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Abstract

Lecture notes for classes conducted between 18th
− 25th October, 2010.

The objectives for these classes is to derive the equations of motion of following systems through
a consistent framework: -
(i) Euler-Bernouli beam.
(ii) Longitudnal vibration of a bar.
(iii) Torsional vibration of a circular rod.

1 Longitudinal Vibration

Purely longitudinal vibration occurs when all particles of the body move in only one direction. This is
distinct from the case of quasi-longitudinal vibration wherein the particles have motion in all the tree
directions (albeit dominantly in one direction). In this section, we shall study the purely longitudinal
vibration. The associated results for the quasi-longitudinal motion will be mentioned only in passing.

1.1 Geometry of deformation

Consider a long bar with cross-sectional dimensions small compared to its length (which is along the x-
axis). Consider this bar to be embeded in a hole (of exactly the same size and shape as its cross-section)
of larger rigid block. We are interested to find the equations of motion of the particles in the bar (not the
block).

Due to the above set-up, we have the following deformation pattern

u = u(x, t) x 0, v = w = 0. (1)

In the above equation, u, v and w represents the deformation in x, y and z directions, respectively.
In contrast to the perhaps unrealistic example of a bar being embedded in a block, purely longitudinal

deformation pattern also exists in any body which is of large extent in all the three directions (e.g. earth’s
crust).
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1.2 Strain

Due to the deformations as given by equation (1), we have the only non-zero strain components to be given
by

ǫxx = ∂u

∂x
. (2)

All other strain components are zero.
The above strain conditions imply the the body to be in a state of plane strain.

1.3 Stress

The shear strains being zero, the shear stresses are also zero. Despite, the normal strains ǫyy = ǫzz = 0, the
normal stresses σyy and σzz are non-zero due to Poisson’s effect. These stresses are calculated as follows

ǫxx = σxx − ν (σyy + σzz)
E

, (3a)

ǫyy = σyy − ν (σxx + σzz)
E

, (3b)

ǫzz = σzz − ν (σxx + σyy)
E

. (3c)

Putting ǫyy = ǫzz = 0, in equations (3b) and (3c) above we get

σyy − νσzz = νσxx

σzz − νσyy = νσxx.

The solution of the above equations yield

σyy = σzz = ν (1 + ν)
1 − ν2

σxx = ν

1 − ν
σxx.

Using this relation in equation (3a), we get

Eǫxx = σxx �1 − 2ν2

1 − ν
� = σxx �1 − ν − 2ν2

1 − ν
� = σxx �(1 + ν)(1 − 2ν)

1 − ν
�� σxx

ǫxx

= B = E
1 − ν

(1 + ν)(1 − 2ν) (4)

Note, from the above relation the ratio of normal stress to normal strain is not the Young’s modulus
of elasticity (E) but B = E 1−ν

(1+ν)(1−2ν) � 1.35E.
Finally, using the strain displacement relation along with the above relation, we get

σxx = B
∂u

∂x
.

Thus, the normal force acting on any cross-section is given by

F = Aσxx = BA
∂u

∂x
(5)
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Figure 1: Forces acting on a differential element of the bar

1.4 Linear momentum balance of a differential element

Consider a small length dx of the bar as shown in figure (1). The linear momentum balance of this segment
yields

dF = ρAdx
∂2u

∂t2
� dF

dx
= ρA

∂2u

∂t2
.

In the above equation, ρ is the density of the material. Using equation (5), we get

ρA
∂2u

∂t2
= dF

dx
= BA

∂2u

∂x2
.

Thus, the governing equations of motion for longitudinal vibration of a bar is given by

∂2u

∂x2
= ρ

B

∂2u

∂t2
. (6)

1.5 Quasi-longitudinal vibration

When a bar is subjected to axial loading only then it undergoes quasi-longitudinal vibration. In this case
the lateral surfaces of the bar are traction free and hence the stresses σyy = σzz = 0. This implies that the
ratio of axial stress to axial strain is σxx

ǫxx

= E (unlike B in the pure longitudinal case). The remaining part of
the derivation proceeds in identically the same fashion giving the governing equation for quasi-longitudinal
vibration as

∂2u

∂x2
= ρ

E

∂2u

∂t2
. (7)

However, note the following important points of differences between longitudinal and quasi-longitudinal
vibration: -

• In longitudinal vibration, the deformation in the transverse directions are zero. In quasi-longitudinal
vibration the deformations in the transverse directions, though smaller than the deformation in
the axial direction, are non-zero. The geometry of deformation is considerably complicated and is
illustrated in figure (2).

• Longitudinal vibration corresponds to plane strain whereas quasi-longitudinal vibration corresponds
to the case of plane stress.

• The effect of E (Young’s modulus of elasticity) in the equations for quasi-longitudinal vibration is
replaced by B for the case of purely longitudinal vibration.

For further reading on this topic the reader is refered to [2, 3].
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Figure 2: Schematic illustration of quasi-longitudinal deformation. Dotted lines represent the initial con-
figuration of the bar while the solid lines represent the deformed configuration. Figure taken from [2].

2 Torsional vibration of circular rod

2.1 Geometry of Deformation

A long circular rod has its axis along the z-direction. On application of a moment along the axis of such a
rod every cross-section of the rod rotates in the xy (or rθ) plane. Thus any radial line on the cross-section
is deformed as illustrated in figure (3) (the solid blue line represents the undeformed configuration and the
dotted blue line is the same line after deformation).

The rotations for different cross-sections are however different. For example, the cross-section which is
fixed does not rotate at all, whereas the cross-section wherein the torque is applied has a maximum rotation.
The intermediate cross-section have a linear variation of the rotations between these two extremes. In other
words, if a straight line parallel to the axis is drawn on the cylindrical surface of the rod (shown by solid
red line in figure (3)), the line remains straight but rotates along with each point of the cross-section. The
deformed configuration of this line is shown by dotted green lines.

2.2 Deformation

The problem will be solved in cylindrical coordinate system, with z being along the axis of the rod and
the xy plane will be same as the rθ plane.

Let ur and uz be the deformations in the r and z direction. They need to be zero because each cross-
section simply rotates about the z axis. Thus, all the points move only along the circumferential direction
(θ) resulting in ur = uz = 0.

The angular rotation or twist of each cross section is defined as the angle made between the deformed
and the undeformed configuration of a radial line (see the blue lines in figure(3)). This is denoted by φ.
As is illustrated in the figure φ varies linearly along z, being zero at the face which is fixed and being
maximum at the face where the torque is applied. Thus, we have φ� z or φ = αz. The latter relation may
be interpreted as follows:- if the distance between any two cross sections is z then the relative rotation
between these two cross sections is φ = αz. α is called the twist per unit length. Using the above relation,
we find that

α = ∂φ

∂z
(8)

Finally, the deformation in the circumferential direction is given by uθ = rφ = αrz. Note, uθ has
dimensions of length and not angle. Summing up we have the following relations for the deformation field

ur = uz = 0, uθ = αrz. (9)

2.3 Strain

Using the deformations in equation (9), we can find the strain field. For this we need to use the strain-
displacement relation in cylindrical coordinate system. These relations are elaborately derived in Appendix
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Figure 3: Illustration of the geometry of deformation for torsion

B of reference [1] (students are welcome to approach me in case they find any difficulty in understanding
this derivation). The components of the strain tensor ǫ are given as follows (after using equation (9))

ǫrr = ∂ur

∂r
= 0,

ǫzz = ∂uz

∂z
= 0,

ǫθθ = 1

R

∂uθ

∂θ
= 0,

ǫrz = 1

2
�∂ur

∂z
+ ∂uz

∂r
� = 0,

ǫzθ = 1

2
�1
r

∂uz

∂θ
+ ∂uθ

∂z
� = αr

2
,

ǫrθ = 1

2
�1
r

∂ur

∂θ
+ r

∂

∂r
�uθ

r
�� = 0.

2.4 Stress

Using the strains calculated above, the stresses may be evaluated. As all the normal strain components
are zero, all the normal stress components are also zero viz. σrr = σθθ = σzz = 0. Similarly, the shear stress
components σrz = σrθ = 0. The only non-zero stress component is σθz = Gαr. Note, ǫθz is the engineering
strain. The true shear strain is double of the above engineering strain.

2.5 Torque calculation

The non-zero stress σzθ has the following physical implication : - the plane of cross-section (z plane) has
a force acting in the θ direction over each differential element dA over the cross-section. The differential
torque about the axis due to this shear stress acting over the differential area dA located at a radial distance
r from the axis is

dT = rσzθdA = Gαr2dA.

Thus, the total torque may be obtained by integrating the above relation over the entire area of the
cross section which yields

T = S
A

Gαr2dA = GαS
A

r2dA = GαJ, (10)
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Figure 4: Angular Momentum balance of a differential element of the circular rod.

where J is the polar area moment of inertia.

2.6 Angular momentum balance of a disc of differential length

Consider a small dz portion of the rod as shown in figure (4). This cross-section undergoes a rotational
motion. The rotation being a function of position and time is denoted by φ(z, t). Considering the angular
momentum balance of this differential element (in the form of a thin disc) we get

dT = Ip

∂2φ

∂t2
,

where Ip is the mass moment of inertia of the differential rod. This is given by

Ip = S
M

r2dm = S
V

r2ρdV = ρdzS
A

r2dA = ρJdz.

ρ is the density of the material.
This gives

dT

dz
= ρJ

∂2φ

∂t2
.

Using equation (8), we have α = ∂φ

∂z
and thus

T = GJα = GJ
∂φ

∂z

� dT

dz
= GJ

∂2φ

∂z2

Replacing the above relation in the earlier relation for dT
dz

, we get the governing equation of motion for
torsional vibration of circular rod as

GJ
∂2φ

∂z2
= ρJ

∂2φ

∂t2
,

� ∂2φ

∂z2
= ρ

G

∂2φ

∂t2
.
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