Site hosted by Angelfire.com: Build your free website today!

LESSON PLAN

 ( July  to  December , Odd  Semester )

 

Name  of  the  Subject

:  Strength  of  Materials

Semester

:  I I I , S.E. ( Production )

Number  of  periods / week

:  4

Total  number  of  allotted  periods / semester

:  64

Total  number  of  planned  periods / semester

:  64

Total  number  of  weeks / semester

:  16

Number of practical hours / week

:  2

Sr.

No.

Main

Topic

No. of

Lectures

Sub

Topic

Sub-topic  to  be  covered

Dates

1.

Stress  Strain  Analysis

( 7 hours )

1.

1.

Simple  stress  &  strain,

Two weeks

2.

St. Venant’s  principle,

2.

1.

Stress  strain  diagram ,

2.

Deformation of rectangular,  circular, uniform & tapering  bars,

3.

1.

Deformation  due  to  self  weight, shear  stress  and  strain,

2.

Poisson’s  ratio,

4.

1.

Volumetric  strain ,

2.

Bulk  modulus,

5.

1.

Relationship  between  Young’s Modulus, Bulk  Modulus  and  Modulus  of  Elasticity,

6.

1.

Factor  of  safety,

2.

Thermal  stresses  in  simple  and  compound  bars ,

7.

1.

Numerical  examples .

2.

Shear  force  and  bending  moment

( 7 Hours )

1.

1.

Axial  force  &  shear  force ,

Two weeks

2.

1.

BMD & SFD : Basic  definitions  & sign  conventions ,

3.

1.

Simple  cases  of 

2.

Cantilever  beam ,

3.

Simply  supported  beam ,

4.

1.

Bending moment diagrams for statically determinate beams including beams with internal  hinges,

5.

1.

U D L

2.

Concentrated  load ,

3.

Uniformly  varying  loads ,

6.

1.

Angular  loads ,

2.

Couples  acting  directly ,

7.

1.

 

Relationships  between  rate  of  loading, shear  force  and  bending  moment  and  Numerical  examples .

 

 

3.

Simple  theory  of  bending

( 6  Hours )

1.

1.

Flexure  formula  for  straight  beams ,

Two weeks

2.

Principal  axes  of  inertia ,

2.

1.

Moment  of  inertia  about  principal  axes ,

2.

M.I.  for  different  sections ,

3.

1.

Transfer  theory  / theorem ,

2.

Simple  problems  involving  applications  of  flexure  formula ,

4.

1.

Section  modulus ,

2.

Moment  of  resistance of a section ,

5.

1.

Fletched  beams ,

2.

Equivalent  area  method ,

6.

1.

Moment  of  resistance  method ,

2.

Numerical  examples .

 

4.

Shear  stress  in  beams

( 5 Hours )

1.

1.

Shear  stress  formula  &  its  derivation,

One week

2.

2.

Distribution  of  shear  stress  across  plane  sections  used  commonly  for  structural  purposes ,

3.

3.

I  shapes , L  shapes , T  shapes  &  others ,

4.

4.

Shear  connectors  &  bolt  sections ,

5.

5.

Numerical  examples .

5.

Simple  theory  of  torsion

( 6 Hours )

1.

1.

Torsion  equation ,

One week

2.

Use of  torsion  equation ,

3.

Numerical  examples ,

2.

 

 

1.

Modulus  of  ruptures ,

2.

Torsion  of  circular  shafts – solid  &  hollow ,

3.

1.

Stresses  in  shafts  when  transmitting  powers ,

2.

Shafts  in  series  &  parallel ,

4.

1.

Numerical  examples ,

2.

Shaft  coupling ,

3.

Numerical  examples ,

5.

1.

Closed – coiled  helical  springs  under  axial  load,

6.

1.

Numerical  examples .

6.

Bending moment  combined  with  axial load

(  6 Hours )

1.

1.

Application  to  members  subjected  to  eccentric  load ,

one week

2.

1.

Condition  for  no  tension  in  sections  &  for  different  sections,

3.

1.

Core  of  a  section ,

4.

1.

Wind  pressure  on  chimneys  for  different  section ,

5.

1.

Numerical  examples ,

6.

1.

Retaining  walls  involving lateral  loads .

 

7.

Principal  stresses

( 7 hours )

1.

1.

General  equations  for  transformation  of  stress,

Two weeks

2.

1.

Normal  & tangential  stresses  for  mutually  perpendicular  stresses ,

3.

1.

Principal  planes  and  principal  stresses ,

4.

1.

Maximum   shear  stress  in  shafts  subjected  to  bending , torsion  &  axial  thrust ,

5.

1.

Determination  of  principal stresses  &  strains  using  Mohr’s  circle ,

6.

1.

Principal  stresses  in  beams ,

2.

Concept  of  equivalent  bending  moment  & torque ,

7.

1.

Numerical  examples .

 

8.

Deflection  of  beams

( 8 Hours )

1.

1.

Introduction  to  deflection  of  beams,

Two weeks

2.

1.

Relation  ship  between  slope , deflection  and  radius  of  curvature ,

3.

1.

Double  integration  method  &  Macaulay’s  method ,

4.

1.

Simply  supported  &  overhanging  beam  analysis  using  double  integration  method 

5.

1.

Simply  supported  &  overhanging  beam analysis  using  Macaulay’s  method ,

6.

1.

Simply  supported  &  overhanging  beam  analysis  using  double  integration  method  for  different  types  of  loads  such  as Concentrated  loads,

Uniformly distributed load,

Uniformly varying load ,

7.

1.

Simply  supported  &  overhanging  beam  analysis  using  Macaulay’s  method for  different  types  of  loads  such  as

Concentrated  loads,

U.D.L.,

Uniformly  varying load ,

 

8.

1.

Numerical  examples.

 

9.

Struts

( 8 Hours )

1.

1.

Introduction  to  struts ,

Two weeks

2.

1.

Euler’s theory for  long  columns,

3.

1.

Sign  conventions ,

4.

1.

Struts  subjected  to  axial  loads ,

5.

1.

Concept  of  buckling ,

6.

1.

Euler’s formula  for  struts  with  different  support  conditions ,

7.

1.

Euler’s  and  Rankine’s  design  formula .

8.

1.

Numerical  problems .

 

10.

Strain  energy

( 4 Hours )

1.

1.

Introduction ,

One week

2.

1.

Definition  of  strain  energy ,

3.

1.

Strain  energy  due  to  axial  forces  and  bending  moment,

4.

1.

Stresses  in  axial  members & beams  due  to  impact  loading .