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1 Concept Learnin

Given data set D of samples x1,Xz,..,X» and their classifications c(x.),c(x.),..,c(Xn) , find hypothesis h such that for
every x; in D, h(x;)=c(x).

Algorithms

FIND-S
- start with the most specific hypothesis h in H
- for every positive sample x:
-if any attribute in h causes it to reject sample x,
change it to next most specific one agreeing with x.

LIST-THEN-ELIMINATE
- start with VS=H
- remove from VS every hypothesis inconsistent with any sample from D.

CANDIDATE-ELIMINATION

- start with the most specific boundary S={<0,0,0...,0>}

- start with the most general boundary G={<?,?,?,...,7>}

- for positive sample x:

-- remove any hypothesis from G which rejects x.

-- replace any hypothesis in S which rejects x with its minimal generalizations accepting x
not more general than all hypotheses in G.

for negative sample x:

-- remove any hypothesis from S which accepts x.

-- replace any hypothesis in G which accepts x with its minimal specifications rejecting x
not more specific than all hypotheses in S.

Definitions

- hypothesis g is more general than s iff g accepts any instance accepted by s.

- hypothesis h is consistent with sample x iff h(x)=c(x).

- hypothesis h is consistent with samples set D iff h(x)=c(x) for every x from D.

- version space VS(H,D)={h from H| h is consistent with D}.

- inductive bias: assumptions made by the learner required to predict the target output for unobserved samples.
inductive biases used by concept learning algorithms:

CANDIDATE ELIMINATION: the target concept c is in H, bounded by g>=c>=s for s€S,geG.

FIND-S: the target concept is in H, accepting only the observed positive samples.



2 Decision Trees

- non leaf nodes test an attribute.
- each branch corresponds to possible attribute value.
- each leaf node provides a classification.

ID3
- if all examples have the same classification c, return root node with label c.
- if no attributes were left for splitting, return root node with most common classification of the examples as the
node label.
-otherwise:
- choose the best attribute A for splitting (A reduces the entropy the most).
- for each possible value v of A:
- add a new branch, corresponding to A=v.
- repeat the process for this branch with the examples where A=v and the remaining attributes.

ID3 Properties

- H is a complete space of finite discrete valued functions.

- maintains a single possible hypothesis during search (incomplete search).
- no backtracking, greedily splits at each step, might fall into local optima.

- bias: prefers shorter trees with higher gain measure closer to the root.

Measures

-Entropy (classification impurity measure):
S S.
Entropy(S):Z:i:1 . —% logz% where S; is the subset of samples classified with i.

-Gain (reduction of entropy for splitting by attribute A):
S A
Gain(S, A)=Entropy(S)— 1= Entropy(S,_,)

vEvalues(A) |S|

-Gain Ratio (variation of Gain for multi-valued attribute A):

. ' Gain(S,A)
GainRatio(S,A)= ,
ainRatio( ) SplitInformation (S, A)

split-information is the entropy with respect to A instead of classification.

Pruning
- Discard tree portions that worsen the estimated accuracy/cause overfitting.
Reduced Error Pruning

- split samples set to train and validation data.
- discard any subtree if this improves classification rate over validation data.
- results in the minimal most accurate subtree.

Rules Post Pruning

- grow tree until it overfits training data.

- convert each path from root to any leaf node to corresponding rule.

- generalize rules by pruning their preconditions if it improves their accuracy.
- sort rules by estimated accuracy, using them by this order.

- (estimated accuracy)=(accuracy over training set)-z*(standard deviation).



3 Perceptrons / SVMs

discriminant function: f:R"—>R
f(x)=0 defines a decision surface dichotomizing R" into two regions: f(x)<0,f(x)>0.

two category classification:
¢, if f(x)>0 ; ¢, if f(x)<0

multi-category classification (for k possible categories):
Cyif arg?‘zax{fi(x)}zt k discriminant functions voting.

Cyif arglrnax[fij(x),—fji(x)}:t k(k-1)/2 discriminant functions pairwise voting.

linear discriminant function: g(x)=w -X+w, g(x)=0 defines an hyperplane.

thresholded perceptron: o=sign(g(x))= 51gn(w X+ w,)
training rule Aw;= ndz;,)(td
€

-converges into separating hyperplane if:
1) data is linearly separable
2) n is small enough

unthresholded perceptron: o=g(X)=w
training rule: Aw=n Z (ts—04) Xiq

d
-, 1
-converges into global minimum of the MSE ~ E(w)== z (td—od)2 if n is small enough.

generalized linear discriminant function:  g(X)=w"-¢(X)
- where ¢ is some non-linear mapping ¢ : R‘— R*
- g(x) will be linear in the dimension d

dual perceptron: WX +w,= Z a;t; %) X+w,

-

training rule: a,=a;+n,w,=wy,+n if ti(zjajtj(xj'§i)+wo)<0

inner product (X;-X,) can be replaced by kernel K(X,X;) in attempt to linearly separate the problem space
in a higher dimension.

Support Vector Machines

the best separating hyperplane in the mapped/original space is the one which maximizes the margin b (positive
distance of hyperplane from closest point):

maximize b
y (@ b(x,)+ay)

lall

subject to:

1
constraining b:H for a single solution would lead to:
N 12
minimize §||a||
subjectto:  y,(d" ¢(x,)+a,)—1>0

this can be solved using Lagrange multipliers.



feed-forward back-propagation
layer net activation net output sensitivity (error) learning rule
input unit i Xi Xi - -
hidden unit j net=Zxwij y=f(net) §;=f ’(netﬁ'zk 8 Wy Aw;=nd;x
output unit k net=;y;wy z=f(nety) 8, =(t,—z,)f"'(net,) Aw,=né,y,

- the training rule minimizes the MSE for every given pattern: J:§||t —z||2

- generally, weights are updated in a gradient descent manner: Aw=-n g—i:néx

- might fall into local minima (since error surface is not parabolic it this case).
-- try to overcome by stochastic learning (new error surface for every sample).
-- try to overcome using momentum A Wi y=nox+ xA w, tokeep gradient descending.

-- try to overcome by training multiple networks with different initial weights.

- sigmoid activation function o (net)= , 0'(x)=0(x)(1—0(x)) , 0<o(x)<1

—net

1+e
- representational power:
-- a single unit will always produce a linear decision boundary.
-- boolean function can be represented by two-layered thresholded network.
-- bounded continuous function can be approximated using one hidden layer.

-- any function can be approximated using two hidden layers.



5 Bayesian Learning

Mean, Variance, Covariance:

E|[x|=pu,= le( )v-P(xzv) E[x]qu=f x-P(x)dx

Var(0)=’=El(x=p)"l= Y (v=u)P(x=v) Var[x}=o’=] (x=uP(x=v)dx
vEvals(x) —0

Cov(x,y)=0,= 2, 2 (v=p)u—p)P(x=v,y=u) Cov(x,y)=0,=[ (x—p)(y—p,)P(x,y)dx

vEvals(x) ucvals(y) —
-Conditional Probability: PXX|y)=P(x,y)/P(y)
-variables x and y are statistical independent iff P(x,y)=P(X)P(y)

-if x and y are independent, then they are also uncorrelated, i.e. Cov(x,y)=0.

-Law of total Probability: P(x)=2y P(x,y)=2y P(x|y)P(y)
Bayes Rule: P(hld)=P(d|h)-P(h)/P(d)
posterior likelihood  prior  evidence

-Risk(the probability for wrong classification): R(hild):Zj¢ip(hj|d):1-P(hi|d)

- MAP hypothesis: hMAP=arg£nax P(dlh)P(h)
-- if P(h) is assumed to be uniform for every h: h

h,,»=argmax In(P(d|h)-P(h))=argmax In(P(dlh))+In(P(h))

M,

MAP

=h,, =argmax P (d|h)
h

-- log likelihood classifier:

-- any consistent learner produces a MAP hypothesis if we assume:
1) uniform priors P(h).
2) error free training set.

n

Naive Bayesian Classifier: hy,=argmax P(a, a,. ..,a,|h)-P(h)=argmax P(h)-] | P(a/h)
h h

i=1

-- assumes independence of as,az,...,a, for computational efficiency.

N yyremtmP(a=a,)
-- M-Estimate for likelihoods: P(aj|h)=—1anEh
Nj_p+m
i H H n(a:a /\t=h)+ 1
-- Laplace Estimate for likelihoods: P(a|h)= '

Ny +|values(a)|



6 Density Estimation

x=u _GR)'s G
) ez

o 1
- Normal distribution: p(x)~N(u,0°)=———c p(X)~N(p,>)=
V2 V2m IZIW

2O

-- CLT: the distofnsamples mean selected from some dist F(U’UZ) is N(U,Uz/n)
~if p(x)~N(u,07) , p(y)~N(u,07) then plax+By)~N(ap+Bu, (ao ) +(Bo,))
~if p(X)~N(§,3) , y=A"-X then p(y)~N(A"h,A"ZA)

- Discriminant function: gi(}):P(Bc'|A,-)-P(Ai):;e 2 ‘P(A))

m'|zi|1/2

- Log-Likelihood discriminant:

- Covariance Matrix:

g,(%)=In(P(XIA) P(A))=—7 (3~ ) £ (R~F) S n(2m) - L n|5 ]+ In(P(A))

=E[(}~7)"(X—#)]

(Z)l ]:(Z)j,izo—ij

-- measures the covariance for every pair of components of any sample vector x.
-- the sample components are uncorrelated iff X is diagonal.

Cov Discriminant function decision boundary
Z=0?l | gi(x)=-(xXx-2ux+ip)/20°+In(P(A)) X=Y5(ui+)-(0/ (i) In(P(A)/P(A)) (i)
linear since x'x/20? is same for any i and |d-dimensional hyperplane closer to the class with the lower
can be omitted prior P(A) and orthogonal to the line linking the means.
Z=X | G()= Y0e4) Z () +Hn(P(A) XU )~((rt1) " (11)) *In(PCAYP(A)) (1)
square of mahalanobis distance from the | same as the former case, but not necessarily orthogonal to
mean plus some bias. the line linking the means.
2i#%; |general log-likelihood,quadratic. complex, non-linear.

Parametric techniques:

-Maximum Likelihood Estimation:
given the likelihood of samples drawn independently from set D: p(DIo)= H p(x[0)

xeD
the log likelihood is: 1(€)=In(p(DI0)) Z;,Jln p(%10))
XeE
find the dist parameters maximizing the log-likelihood: 0= arggmx 1(0)
A ol(o d In
the gradientat @ shouldbeiso: L @)_3 d In(p(Xl0))_,
69 XeD d
ist: 6 ; Dl ¢
-for normal dist:  0=([ X ¥ — IJ (x— suchthat X,..= 5
S-EEE e & 4) we= D1

-Bayesian Estimation: p(xID)zf p(x|0)p(6ID)d 6

Non Parametric techniques (no assumptions on true distributions):

n=num of samples, k=num samples falling in same region with x, V=region volume.

n

. . I 1 X=X, 1 1 X=X
-Parzen Window: p(x):;;F(p( - ) plxle)= ncxze:ch ol ) ) p(x), ., P(x)

V is predetermined by h® while k varies by this region.

k. k. k.
-K nearest neighbors: f)(x)mni P(Ai|x):f P(x|Ai)=ﬁ P(A)=—

i i

k is constant while V depends on distance from k™ closest neighbor.




7 Dimensionality

g, )

0,0,

Filter method: select features according to some objective function (i.e. correlation with target:  p,, =

Wrapper method: select features according to classification performance using each subset
- infeasible (requires n!/(s!(n-s)!) trials for subset from size s=1,...,n). may use greedy search methods.
- forward selection: choose each time the next feature most improving classification accuracy.
- backward selection: start with all features, remove next feature least reducing classification accuracy.
- combine random search of features, may overcome local-minima.
- slower performance than filters.

Feature extraction methods (transform the problem space into reduced dimension space):

PCA

- orthogonal transformation of the problem space into dimensionally lower one.

- new center of new axes would be the samples mean.

- axes are rotated in such that (principal) components of transformed sample will descend by variance.

- y=A(Xx-m) where: m=samples mean; A contains the d' highest eigenvalued eigenvectors of the scatter matrix.
- criteria: the distance from any sample to its projection on m: J(a,...,q,,é )=Zk:1!_”’n |(+a, &)X}

- finds d' components of the samples with highest variance from mean (with greatest scatter).

FL
- project multi-dimensional samples onto a single line: y=w'Xxi.
~ ~ |2
-, |my—m
- criteria: maximize the between class scatter / within class scatter ratio: J(w)=%
S, +5,
~ - ~ =T ~ \2
where: m=r—2,x , §=2, (w x—m)
|Ci|5<’eC, XeC,
notation: Syw= Z (}—rﬁl)(}—rﬁl)T—i- (}—rﬁz)()_f—rﬁz)T s SB:<rﬁ1_n7’2)(rﬁ1_rﬁ2)T
XeC, XeC,
-T -
N S,w
hence: J(W)=—7—"—
w S, w
oJ(w)

otherwise

MDS

- dimensionality reduction between spaces according to minimal loss of distances proportions between items.
- objective function to be minimized is some sort of strain function: E:ZM (d(X,X)—=d(y,7,)

- instead of a scatter matrix, use dissimilarity/distance matrix S: S;j=d(x;,x;)=d(X;,X;).
- useful in visualization of similarities/dissimilarities of items in one space as distances in another space.



8 Computational Learning Theory

Evaluating Hypothesis

True hypothesis error over samples with dist : error ;. (h)=P _,.(h(x)#c(x))
Test error of n samples where r of them are misclassified by h: errors(h)zr/n

L I ) . 1
Estimation of true error within confidence interval of N%: errordist(h)sg(r+zN(£)(1—%))

PAC-Learnability

concepts class C of problem space X is PAC-learnable by learner L using H if for all c€C , distributions of X,
L will produce an hypothesis h for which  error, (h)<e within probability (1-3) such that 0<d<1/2, 0<e<1/2
and in polynomial time with respect to 1/ §,1/¢, length(any c in C) and length(any x in X).

VC dimension

VC(H)=maximal size of subset of X shattered by H (any possible dichotomy of X is satisfied by some heH ).

H={a<x<b|a,beR] X=R VC(H)=2
H=(w"x+blweR’ beR)| X=R’ VC(H)=d+1

H=ANN of s d-inputs perceptrons X=R* VC(H)<=2s(r+1)log(e*s)
H=conjunction of n-boolean literals X={0,1}" VC(H)=n

Sample Complexity

1) The non-agnostic case (assuming that the target concept is in H):

-The probability that VS(H,D) may contain an €-bad hypothesis (for which error . (h)>e€ ) is at most |H|e'sIDI
- This is the upper bound for failure probability of learner L to PAC-learn the concept class C:  |H|e “P'<§

-- This will provide us the minimal number of sample required for PAC-Learnability: |D|2%(ln |H|—ln(%))
2) The agnostic case (no assumption that the target concept is in H):

2
-The probability of an agnostic learner to choose hypothesis h for which errors(h)-errorgist(h)>¢ : |H|e'2|D|8

. . . 1 1
-- This is a lower bound for minimal number of samples for PAC-learnability |D|Z—2 5(In |H|—ln(g))
€
3) The infinite hypothesis space case:

- Number of training samples sufficient for PAC-learnability: !Dlz%(4log2(2/6)+8VC(H)log2 (13/€))

c(C)-1
- Number of training samples required at least for PAC-learnability: max[%log (1/6),%]

-- This is true for any C,d,€ holding VC(C)>=2, 0< 6<0.01, 0<e<0.125

PAC-Learnability Criterias:

1) Existence of a consistent/agnostic learner.

2) Number of samples satisfies the appropriate bound and is polynomial.
3) Processing time of the learner for each sample is polynomial.




9 Unsupervised Learning

Parametric.

EM:
- Initialize the distribution parameters
- Repeat until convergence:

E-Step: estimate the [E]xpected value of the unknown variables, given the current parameter estimate:

Q(h'[h)«<E[In P(Y|h)|h,X] Y=XUZ (X=observable data, Z=unobservable data)
M-Step: re-estimate the distribution parameters to [M]aximize the likelihood of the data, given the
expected estimates of the unknown variables: heargmaxn Q(h'lh)

EM for K-Gaussian means:

E[z;|=P(A/x,)= p(xilu;, 2 ) P(A))

1) Expectation: - p(x/u,5,)P(A,) since E[In P(Y|h")] is a function of E[zj] .
x| ! 1
ZE[Zij]Xi ZE[Zij](Xz’_IJ?eXt)Z

2) Maximization: u;m—i':‘;‘ , Tee=1 m

i=1 i=1
K-means Clustering

- initialize the means: i, Wa,..., Mk
- repeat until no change in pi, pa,..., Mk :
- classify each sample with its closest mean
- recompute i, Yz,..., bk as the means of the new clusters

Properties:
-- K-means EM using Euclidean distances from means instead of Mahalanobis and uniform priors P(A).

-- Convergence is assured only for Euclidean spaces.
2/(1-b)

Non-Parametric

Metrics:
Criterion functions to be optimized : Sw, Sg, ST=Sw+Ss
Inter-Clusters Similarity measures: dmin, dmax, davg, dmeans

Hierarchical Clustering

- Find most similar clusters and join them together as a single cluster, repeat this procedure c times.

Mean-Shift

Move Parzen Window towards maximum increase in density.
X—X;

h

1 n
MsV (x)~V (= D K(
- move from any point in the direction of the gradient: x(t+1)=x(t)+MSV(x(t)). nh" i=y
- as aresult, the Parzen window mean would shift towards center of mass.

--- Clustering: Classify points converging towards same center of mass the same.
--- Filtering:  Repeat mean shift for each point x; till convergence to some mass. zi. use z; instead of x;.

)



Derivatives
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Derivatives Identities

e f(x) = ¢ 2f(x)

4 () +g0) = 4 60 + £ g(x)
£1(00) = £ 1(8) * & 8(x)

2 (0800 = ' (gl + fx)g ')
()/8(0=(F (VX)L V()

Logarithms
logy (mn) = log, (m) + log, (n)
log, (") = log, (m) — log, (n)

log,(m") = n - log, (m)

In(m) = loge(m)

Quick-Sheet

(chain rule)
(product rule)

(quotient rule)



