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1 Concept Learning

Given data set D of samples x1,x2,..,xn  and their classifications c(x1),c(x2),..,c(xn) , find hypothesis h such that for 
every xi in D, h(xi)=c(xi).

Algorithms

FIND-S
- start with the most specific hypothesis h in H
- for every positive sample x:

-if any attribute in h causes it to reject sample x, 
change it to next most specific one agreeing with x.

LIST-THEN-ELIMINATE
- start with VS=H
- remove from VS every hypothesis inconsistent with any sample from D.

CANDIDATE-ELIMINATION
- start with the most specific boundary S={<0,0,0...,0>}
- start with the most general boundary G={<?,?,?,...,?>}
- for positive sample x:
  -- remove any hypothesis from G which rejects x.
  -- replace any hypothesis in S which rejects x with its minimal generalizations accepting x 

not more general than all hypotheses in G.
- for negative sample x:
  -- remove any hypothesis from S which accepts x.
  -- replace any hypothesis in G which accepts x with its minimal specifications rejecting x 

not more specific than all hypotheses in S.

Definitions

- hypothesis g is more general than s iff g accepts any instance accepted by s.
- hypothesis h is consistent with sample x iff h(x)=c(x).
- hypothesis h is consistent with samples set D iff h(x)=c(x) for every x from D.
- version space VS(H,D)={h from H| h is consistent with D}.
- inductive bias: assumptions made by the learner required to predict the target output for unobserved samples.

inductive biases used by concept learning algorithms:

CANDIDATE ELIMINATION: the target concept c is in H, bounded by g>=c>=s for s∈S,g∈G.

FIND-S: the target concept is in H, accepting only the observed positive samples.



2 Decision Trees

- non leaf nodes test an attribute.
- each branch corresponds to possible attribute value.
- each leaf node provides a classification.

ID3
- if all examples have the same classification c, return root node with label c.
- if no attributes were left for splitting, return root node with most common classification of the examples as the 
node label.
-otherwise:

- choose the best attribute A for splitting (A reduces the entropy the most).
- for each possible value v of A:

- add a new branch, corresponding to A=v.
- repeat the process for this branch with the examples where A=v and  the remaining attributes.

ID3 Properties

- H is a complete space of finite discrete valued functions.
- maintains a single possible hypothesis during search (incomplete search).
- no backtracking, greedily splits at each step, might fall into local optima.
- bias: prefers shorter trees with higher gain measure closer to the root.

Measures

-Entropy (classification impurity measure): 

Entropy S=∑i=1,. .., c
−
∣Si∣
∣S∣

log2

∣Si∣
∣S∣

 where Si is the subset of samples classified with i.

-Gain (reduction of entropy for splitting by attribute A):

GainS , A=Entropy S −∑v∈valuesA 

∣SA=v∣
∣S∣

Entropy S A=v

-Gain Ratio (variation of Gain for multi-valued attribute A): 

GainRatioS , A =
Gain S, A

SplitInformation S, A
split-information is the entropy with respect to A instead of classification. 

Pruning

- Discard tree portions that worsen the estimated accuracy/cause overfitting. 

Reduced Error Pruning

- split samples set to train and validation data.
- discard any subtree if this improves classification rate over validation data.
- results in the minimal most accurate subtree.

Rules Post Pruning

- grow tree until it overfits training data.
- convert each path from root to any leaf node to corresponding rule.
- generalize rules by pruning their preconditions if it improves their accuracy.
- sort rules by estimated accuracy, using them by this order.
- (estimated accuracy)=(accuracy over training set)-z*(standard deviation).



3 Perceptrons / SVMs 

discriminant function: f : RnR
f(x)=0 defines a decision surface dichotomizing Rn into two regions: f(x)<0,f(x)>0.

two category classification: 
c1 if f(x)>0 ; c2 if f(x)<0

multi-category classification (for k possible categories):

Ct if argmax
i

{f i x }=t k discriminant functions voting.

Ct if argmax
i

{f ij x ,− f jix }=t k(k-1)/2 discriminant functions pairwise voting.

linear discriminant function: gx =wT⋅xw0   g(x)=0 defines an hyperplane.

thresholded perceptron: o=signg x =sign  wT⋅xw0

training rule  wi=∑
d∈D

td−od xid

-converges into separating hyperplane if: 
1) data is linearly separable
2) η is small enough

unthresholded perceptron: o=g x = wT⋅xw0

training rule: wi=∑
d∈D

td−od xid

-converges into global minimum of the MSE E w=
1
2∑d∈D

 td−od 
2

if η is small enough.

 
generalized linear discriminant function: gx =wT⋅x   

- where ф is some non-linear mapping : RdR
d .

- g(x) will be linear in the dimension d .

dual perceptron: wT⋅xw0=∑ j
a j t j x j ⋅xw0

training rule:  ai=ai , w0=w0 if t i ∑ j
a j t j x j⋅xiw00

inner product  x j⋅xi  can be replaced by kernel K  x j , xi  in attempt to linearly separate the problem space 
in a higher dimension.

Support Vector Machines

the best separating hyperplane in the mapped/original space is the one which maximizes the margin b (positive 
distance of hyperplane from closest point):

maximize b

subject to:
y ia

Txi a0

∣∣a∣∣
≥b   

constraining b=
1
∣∣a∣∣

for a single solution would lead to:

minimize 
1
2
∣∣a∣∣

2

    subject to: yi a
T xia0−1≥0

this can be solved using Lagrange multipliers.



4 ANN

feed-forward back-propagation

layer net activation net output sensitivity (error) learning rule

input unit  i xi xi - -

hidden unit j netj=Σixiwji yj=f(netj)   j=f ' net j ⋅∑k
k wkj

w ji= j xi

output unit k netk=Σjyjwkj zk=f(netk)  k=t k−z k f ' net k w kj=k y j

- the training rule minimizes the MSE for every given pattern: J=
1
2
∣∣t−z∣∣

2

- generally, weights are updated in a gradient descent manner: w=−
∂ J
∂w
= x

- might fall into local minima (since error surface is not parabolic it this case).

-- try to overcome by stochastic learning (new error surface for every sample).

-- try to overcome using momentum w t1= xw t to keep gradient descending. 

-- try to overcome by training multiple networks with different initial weights.

- sigmoid activation function net =
1

1e−net
,  ' x = x 1− x  , 0 x 1

- representational power:

-- a single unit will always produce a linear decision boundary.

-- boolean function can be represented by two-layered thresholded network.

-- bounded continuous function can be approximated using one hidden layer.

-- any function can be approximated using two hidden layers.



5 Bayesian Learning

Mean, Variance, Covariance:

E[x ]= x= ∑
v∈vals  x 

v⋅P x=v  E [x ]=x=∫
−∞

∞

x⋅P x dx

Var x = x
2=E[ x−x

2]= ∑
v∈vals  x

v−x
2⋅P x=v  Var [x ]= x

2=∫
−∞

∞

x−x
2⋅P x=v dx

Cov x, y = xy= ∑
v∈vals  x 

∑
u∈vals  y 

v−xu− yP x=v , y=u  Cov x , y = xy=∫
−∞

∞

 x−x  y− yP x , y dx

-Conditional Probability: P(x|y)=P(x,y)/P(y)

-variables x and y are statistical independent iff P(x,y)=P(x)P(y)

-if x and y are independent, then they are also uncorrelated, i.e. Cov(x,y)=0.
 

-Law of total Probability: P(x)=Σy P(x,y)=Σy P(x|y)P(y) 

Bayes Rule:
Ph∣d 
posterior

=Pd∣h
likelihood

⋅Ph
prior

/P d 
evidence

-Risk(the probability for wrong classification): R(hi|d)=Σj≠iP(hj|d)=1-P(hi|d)

- MAP hypothesis: hMAP=argmax
h

Pd∣hP h 

-- if P(h) is assumed to be uniform for every h: hMAP=hML=argmax
h

P d∣h 

-- log likelihood classifier: hMAP=argmax
h

ln Pd∣h⋅Ph=argmax
h

ln P d∣h ln Ph

-- any consistent learner produces a MAP hypothesis if we assume:
1) uniform priors P(h). 
2) error free training set.

Naive Bayesian Classifier: hNB=argmax
h

Pa1, a2,. .. ,an∣h⋅Ph=argmax
h

Ph⋅∏
i=1

n

P ai∣h 

-- assumes independence of a1,a2,...,an for computational efficiency. 

-- M-Estimate for likelihoods:  Pai∣h=
na=ai∧t=hmPa=ai

nt=hm

-- Laplace Estimate for likelihoods:  Pai∣h=
na=a i∧t=h1

n t=h∣values a∣



6 Density Estimation

- Normal distribution:   p x ≈N  , 2
=

1
d2

e
−

1
2

x−



2

px ≈N  ,=
1

d2⋅∣∣
1/2 e

−
x−T−1 x−

2  

-- CLT: the dist of n samples mean selected from some dist F  ,2 is N  , 2/n  .
-- if p x ≈N x , x

2  , p  y ≈N  y , y
2  then p  x y ≈N x y , x

2 y
2 .

-- if p x≈N  , , y=AT⋅x then p y ≈N AT⋅, AT  A  .

- Discriminant function: gi x =P x∣Ai ⋅P A i=
1

d
2⋅∣ i∣

1/2 e
−
x−i

T i
−1x− i

2 ⋅PA i

- Log-Likelihood discriminant: 

gi x =ln P x∣A i ⋅P Ai =−
1
2
x−i

T
 i
−1
x−i−

d
2

ln 2−
1
2

ln∣ i∣ ln PA i

- Covariance Matrix: 
=E [x−T⋅x−]
i , j= j , i=ij

-- measures the covariance for every pair of components of any sample vector x.
-- the sample components are uncorrelated iff Σ is diagonal.

Cov Discriminant function decision boundary

Σi=σ2I gi(x)=-(xtx-2μix+μi
tμi)/2σ2+ln(P(Ai))

linear since xtx/2σ2 is same for any i and 
can be omitted

x=½(μi+μj)-(σ/(μi-μj))2ln(P(Ai)/P(Aj))(μi-μj)
d-dimensional hyperplane closer to the class with the lower 
prior P(A) and orthogonal to the line linking the means.

Σi=Σ gi(x)= ½(x-μi)TΣ-1(x-μi)+ln(P(Ai))
square of mahalanobis distance from the 
mean plus some bias.

x=½(μi+μj)-((μi-μj)TΣ-1(μi-μj))-1ln(P(Ai)/P(Aj))(μi-μj)
same as the former case, but not necessarily orthogonal to 
the line linking the means.

Σi≠Σj general log-likelihood,quadratic. complex, non-linear.

Parametric techniques:
-Maximum Likelihood Estimation: 

given the likelihood of samples drawn independently from set D: p D∣=∏
x∈D

p x∣

the log likelihood is: l=ln  p D∣=∑
x∈D

ln  px∣   

find the dist parameters maximizing the log-likelihood: 
=argmax



l

the gradient at  should be is 0: 
∂ l
∂ 

=∑
x∈D

d ln  p x∣
d 

=0

--for normal dist: =  , =
1
∣D∣
∑
x∈D

x ,
1
∣D∣
∑
x∈D
x−T x− such that  true=

∣D∣
∣D∣−1



-Bayesian Estimation: p x∣D =∫ p x∣ p ∣Dd 

Non Parametric techniques (no assumptions on true distributions):

 n=num of samples, k=num samples falling in same region with x, V=region volume.

-Parzen Window: p  x=
1
n∑i=1

n 1

hd

x−xi
h
 p x∣c =

1
nc
∑
xc∈c

1

hd

x− x c
h
 p x  

h0, n∞
p x 

V is predetermined by hd while k varies by this region. 

-K nearest neighbors: p  x≈
k
nV

PA i∣x =
k i
k

Px∣Ai =
k i
niV

PA i=
ki
ni

k is constant while V depends on distance from kth closest neighbor.



7 Dimensionality

Filter method: select features according to some objective function (i.e. correlation with target: xy=
 xy

 x y

)

Wrapper method: select features according to classification performance using each subset
- infeasible (requires n!/(s!(n-s)!) trials for subset from size s=1,...,n). may use greedy search methods.
- forward selection: choose each time the next feature most improving classification accuracy.
- backward selection: start with all features, remove next feature least reducing classification accuracy.
- combine random search of features, may overcome local-minima.
- slower performance than filters.

Feature extraction methods (transform the problem space into reduced dimension space):

PCA

- orthogonal transformation of the problem space into dimensionally lower one.
- new center of new axes would be the samples mean.
- axes are rotated in such that (principal) components of transformed sample will descend by variance.
- yi=A(xi-m) where: m=samples mean; A contains the d' highest eigenvalued eigenvectors of the scatter matrix. 

- criteria: the distance from any sample to its projection on m: J a1 , ..., an ,e =∑k=1,... ,n
∥make −xk∥

2

- finds d' components of the samples with highest variance from mean (with greatest scatter).

FLD

- project multi-dimensional samples onto a single line: yi=wTxi. 

- criteria: maximize  the between class scatter /  within class scatter ratio: J  w=
∣ m1− m2∣

2

s1
2
 s2

2

where: mi=
1
∣C i∣
∑
x∈C

i

x , si=∑
x∈C

i

 wTx− mi
2

notation: SW=∑
x∈C1

x− m1x− m1
T∑

x∈C 2

x− m2x− m2
T , SB= m1− m2 m1− m2

T

hence: J  w=
wT SB w

wT SW w
∂ J  w
∂ w

=0⇒ w=SW
−1 m1− m2

- resulting discriminant function: C1 if wTxw0 ; C2 otherwise .

MDS

- dimensionality reduction between spaces according to minimal loss of distances proportions between items.

- objective function to be minimized is some sort of strain function: E=∑i j
d  xi , x j−d  yi , y j

2
.

- instead of a scatter matrix, use dissimilarity/distance matrix S: Sij=d(xi,xj)=d(xj,xi).
- useful in visualization of similarities/dissimilarities of items in one space as distances in another space.



8 Computational Learning Theory

Evaluating Hypothesis

True hypothesis error over samples with dist : errordisth=Px∈disthx ≠c  x
Test error of n samples  where r of them are misclassified by h: errorS h=r /n

Estimation of true error within confidence interval of N%: errordisth≤
1
n
rzN 

r
n
1−

r
n


PAC-Learnability

concepts class C of problem space X is PAC-learnable by learner L using H if for all c∈C , distributions of  X, 
L will produce an hypothesis h for which errordisth≤ within probability (1-δ) such that 0<δ<1/2, 0<ε<1/2 
and in polynomial time with respect to 1/ δ,1/ε, length(any c in C) and length(any x in X).

VC dimension

VC(H)=maximal size of subset of X shattered by H (any possible dichotomy of X is satisfied by some h∈H ).

H={axb∣a,b∈R } X=R VC(H)=2

H={wTxb∣w∈Rd ,b∈R } X=Rd VC(H)=d+1

  H=ANN of  s d-inputs perceptrons X=Rd VC(H)<=2s(r+1)log(e*s)

  H=conjunction of n-boolean literals X={0,1}n VC(H)=n

Sample Complexity

1) The non-agnostic case (assuming that the target concept is in H):

-The probability that VS(H,D) may contain an ε-bad hypothesis (for which errordisth≥ ) is at most  |H|e-ε|D|

-- This is the upper bound for failure probability of  learner L to PAC-learn the concept class C: ∣H∣e−∣D∣≤

-- This will provide us the minimal number of sample required for PAC-Learnability: ∣D∣≥
1

ln∣H∣− ln 

1



2) The agnostic case (no assumption that the target concept is in H):

-The probability of an agnostic learner to choose hypothesis h for which errorS(h)-errordist(h)>ε : |H|e-2|D|ε2

-- This is a lower bound for minimal number of samples for PAC-learnability ∣D∣≥
1

22 ln∣H∣− ln 
1



3) The infinite hypothesis space case:

- Number of training samples sufficient for PAC-learnability: ∣D∣≥
1

4log22/ 8VC H  log2 13 /

- Number of training samples required at least for PAC-learnability: max [ 1


log 1/  ,
VC C −1

2
]

-- This is true for any C,δ,ε holding VC(C)>=2, 0< δ<0.01, 0<ε<0.125

PAC-Learnability Criterias:
1) Existence of a consistent/agnostic learner.
2) Number of samples satisfies the appropriate bound and is polynomial.
3) Processing time of the learner for each sample is polynomial.



9 Unsupervised Learning

Parametric 

EM:
-  Initialize the distribution parameters 
-  Repeat until convergence: 

E-Step: estimate the [E]xpected value of the unknown variables, given the current parameter estimate: 
Q(h'|h)←E[ln P(Y|h')|h,X] Y=XUZ (X=observable data, Z=unobservable data)

M-Step: re-estimate the distribution parameters to [M]aximize the likelihood of the data, given the 
expected estimates of the unknown variables: h←argmaxh' Q(h'|h)

EM for K-Gaussian means:

1) Expectation:
E[ z ij]=P A j∣xi =

p xi∣ j , jPA j 

∑
k=1

c

p xi∣k ,kPAk
since E[ln P(Y|h')] is a function of E[zij] .

2) Maximization:  j
next=
∑
i=1

∣X∣

E [ zij]xi

∑
i=1

∣X∣

E [ zij]

,  j
next=
∑
i=1

∣X∣

E [ zij]x i− j
next

2

∑
i=1

∣X∣

E [ zij]

 

K-means Clustering

- initialize the means: μ1, μ2,..., μk 

- repeat until no change in μ1, μ2,..., μk  :
- classify each sample with its closest mean
- recompute μ1, μ2,..., μk   as the means of the new clusters

Properties:
-- K-means EM using Euclidean distances from means instead of Mahalanobis and uniform priors P(Ai).
-- Convergence is assured only for Euclidean spaces.
-- Fuzzy version: replace the 0/1 membership with probability criteria:  P(Ai|xj)=||xj-μi||2/(1-b)/Σr=1,...,c||xj-μr||2/(1-b).

Non-Parametric

Metrics:
Criterion functions to be optimized : SW, SB, ST=SW+SB

Inter-Clusters Similarity measures: dmin, dmax, davg, dmeans

Hierarchical Clustering

- Find most similar clusters and join them together as a single cluster, repeat this procedure c times.

Mean-Shift 

Move Parzen Window towards maximum increase in density.

- move from any point in the direction of the gradient: x(t+1)=x(t)+MSV(x(t)). 
MSV  x≈ 

1

nhd
∑
i=1

n

K 
x−xi
h


- as a result, the Parzen window mean would shift towards center of mass.

--- Clustering: Classify points converging towards same center of mass the same.
--- Filtering:     Repeat mean shift for each point xi till convergence to some mass. zi . use zi instead of xi.



Quick-Sheet

Derivatives

 x = 1

 xn = n x(n-1)

 ex = ex

 bx = bx ln(b)

 ln(x) = 1/x

Derivatives Identities

c f(x) = c f(x) 

 (f(x) + g(x)) =  f(x) +  g(x)

 f(g(x)) =  f(g) *  g(x) (chain rule)

 f(x)g(x) = f' (x)g(x) + f(x)g '(x) (product rule)

f(x)/g(x)=(f'(x)g(x)-f(x)g'(x))/g2(x) (quotient rule)

Logarithms

logb(mn) = logb(m) + logb(n)

logb(m/n) = logb(m) – logb(n)

logb(mn) = n · logb(m)

ln(m) = loge(m)  


