</u> are on each side of	7.	
the equation. An equation must never be balanced by changing the	8.	
in the chemical formula of a substance.	9.	
Special symbols are used to show the physical state of a	10.	
substance in a reaction. The symbol for a liquid is <u>8</u> ; for	11.	
a solid, 9 ; and for a gas, 10 . A substance dissolved	12.	
in water is designated <u>11</u> . If a <u>12</u> is used to increase		

the rate of a chemical reaction, its formula is written above the arrow.

Part B True-False

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

Date _____

13. In an equation, a substance is shown to be in the gaseous state by placing an upward-pointing arrow after its formula. 14. The symbol Δ placed over the arrow in an equation means that heat is supplied to the reaction. **15.** Atoms are destroyed in a chemical reaction. **16.** A skeleton equation is not a balanced equation.

Part C Matching

Match each description in Column B to the correct term in Column A.

	Column A		Column B
17.	chemical equation	a.	an equation in which each side has the same number of atoms of each element
18.	skeleton equation	b.	a substance that speeds up the rate of a reaction
19.	catalyst	c.	a symbolic way of describing a chemical reaction
20.	coefficients	d.	substances that undergo chemical change
21.	balanced equation	e.	a chemical equation that does not indicate the amounts of substances involved
22.	reactants	f.	new substances formed in a chemical reaction
23.	products	g.	numbers used to balance a chemical equation

Part D Questions and Problems

Answer the following in the space provided.

- 24. Write a balanced equation for each of these chemical reactions. Include appropriate symbols from Table 11.1.
 - a. Aluminum reacts with aqueous hydrochloric acid to form hydrogen gas and aqueous aluminum chloride.
 - **b.** Acetylene gas (C_2H_2) burns in a welding torch with oxygen to form carbon dioxide gas and water vapor.