ML - TOC
1 Concept Learning
2 Decision Trees
3 Perceptrons / SVMs
4 ANN
5 Bayesian Learning
6 Density Estimation
7 Dimensionality
8 Computational Learning Theory
9 Unsupervised Learning
10 Quick-Sheet

1 Concept Learning

Given data set D of samples $x_{1}, x_{2}, . ., x_{n}$ and their classifications $c\left(x_{1}\right), c\left(x_{2}\right), . ., c\left(x_{n}\right)$, find hypothesis h such that for every x_{i} in $D, h\left(x_{i}\right)=c\left(x_{i}\right)$.

Algorithms

FIND-S

- start with the most specific hypothesis h in H
- for every positive sample x :
-if any attribute in h causes it to reject sample x, change it to next most specific one agreeing with x.

LIST-THEN-ELIMINATE

- start with VS=H
- remove from VS every hypothesis inconsistent with any sample from D.

CANDIDATE-ELIMINATION

- start with the most specific boundary $S=\{<0,0,0 \ldots, 0\rangle\}$
- start with the most general boundary $G=\{<?, ?, ?, \ldots, ?>\}$
- for positive sample x:
-- remove any hypothesis from G which rejects x.
-- replace any hypothesis in S which rejects x with its minimal generalizations accepting x not more general than all hypotheses in G.
- for negative sample x :
-- remove any hypothesis from S which accepts x.
-- replace any hypothesis in G which accepts x with its minimal specifications rejecting x not more specific than all hypotheses in S.

Definitions

- hypothesis g is more general than s iff g accepts any instance accepted by s.
- hypothesis h is consistent with sample x iff $h(x)=c(x)$.
- hypothesis h is consistent with samples set D iff $h(x)=c(x)$ for every x from D.
- version space $V S(H, D)=\{h$ from $H \mid h$ is consistent with $D\}$.
- inductive bias: assumptions made by the learner required to predict the target output for unobserved samples.
inductive biases used by concept learning algorithms:
CANDIDATE ELIMINATION: the target concept c is in H, bounded by $g>=c>=s$ for $s \in S, g \in G$.
FIND-S: the target concept is in H , accepting only the observed positive samples.

2 Decision Trees

- non leaf nodes test an attribute.
- each branch corresponds to possible attribute value.
- each leaf node provides a classification.

ID3

- if all examples have the same classification c, return root node with label c.
- if no attributes were left for splitting, return root node with most common classification of the examples as the node label.
-otherwise:
- choose the best attribute A for splitting (A reduces the entropy the most).
- for each possible value v of A :
- add a new branch, corresponding to $A=v$.
- repeat the process for this branch with the examples where $A=v$ and the remaining attributes.

ID3 Properties

- H is a complete space of finite discrete valued functions.
- maintains a single possible hypothesis during search (incomplete search).
- no backtracking, greedily splits at each step, might fall into local optima.
- bias: prefers shorter trees with higher gain measure closer to the root.

Measures
-Entropy (classification impurity measure):
$\operatorname{Entropy}(S)=\sum_{i=1, \ldots, c}-\frac{\left|S_{i}\right|}{|S|} \log _{2} \frac{\left|S_{i}\right|}{|S|} \quad$ where S_{i} is the subset of samples classified with i .
-Gain (reduction of entropy for splitting by attribute A):
$\operatorname{Gain}(S, A)=\operatorname{Entropy}(S)-\sum_{v \in \operatorname{values}(A)} \frac{\left|S_{A=v}\right|}{|S|} \operatorname{Entropy}\left(S_{A=v}\right)$
-Gain Ratio (variation of Gain for multi-valued attribute A):
$\operatorname{GainRatio}(S, A)=\frac{\operatorname{Gain}(S, A)}{\operatorname{SplitInformation}(S, A)}$
split-information is the entropy with respect to A instead of classification.

Pruning

- Discard tree portions that worsen the estimated accuracy/cause overfitting.

Reduced Error Pruning

- split samples set to train and validation data.
- discard any subtree if this improves classification rate over validation data.
- results in the minimal most accurate subtree.

Rules Post Pruning

- grow tree until it overfits training data.
- convert each path from root to any leaf node to corresponding rule.
- generalize rules by pruning their preconditions if it improves their accuracy.
- sort rules by estimated accuracy, using them by this order.
- (estimated accuracy)=(accuracy over training set)-z*(standard deviation).

3 Perceptrons / SVMs

discriminant function: $\quad f: R^{n} \rightarrow R$
$f(x)=0$ defines a decision surface dichotomizing R^{n} into two regions: $f(x)<0, f(x)>0$.
two category classification:

$$
c_{1} \text { if } f(x)>0 ; c_{2} \text { if } f(x)<0
$$

multi-category classification (for k possible categories):
C_{t} if $\quad \underset{i}{\operatorname{argmax}}\left\{f_{i}(x)\right\}=t \quad \mathrm{k}$ discriminant functions voting.
C_{t} if $\underset{i}{\operatorname{argmax}}\left\{f_{i j}(x),-f_{j i}(x)\right\}=t \quad \mathrm{k}(\mathrm{k}-1) / 2$ discriminant functions pairwise voting.
linear discriminant function: $g(\vec{x})=\vec{w}^{T} \cdot \vec{X}+w_{0} \quad g(x)=0$ defines an hyperplane.
thresholded perceptron:

$$
o=\operatorname{sign}(g(\vec{x}))=\operatorname{sign}\left(\vec{w}^{T} \cdot \vec{x}+w_{0}\right)
$$

training rule

$$
\Delta w_{i}=\eta \sum_{d \in D}\left(t_{d}-o_{d}\right) x_{i d}
$$

-converges into separating hyperplane if:

1) data is linearly separable
2) η is small enough
unthresholded perceptron:

$$
o=g(\vec{x})=\vec{w}^{T} \cdot \vec{x}+w_{0}
$$

training rule:

$$
\Delta w_{i}=\eta \sum_{d \in D}\left(t_{d}-o_{d}\right) x_{i d}
$$

-converges into global minimum of the MSE $\quad E(\vec{w})=\frac{1}{2} \sum_{d \in D}\left(t_{d}-o_{d}\right)^{2} \quad$ if η is small enough.
generalized linear discriminant function: $\quad g(\vec{x})=\vec{w}^{T} \cdot \phi(\vec{x})$

- where ϕ is some non-linear mapping $\phi: R^{d} \rightarrow R^{\hat{d}}$.
$-\mathrm{g}(\mathrm{x})$ will be linear in the dimension \hat{d}.
dual perceptron:

$$
\begin{gathered}
\vec{w}^{T} \cdot \vec{x}+w_{0}=\left(\sum_{j} a_{j} t_{j} \vec{x}_{j}\right) \cdot \vec{x}+w_{0} \\
a_{i}=a_{i}+\eta, w_{0}=w_{0}+\eta \quad \text { if } \quad t_{i}\left(\sum_{j} a_{j} t_{j}\left(\vec{x}_{j} \cdot \vec{x}_{i}\right)+w_{0}\right)<0
\end{gathered}
$$

inner product $\left(\vec{x}_{j} \cdot \vec{x}_{i}\right)$ can be replaced by kernel $K\left(\vec{x}_{j}, \vec{x}_{i}\right)$ in attempt to linearly separate the problem space in a higher dimension.

Support Vector Machines

the best separating hyperplane in the mapped/original space is the one which maximizes the margin b (positive distance of hyperplane from closest point):
maximize b

$$
\text { subject to: } \quad \frac{y_{i}\left(\vec{a}^{T} \phi\left(x_{i}\right)+a_{0}\right)}{\|\vec{a}\|} \geq b
$$

constraining $\quad b=\frac{1}{\|\vec{a}\|}$ for a single solution would lead to:

$$
\begin{array}{ll}
\operatorname{minimize} & \frac{1}{2}\|\vec{a}\|^{2} \\
\text { subject to: } & y_{i}\left(\vec{a}^{T} \phi\left(x_{i}\right)+a_{0}\right)-1 \geq 0
\end{array}
$$

this can be solved using Lagrange multipliers.

feed-forward
back-propagation

layer	net activation	net output	sensitivity (error)	learning rule
input unit i	x_{i}	x_{i}	-	-
hidden unit j	net $_{\mathrm{j}}=\sum_{\mathrm{i}} \mathrm{X}_{\mathrm{i}} \mathrm{W}_{\mathrm{ji}}$	$\mathrm{y}_{\mathrm{j}}=\mathrm{f}\left(\right.$ net $\left._{\mathrm{j}}\right)$	$\delta_{j}=f^{\prime}\left(n e t_{j}\right) \cdot \sum_{k} \delta_{k} w_{k j}$	$\Delta w_{j i}=\eta \delta_{j} x_{i}$
output unit k	net $_{\mathrm{k}}=\sum_{\mathrm{j}} \mathrm{y}_{\mathrm{j}} \mathrm{W}_{\mathrm{kj}}$	$\mathrm{z}_{\mathrm{k}}=\mathrm{f}\left(\right.$ net $\left._{\mathrm{k}}\right)$	$\delta_{k}=\left(t_{k}-\mathrm{z}_{k}\right) f^{\prime}\left(n e t_{k}\right)$	$\Delta w_{k j}=\eta \delta_{k} y_{j}$

- the training rule minimizes the MSE for every given pattern: $\quad J=\frac{1}{2}\|\vec{t}-\vec{z}\|^{2}$
- generally, weights are updated in a gradient descent manner: $\Delta w=-\eta \frac{\partial J}{\partial w}=\eta \delta x$
- might fall into local minima (since error surface is not parabolic it this case).
-- try to overcome by stochastic learning (new error surface for every sample).
-- try to overcome using momentum $\Delta w_{(t+1)}=\eta \delta x+\alpha \Delta w_{(t)} \quad$ to keep gradient descending.
-- try to overcome by training multiple networks with different initial weights.
- sigmoid activation function $\quad \sigma($ net $)=\frac{1}{1+e^{-n e t}} \quad, \quad \sigma^{\prime}(x)=\sigma(x)(1-\sigma(x)) \quad, 0<\sigma(x)<1$
- representational power:
-- a single unit will always produce a linear decision boundary.
-- boolean function can be represented by two-layered thresholded network.
-- bounded continuous function can be approximated using one hidden layer.
-- any function can be approximated using two hidden layers.

5 Bayesian Learning

Mean, Variance, Covariance:

$$
\begin{array}{cc}
E[x]=\mu_{x}=\sum_{v \in \operatorname{vals}(x)} v \cdot P(x=v) & E[x]=\mu_{x}=\int_{-\infty}^{\infty} x \cdot P(x) d x \\
\operatorname{Var}(x)=\sigma_{x}^{2}=E\left[\left(x-\mu_{x}\right)^{2}\right]=\sum_{v \in v a l s(x)}\left(v-\mu_{x}\right)^{2} \cdot P(x=v) & \operatorname{Var}[x]=\sigma_{x}^{2}=\int_{-\infty}^{\infty}\left(x-\mu_{x}\right)^{2} \cdot P(x=v) d x \\
\operatorname{Cov}(x, y)=\sigma_{x y}=\sum_{v \in v \operatorname{vals}(x)} \sum_{u \in v a l s(y)}\left(v-\mu_{x}\right)\left(u-\mu_{y}\right) P(x=v, y=u) & \operatorname{Cov}(x, y)=\sigma_{x y}=\int_{-\infty}^{\infty}\left(x-\mu_{x}\right)\left(y-\mu_{y}\right) P(x, y) d x
\end{array}
$$

-Conditional Probability:

$$
P(x \mid y)=P(x, y) / P(y)
$$

-variables x and y are statistical independent iff $P(x, y)=P(x) P(y)$
-if x and y are independent, then they are also uncorrelated, i.e. $\operatorname{Cov}(\mathrm{x}, \mathrm{y})=0$.
-Law of total Probability:

$$
\begin{aligned}
& \mathrm{P}(\mathrm{x})=\sum_{\mathrm{y}} \mathrm{P}(\mathrm{x}, \mathrm{y})=\sum_{\mathrm{y}} \mathrm{P}(\mathrm{x} \mid \mathrm{y}) \mathrm{P}(\mathrm{y}) \\
& \underbrace{P(h \mid d)}_{\text {posterior }}=\underbrace{P(d \mid h)}_{\text {likelihood }} \cdot \underbrace{P(h)}_{\text {prior }} / \underbrace{P(d)}_{\text {evidence }}
\end{aligned}
$$

-Risk(the probability for wrong classification): $\quad R\left(h_{i} \mid d\right)=\sum_{j \neq i} P\left(h_{j} \mid d\right)=1-P\left(h_{i} \mid d\right)$

- MAP hypothesis:

$$
h_{M A P}=\underset{h}{\operatorname{argmax}} P(d \mid h) P(h)
$$

-- if $\mathrm{P}(\mathrm{h})$ is assumed to be uniform for every $\mathrm{h}: \quad h_{M A P}=h_{M L}=\underset{h}{\operatorname{argmax}} P(d \mid h)$
-- log likelihood classifier: $\quad h_{\text {MAP }}=\underset{h}{\operatorname{argmax}} \ln (P(d \mid h) \cdot P(h))=\underset{h}{\operatorname{argmax}} \ln (P(d \mid h))+\ln (P(h))$
-- any consistent learner produces a MAP hypothesis if we assume:

1) uniform priors $P(h)$.
2) error free training set.

Naive Bayesian Classifier: $\quad h_{N B}=\underset{h}{\operatorname{argmax}} P\left(a_{1}, a_{2, .} . ., a_{n} \mid h\right) \cdot P(h)=\underset{h}{\operatorname{argmax}} P(h) \cdot \prod_{i=1}^{n} P\left(a_{i} \mid h\right)$
-- assumes independence of $a_{1}, a_{2}, \ldots, a_{n}$ for computational efficiency.
-- M-Estimate for likelihoods:

$$
P\left(a_{i} \mid h\right)=\frac{n_{\left(a=a_{1} \wedge t=h\right)}+m P\left(a=a_{i}\right)}{n_{(t=h)}+m}
$$

$$
\text { -- Laplace Estimate for likelihoods: } \quad P\left(a_{i} \mid h\right)=\frac{n_{\left(a=a_{i} \wedge t=h\right)}+1}{n_{(t=h)}+\mid \text { values }(a) \mid}
$$

6 Density Estimation

- Normal distribution: $\quad p(x) \approx N\left(\mu, \sigma^{2}\right)=\frac{1}{\sqrt[d]{2 \pi} \sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} \quad p(\vec{x}) \approx N(\vec{\mu}, \Sigma)=\frac{1}{\sqrt[d]{2 \pi} \cdot|\Sigma|^{1 / 2}} e^{-\frac{(\vec{x}-\vec{\mu})^{T} \Sigma^{-1}(\vec{x}-\vec{\mu})}{2}}$
-- CLT: the dist of n samples mean selected from some dist $F\left(\mu, \sigma^{2}\right)$ is $N\left(\mu, \sigma^{2} / n\right)$.
-- if $p(x) \approx N\left(\mu_{x}, \sigma_{x}{ }^{2}\right) \quad, \quad p(y) \approx N\left(\mu_{y}, \sigma_{y}{ }^{2}\right)$ then $p(\alpha x+\beta y) \approx N\left(\alpha \mu_{x}+\beta \mu_{y},\left(\alpha \sigma_{x}\right)^{2}+\left(\beta \sigma_{y}\right)^{2}\right)$.
-- if $p(\vec{x}) \approx N(\vec{\mu}, \Sigma) \quad, \quad \vec{y}=A^{T} \cdot \vec{x}$ then $p(\vec{y}) \approx N\left(A^{T} \cdot \vec{\mu}, A^{T} \sum A\right)$.
- Discriminant function: $\quad g_{i}(\vec{x})=P\left(\vec{x} \mid A_{i}\right) \cdot P\left(A_{i}\right)=\frac{1}{\sqrt[d]{2 \pi} \cdot\left|\sum_{i}\right|^{1 / 2}} e^{-\frac{\left(\vec{x}-\vec{\mu}_{i}\right)^{T} \Sigma_{i}^{-1}\left(\vec{x}-\vec{\mu}_{i}\right)}{2}} \cdot P\left(A_{i}\right)$
- Log-Likelihood discriminant:

$$
g_{i}(\vec{x})=\ln \left(P\left(\vec{x} \mid A_{i}\right) \cdot P\left(A_{i}\right)\right)=-\frac{1}{2}\left(\vec{x}-\vec{\mu}_{i}\right)^{T} \Sigma_{i}^{-1}\left(\vec{x}-\vec{\mu}_{i}\right)-\frac{d}{2} \ln (2 \pi)-\frac{1}{2} \ln \left|\Sigma_{i}\right|+\ln \left(P\left(A_{i}\right)\right)
$$

- Covariance Matrix:

$$
\Sigma=E\left[(\vec{x}-\vec{\mu})^{T} \cdot(\vec{x}-\vec{\mu})\right]
$$

$$
(\Sigma)_{i, j}=(\Sigma)_{j, i}=\sigma_{i j}
$$

-- measures the covariance for every pair of components of any sample vector x.
-- the sample components are uncorrelated iff Σ is diagonal.

Cov	Discriminant function	decision boundary
$\Sigma_{i}=\sigma^{2} I$	$g_{i}(x)=-\left(x^{t} x-2 \mu_{i} x+\mu_{i}^{t} \mu_{i}\right) / 2 \sigma^{2}+\ln \left(P\left(A_{i}\right)\right)$ linear since $x^{t} x / 2 \sigma^{2}$ is same for any i and can be omitted	$x=1 / 2\left(\mu_{i}+\mu_{j}\right)-\left(\sigma /\left(\mu_{i}-\mu_{j}\right)\right)^{2} \ln \left(P\left(A_{i}\right) / P\left(A_{j}\right)\right)\left(\mu_{i}-\mu_{j}\right)$ d-dimensional hyperplane closer to the class with the lower prior $P(A)$ and orthogonal to the line linking the means.
$\Sigma_{i}=\Sigma$	$g_{i}(x)=1 / 2\left(x-\mu_{i}\right)^{T} \Sigma^{-1}\left(x-\mu_{i}\right)+\ln \left(P\left(A_{i}\right)\right)$ square of mahalanobis distance from the mean plus some bias.	$x=1 / 2\left(\mu_{i}+\mu_{j}\right)-\left(\left(\mu_{i}-\mu_{j}\right)^{T} \Sigma^{-1}\left(\mu_{i}-\mu_{j}\right)\right)^{-1} \ln \left(P\left(A_{i}\right) / P\left(A_{j}\right)\right)\left(\mu_{i}-\mu_{j}\right)$ same as the former case, but not necessarily orthogonal to the line linking the means.
$\Sigma_{i} \neq \Sigma_{\mathrm{j}}$	general log-likelihood,quadratic.	complex, non-linear.

Parametric techniques:
-Maximum Likelihood Estimation:
given the likelihood of samples drawn independently from set D : $\quad p(D \mid \theta)=\prod_{\vec{x} \in D} p(\vec{x} \mid \theta)$
the log likelihood is: $l(\theta)=\ln (p(D \mid \theta))=\sum_{\vec{x} \in D} \ln (p(\vec{x} \mid \theta))$
find the dist parameters maximizing the log-likelihood: $\hat{\theta}=\underset{\theta}{\operatorname{argmax}} l(\theta)$
the gradient at $\hat{\theta}$ should be is $0: \quad \frac{\partial l(\theta)}{\partial \theta}=\sum_{\vec{x} \in D} \frac{d \ln (p(\vec{x} \mid \theta))}{d \theta}=0$
--for normal dist: $\quad \hat{\theta}=(\hat{\mu}, \hat{\Sigma})=\left(\frac{1}{|D|} \sum_{\vec{x} \in D} \vec{x}, \frac{1}{|D|} \sum_{\vec{x} \in D}(\vec{x}-\hat{\mu})^{T}(\vec{x}-\hat{\mu})\right) \quad$ such that $\quad \sum_{\text {true }}=\frac{|D|}{|D|-1} \hat{\Sigma}$
-Bayesian Estimation: $\quad p(x \mid D)=\int p(x \mid \theta) p(\theta \mid D) d \theta$
Non Parametric techniques (no assumptions on true distributions):
$\mathrm{n}=$ num of samples, $\mathrm{k}=$ num samples falling in same region with $\mathrm{x}, \mathrm{V}=$ region volume.
-Parzen Window: $\quad \hat{p}(x)=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{h^{d}} \varphi\left(\frac{\vec{x}-\vec{x}_{i}}{h}\right) \quad \hat{p}(x \mid c)=\frac{1}{n_{c}} \sum_{\vec{x}_{c} \in c} \frac{1}{h^{d}} \varphi\left(\frac{\vec{x}-\vec{x}_{c}}{h}\right) \quad \hat{p}(x) \underset{h \rightarrow 0, n \rightarrow \infty}{\rightarrow} p(x)$
V is predetermined by h^{d} while k varies by this region.
-K nearest neighbors: $\quad \hat{p}(x) \approx \frac{k}{n V} \quad P\left(A_{i} \mid x\right)=\frac{k_{i}}{k} \quad P\left(x \mid A_{i}\right)=\frac{k_{i}}{n_{i} V} \quad P\left(A_{i}\right)=\frac{k_{i}}{n_{i}}$
k is constant while V depends on distance from k^{th} closest neighbor.

7 Dimensionality

Filter method: select features according to some objective function (i.e. correlation with target: $\rho_{x y}=\frac{\sigma_{x y}}{\sigma_{x} \sigma_{y}}$)

Wrapper method: select features according to classification performance using each subset

- infeasible (requires $n!/(s!(n-s)!)$ trials for subset from size $s=1, \ldots, n$). may use greedy search methods.
- forward selection: choose each time the next feature most improving classification accuracy.
- backward selection: start with all features, remove next feature least reducing classification accuracy.
- combine random search of features, may overcome local-minima.
- slower performance than filters.

Feature extraction methods (transform the problem space into reduced dimension space):

PCA

- orthogonal transformation of the problem space into dimensionally lower one.
- new center of new axes would be the samples mean.
- axes are rotated in such that (principal) components of transformed sample will descend by variance.
- $y_{i}=\mathrm{A}\left(x_{i}-m\right)$ where: $m=$ samples mean; A contains the d' highest eigenvalued eigenvectors of the scatter matrix.
- criteria: the distance from any sample to its projection on $m: \quad J\left(a_{1}, \ldots, a_{n}, \vec{e}\right)=\sum_{k=1, \ldots, n}\left\|\left(\vec{m}+a_{k} \vec{e}\right)-\vec{x}_{k}\right\|^{2}$
- finds d' components of the samples with highest variance from mean (with greatest scatter).

FLD

- project multi-dimensional samples onto a single line: $y_{i}=W^{\top} x_{i}$.
- criteria: maximize the between class scatter / within class scatter ratio: $J(\vec{w})=\frac{\left|\tilde{m}_{1}-\tilde{m}_{2}\right|^{2}}{\tilde{s}_{1}{ }^{2}+\tilde{s}_{2}{ }^{2}}$

$$
\begin{aligned}
& \text { where: } \quad \tilde{m}_{i}=\frac{1}{\left|C_{i}\right|} \sum_{\vec{x} \in C_{i}} \vec{x} \quad, \quad \tilde{S}_{i}=\sum_{\vec{x} \in C_{i}}\left(\vec{w}^{T} \vec{x}-\tilde{m}_{i}\right)^{2} \\
& \text { notation: } \quad S_{W}=\sum_{\vec{x} \in C_{1}}\left(\vec{x}-\tilde{m}_{1}\right)\left(\vec{x}-\tilde{m}_{1}\right)^{T}+\sum_{\vec{x} \in C_{2}}\left(\vec{x}-\tilde{m}_{2}\right)\left(\vec{x}-\tilde{m}_{2}\right)^{T} \quad, \quad S_{B}=\left(\tilde{m}_{1}-\tilde{m}_{2}\right)\left(\tilde{m}_{1}-\tilde{m}_{2}\right)^{T} \\
& \text { hence: } \quad J(\vec{w})=\frac{\vec{w}^{T} S_{B} \vec{w}}{\vec{w}^{T} S_{W} \vec{w}} \\
& \qquad \frac{\partial J(\vec{w})}{\partial \vec{w}}=0 \Rightarrow \vec{w}=S_{W}{ }^{-1}\left(\tilde{m}_{1}-\tilde{m}_{2}\right)
\end{aligned}
$$

- resulting discriminant function: C_{1} if $\vec{w}^{T} \vec{X}>w_{0} ; C_{2}$ otherwise.

MDS

- dimensionality reduction between spaces according to minimal loss of distances proportions between items.
- objective function to be minimized is some sort of strain function: $\quad E=\sum_{i<j}\left(d\left(\vec{x}_{i}, \vec{x}_{j}\right)-d\left(\vec{y}_{i}, \vec{y}_{j}\right)\right)^{2}$.
- instead of a scatter matrix, use dissimilarity/distance matrix S : $\mathrm{S}_{\mathrm{ij}}=\mathrm{d}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)=\mathrm{d}\left(\mathrm{X}_{\mathrm{j}}, \mathrm{X}_{\mathrm{i}}\right)$.
- useful in visualization of similarities/dissimilarities of items in one space as distances in another space.

8 Computational Learning Theory

Evaluating Hypothesis

True hypothesis error over samples with dist :
Test error of n samples where r of them are misclassified by h :
Estimation of true error within confidence interval of N\%:

$$
\begin{aligned}
& \operatorname{error}_{\text {dist }}(h)=P_{x \in \text { dist }}(h(x) \neq c(x)) \\
& \operatorname{error}_{S}(h)=r / n \\
& \operatorname{error}_{\text {dist }}(h) \leq \frac{1}{n}\left(r+z_{N}\left(\frac{r}{n}\right)\left(1-\frac{r}{n}\right)\right)
\end{aligned}
$$

PAC-Learnability

concepts class C of problem space X is PAC-learnable by learner L using H if for all $c \in C$, distributions of X , L will produce an hypothesis h for which $\operatorname{error}_{\text {dist }}(h) \leq \epsilon$ within probability (1- δ) such that $0<\delta<1 / 2,0<\varepsilon<1 / 2$ and in polynomial time with respect to $1 / \delta, 1 / \varepsilon$, length(any c in C) and length(any x in X).

VC dimension

$\mathrm{VC}(\mathrm{H})=$ maximal size of subset of X shattered by H (any possible dichotomy of X is satisfied by some $h \in H$).

$H=\{a<x<b \mid a, b \in R\}$	$\mathrm{X}=\mathrm{R}$	$\mathrm{VC}(\mathrm{H})=2$
$H=\left\{\vec{w}^{T} \vec{x}+b \mid \vec{w} \in R^{d}, b \in R\right\}$	$\mathrm{X}=\mathrm{R}^{\mathrm{d}}$	$\mathrm{VC}(\mathrm{H})=d+1$
$H=A N N$ of $s d$-inputs perceptrons	$\mathrm{X}=\mathrm{R}^{\mathrm{d}}$	$\mathrm{VC}(\mathrm{H})<=2 \mathrm{~s}(r+1) \log \left(e^{*} s\right)$
$H=$ conjunction of n-boolean literals	$\mathrm{X}=\{0,1\}^{\mathrm{n}}$	$\mathrm{VC}(\mathrm{H})=n$

Sample Complexity

1) The non-agnostic case (assuming that the target concept is in H):
-The probability that $\mathrm{VS}(\mathrm{H}, \mathrm{D})$ may contain an ε-bad hypothesis (for which $\operatorname{error}_{\text {dist }}(h) \geq \epsilon$) is at most $|\mathrm{H}| \mathrm{e}^{-\varepsilon|\mathrm{D}|}$
-- This is the upper bound for failure probability of learner L to PAC-learn the concept class C: $|H| e^{-\epsilon|D|} \leq \delta$
-- This will provide us the minimal number of sample required for PAC-Learnability: $\quad|D| \geq \frac{1}{\epsilon}\left(\ln |H|-\ln \left(\frac{1}{\delta}\right)\right)$
2) The agnostic case (no assumption that the target concept is in H):
-The probability of an agnostic learner to choose hypothesis h for which errors(h)-errordist $(h)>\varepsilon:|H| e^{-2|D| \varepsilon^{2}}$
-- This is a lower bound for minimal number of samples for PAC-learnability $\quad|D| \geq \frac{1}{2 \epsilon^{2}}\left(\ln |H|-\ln \left(\frac{1}{\delta}\right)\right)$
3) The infinite hypothesis space case:

- Number of training samples sufficient for PAC-learnability: $\quad|D| \geq \frac{1}{\epsilon}\left(4 \log _{2}(2 / \delta)+8 \mathrm{VC}(H) \log _{2}(13 / \epsilon)\right)$
- Number of training samples required at least for PAC-learnability: $\max \left[\frac{1}{\epsilon} \log (1 / \delta), \frac{V C(C)-1}{2 \epsilon}\right]$
-- This is true for any $\mathrm{C}, \delta, \varepsilon$ holding $\mathrm{VC}(\mathrm{C})>=2,0<\delta<0.01,0<\varepsilon<0.125$

PAC-Learnability Criterias:

1) Existence of a consistent/agnostic learner.
2) Number of samples satisfies the appropriate bound and is polynomial.
3) Processing time of the learner for each sample is polynomial.

9 Unsupervised Learning

Parametric

EM:

- Initialize the distribution parameters
- Repeat until convergence:

E-Step: estimate the [E]xpected value of the unknown variables, given the current parameter estimate:

$$
\mathrm{Q}\left(\mathrm{~h}^{\prime} \mid \mathrm{h}\right) \leftarrow \mathrm{E}\left[\ln \mathrm{P}\left(\mathrm{Y} \mid \mathrm{h}^{\prime}\right) \mid \mathrm{h}, \mathrm{X}\right] \quad \mathrm{Y}=\mathrm{XUZ}(\mathrm{X}=\text { observable data, } \mathrm{Z}=\text { unobservable data })
$$

M -Step: re-estimate the distribution parameters to [M]aximize the likelihood of the data, given the expected estimates of the unknown variables: $\quad \mathrm{h} \leftarrow a \operatorname{argmaxh}{ }^{\prime} \mathrm{Q}(\mathrm{h} \mid \mathrm{h})$

EM for K-Gaussian means:

1) Expectation: $E\left[z_{i j}\right]=P\left(A_{j} \mid x_{i}\right)=\frac{p\left(x_{i} \mid \mu_{j}, \nu_{j}\right) P\left(A_{j}\right)}{\sum_{k=1}^{c} p\left(x_{i} \mid \mu_{k}, \Sigma_{k}\right) P\left(A_{k}\right)} \quad$ since $\mathrm{E}[\ln \mathrm{P}(\mathrm{Y} \mid \mathrm{h})]$ is a function of $\mathrm{E}\left[\mathrm{Z}_{\mathrm{i} j}\right]$.
2) Maximization: $\quad \mu_{j}^{\text {next }}=\frac{\sum_{i=1}^{|x|} E\left[z_{i j}\right] x_{i}}{\sum_{i=1}^{|X|} E\left[z_{i j}\right]}, \quad \sum_{j}^{\text {next }}=\frac{\sum_{i=1}^{|X|} E\left[z_{i j}\right]\left(x_{i}-\mu_{j}^{\text {next }}\right)^{2}}{\sum_{i=1}^{|x|} E\left[z_{i j}\right]}$

K-means Clustering

- initialize the means: $\mu_{1}, \mu_{2}, \ldots, \mu_{k}$
- repeat until no change in $\mu_{1}, \mu_{2}, \ldots, \mu_{\mathrm{k}}$:
- classify each sample with its closest mean
- recompute $\mu_{1}, \mu_{2}, \ldots, \mu_{\mathrm{k}}$ as the means of the new clusters

Properties:
-- K-means EM using Euclidean distances from means instead of Mahalanobis and uniform priors $\mathrm{P}\left(\mathrm{A}_{\mathrm{i}}\right)$.
-- Convergence is assured only for Euclidean spaces.
-- Fuzzy version: replace the $0 / 1$ membership with probability criteria: $P\left(A_{i} \mid x_{\mathrm{j}}\right)=\left\|\mathrm{x}_{\mathrm{j}}-\mu_{i}\right\|^{2 /(1-\mathrm{b})} / \sum_{\mathrm{r}=1, \ldots, \ldots c}\left\|\mathrm{x}_{\mathrm{j}}-\mu_{r}\right\|^{2 /(1-\mathrm{b})}$.

Non-Parametric

Metrics:
Criterion functions to be optimized : $\mathrm{S}_{\mathrm{W}}, \mathrm{S}_{\mathrm{B}}, \mathrm{S}_{\mathrm{T}}=\mathrm{S}_{\mathrm{w}}+\mathrm{S}_{\mathrm{B}}$
Inter-Clusters Similarity measures: $\mathrm{d}_{\text {min }}, \mathrm{d}_{\text {max }}, \mathrm{d}_{\text {avg }}, \mathrm{d}_{\text {means }}$
Hierarchical Clustering

- Find most similar clusters and join them together as a single cluster, repeat this procedure c times.

Mean-Shift
Move Parzen Window towards maximum increase in density.

- move from any point in the direction of the gradient: $x(t+1)=x(t)+M S V(x(t))$.

$$
\operatorname{MSV}(x) \approx \nabla\left(\frac{1}{n h^{d}} \sum_{i=1}^{n} K\left(\frac{x-x_{i}}{h}\right)\right)
$$

- as a result, the Parzen window mean would shift towards center of mass.
--- Clustering: Classify points converging towards same center of mass the same.
--- Filtering: Repeat mean shift for each point x_{i} till convergence to some mass. z_{i}. use z_{i} instead of x_{i}.

Quick-Sheet

Derivatives
$\frac{d}{d x} x=1$
$\frac{d}{d x} \mathrm{x}^{\mathrm{n}}=\mathrm{nX}^{(\mathrm{n}-1)}$
$\frac{d}{d x} \mathrm{e}^{\mathrm{x}}=\mathrm{e}^{\mathrm{x}}$
$\frac{d}{d x} \mathrm{~b}^{\mathrm{x}}=\mathrm{b}^{\mathrm{x}} \ln (\mathrm{b})$
$\frac{d}{d x} \ln (x)=1 / x$

Derivatives Identities
$\frac{d}{d x} \mathrm{C}(\mathrm{x})=\mathrm{C} \frac{d}{d x} \mathrm{f}(\mathrm{x})$
$\frac{d}{d x}(\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x}))=\frac{d}{d x} \mathrm{f}(\mathrm{x})+\frac{d}{d x} \mathrm{~g}(\mathrm{x})$
$\frac{d}{d x} \mathrm{f}(\mathrm{g}(\mathrm{x}))=\frac{d}{d g} \mathrm{f}(\mathrm{g}) * \frac{d}{d x} \mathrm{~g}(\mathrm{x})$
$\frac{d}{d x} f(x) g(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$
$\frac{d}{d x} f(x) / g(x)=\left(f^{\prime}(x) g(x)-f(x) g^{\prime}(x)\right) / g^{2}(x) \quad$ (quotient rule)

Logarithms
$\log _{\mathrm{b}}(m n)=\log _{\mathrm{b}}(m)+\log _{\mathrm{b}}(n)$
$\log _{\mathrm{b}}\left({ }^{m} /{ }_{n}\right)=\log _{\mathrm{b}}(m)-\log _{\mathrm{b}}(n)$
$\log _{\mathrm{b}}\left(m^{n}\right)=n \cdot \log _{\mathrm{b}}(m)$
$\ln (m)=\log _{\mathrm{e}}(m)$

