

THE ARITHMETIC OF EQUATIONS

Section Review

Objectives

- Calculate the amount of reactants required or product formed in a nonchemical process
- Interpret balanced chemical equations in terms of interacting moles, representative particles, masses, and gas volume at STP

Vocabulary

• stoichiometry

Part A Completion

Use this completion exercise to check your understanding of the concepts and terms that are introduced in this section. Each blank can be completed with a term, short phrase, or number.

The coefficients of a balanced chemical equation indicate	1
the relative number of $__1$ of reactants and products. All	2
stoichiometric calculations begin with a <u>2</u> . Only <u>3</u>	3
and <u>4</u> are conserved in every reaction; moles, volumes,	4
and representative particles may not be.	5
In solving stoichiometric problems, conversion factors	6.
relating moles of reactants to 5 of products are used.	

If you assume <u>6</u>, the balanced equation also tells you

about the volumes of gases.

Part B True-False

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

- The coefficients in a balanced chemical equation can be used to form mole ratios relating reactants to products.
 - **8.** The coefficients in a balanced chemical equation tell the relative volumes of reactants and products, expressed in any suitable unit of volume.
 - **9.** To calculate the mass of a molecule in grams, you can use the molar mass and Avogadro's number.

Name _		Date	Class	
	10. Because the mass of the reactants equals the mass of the products of a reaction, the number of moles will be conserved.			
	_ 11.	If the ratio of molecules in the reaction $2A_2 + B_2 \rightarrow 2A_2I$ predict that 4 molecules of A_2 react with 2 molecules B_2 molecules of A_2B .	3 is 2:1:2, we can to produce 4	
	_ 12.	One mole of any gas occupies a volume of 22.4 L.		

Part C Matching

Match each description in Column B to the correct term in Column A.

	Column A	(Column B
13.	stoichiometry a	• A	Avogadro's number
14.	product b	• t	he calculations of quantities in chemical reactions
15.	coefficient c	. 9	STP
16.	6.02×10^{23} d	. a	a substance formed in a chemical reaction
17.	0°C, 101.3 kPa e	• 8 r	gives the relative number of molecules involved in a reaction

Part D Questions and Problems

Answer the following in the space provided. Show your work.

18. Interpret the following equation using moles, molecules, and volumes (assume STP). Compare the mass of the reactants to the mass of the product.

$$2\mathrm{N}_2(g) + 3\mathrm{O}_2(g) \rightarrow 2\mathrm{N}_2\mathrm{O}_3(g)$$

19. How many moles of chlorine gas will be required to react with sufficient iron to produce 14 moles of iron(III) chloride?

$$2\mathrm{Fe}(s) + 3\mathrm{Cl}_2(g) \rightarrow 2\mathrm{Fe}\mathrm{Cl}_3(g)$$