\qquad
\qquad

THERMOCHEMISTRY

Practice Problems

In your notebook, solve the following problems.

SECTION 17.1 THE FLOW OF ENERGY—HEAT AND WORK

Use the three-step problem-solving approach you learned in Chapter 1.

1. How many kilojoules of energy are in a donut that contains 200.0 Calories?
2. What is the specific heat of a substance that has a mass of 25.0 g and requires 525.0 calories to raise its temperature by $15.0^{\circ} \mathrm{C}$?
3. Suppose 100.0 g of $\mathrm{H}_{2} \mathrm{O}(s)$ absorbs 1255.0 J of heat. What is the corresponding temperature change? The specific heat capacity of $\mathrm{H}_{2} \mathrm{O}(s)$ is $2.1 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$.
4. How many joules of heat energy are required to raise the temperature of 100.0 g of aluminum by $120.0^{\circ} \mathrm{C}$? The specific heat capacity of aluminum is $0.90 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$.

SECTION 17.2 MEASURING AND EXPRESSING ENTHALPY CHANGES

1. A student mixed 75.0 mL of water containing 0.75 mol HCl at $25^{\circ} \mathrm{C}$ with 75.0 mL of water containing 0.75 mol of NaOH at $25^{\circ} \mathrm{C}$ in a foam cup calorimeter. The temperature of the resulting solution increased to $35^{\circ} \mathrm{C}$. How much heat in kilojoules was released by this reaction?

$$
C_{\text {water }}=4.18 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}
$$

2. Calculate the amount of heat evolved when 15.0 g of $\mathrm{Ca}(\mathrm{OH})_{2}$ forms from the reaction of $\mathrm{CaO}(s)+\mathrm{H}_{2} \mathrm{O}(l)$.

$$
\mathrm{CaO}(s)+\mathrm{H}_{2} \mathrm{O}(l) \longrightarrow \mathrm{Ca}(\mathrm{OH})_{2}(s) \quad \Delta H=-65.2 \mathrm{~kJ}
$$

3. Calculate the amount of heat produced when 52.4 g of methane, CH_{4}, burns in an excess of air, according to the following equation.

$$
\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(t) \quad \Delta H=-890.2 \mathrm{~kJ}
$$

4. Balance the following equation, then calculate the enthalpy change for the reaction given that the standard heat of combustion of $\mathrm{NH}_{3}(\mathrm{~g})$ is $-226 \mathrm{~kJ} / \mathrm{mol}$.

$$
\mathrm{NH}_{3}(g)+\mathrm{O}_{2}(g) \rightarrow \mathrm{NO}(g)+\mathrm{H}_{2} \mathrm{O}(g)
$$

SECTION 17.3 HEAT IN CHANGES OF STATE

1. Calculate the amount of heat needed to melt 35.0 g of ice at $0^{\circ} \mathrm{C}$. Express your answer in kilojoules.
2. Calculate the amount of heat needed to convert 190.0 g of liquid water at $18^{\circ} \mathrm{C}$ to steam at $100.0^{\circ} \mathrm{C}$.
3. How much heat (kJ) is released when $2.543 \mathrm{~mol} \mathrm{NaOH}(s)$ is dissolved in water?

$$
\mathrm{NaOH}(s) \xrightarrow{\mathrm{H}_{2} \mathrm{O}(l)} \mathrm{Na}^{+}(a q)+\mathrm{OH}^{-}(a q) \quad \Delta H_{\text {soln }}=-445.1 \mathrm{~kJ} / \mathrm{mol}
$$

\qquad
\qquad
\qquad
4. Calculate the amount of heat needed to convert 96 g of ice at $-24^{\circ} \mathrm{C}$ to water at $28^{\circ} \mathrm{C}$. The specific heat capacity of $\mathrm{H}_{2} \mathrm{O}(s)$ is $2.1 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$.

SECTION 17.4 CALCULATING HEATS OF REACTION

1. What is the standard heat of reaction for the combustion of hydrogen sulfide? Refer to Table 17.4 in your textbook.

$$
2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+2 \mathrm{SO}_{2}(\mathrm{~g})
$$

2. Calculate the enthalpy change (in kJ) for the following reaction. State whether the reaction is exothermic or endothermic. Refer to Table 17.4 in your textbook.

$$
\mathrm{CaO}(s)+\mathrm{CO}_{2}(g) \rightarrow \mathrm{CaCO}_{3}(s)
$$

3. What is the enthalpy change for the formation of hydrazine, $\mathrm{N}_{2} \mathrm{H}_{4}(l)$, from its elements?

$$
\mathrm{N}_{2}(g)+2 \mathrm{H}_{2}(g) \rightarrow \mathrm{N}_{2} \mathrm{H}_{4}(l)
$$

Use the following reactions and enthalpy changes:

$$
\begin{aligned}
& \mathrm{N}_{2} \mathrm{H}_{4}(l)+\mathrm{O}_{2}(g) \rightarrow \mathrm{N}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l) \quad \Delta H=-622.2 \mathrm{~kJ} \\
& \mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(l) \quad \Delta H=-285.8 \mathrm{~kJ}
\end{aligned}
$$

