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Abstract

This paper proposes a weak coupling algorithm for the seabed–wave interaction analysis. This algorithm is based on

the error integration over a time interval and space along fluid–seabed interfaces. With this weak coupling algorithm,

seabed–wave interaction analysis can be easily carried out with a fluid solver in fluid domain and a meshless solver in

seabed domain independently. The fluid solver is based on a two-step projection method for Navier–Stokes equation.

The free surface of seawaters during wave propagation is traced through the volume of fluid (VOF). The meshless solver

is based on the Biot’s consolidation theory of saturated poroelasticity which considers the interaction of soil defor-

mation and pore water pressure in seabed. Data exchange at the interface between fluid and porous medium domains is

carried out through a point interpolation method. Interface condition is approximately satisfied in a variational sense

through an iteration scheme between two solvers. This algorithm does allow not only non-matching mesh along the

interface but also non-matching time step in different subdomains. Numerical examples show that this weak coupling

algorithm is able to capture the deformation of interface and improve the computation accuracy and efficiency.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The interaction of wave–porous medium such as seabed is a common engineering problem in coastal/

offshore engineering because there are two domains occupied by fluid and porous medium, respectively. A

simple model for this interaction problem is shown in Fig. 1. It has two subdomains, fluid domain and

porous medium domain (seabed). Fluid domain is full of seawater and has a free surface at the top surface.
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Fig. 1. Interaction problem of wave and porous medium.
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When a wave is input from one side boundary, this wave will propagate in the water and generate wave load

on the fluid–seabed interface. If the seawater is shallow, the wave load is large enough to cause the porous
medium deformation and pore water flow. The seabed is deformable and saturated with pore water. When

the wave load applies to the seabed surface, excess pore water pressure and deformation of soil skeleton will

be generated in the seabed. The interface between the fluid domain and the porous medium will deform and

the pore water will flow in or out, too. This deformation of seabed produces a movable seabed surface. This

flow in/flow out (seepage) from the porous medium becomes a distributed sink for fluid domain. Both

deformation and seepage will affect the dispersion of water wave in the fluid domain [1], thus the water

pressure along the interface. On the other hand, the water pressure along the interface will cause defor-

mation and seepage in the porous medium. This interface can finally reach a balance position in this
seabed–wave interaction problem. How to analyze such an interaction problem and to achieve the balance

position are key issues in coastal/offshore engineering as well as in the field of fluid–structure interac-

tions [2].

Many numerical methods have been proposed to solve the interaction problem of fluid–structure [3–7].

A key issue is how to treat the compatibility condition (interface condition) along the interface between

fluid and solid domains. There are two classes of numerical algorithms to treat this compatibility condition:

The first one is the strong coupling algorithm which was proposed for the interaction problem of structure

and fluid [5]. At the interface, a compatibility condition, which ensures fluid and solid domains neither
detach nor overlap during deformation, is expressed as follows [6]:

Vt
F � n ¼ Vt

S � n; ð1Þ
where Vt

F, V
t
S are the velocities of fluid and structure at the time t, respectively, and n is the unit vector along

normal direction of the interface. Theoretically, this coupling algorithm is complete because detaching and

overlapping can be completely avoided at any time. However, this strong coupling algorithm has several

demerits: First, this algorithm requires the discrete equations for structure and fluid domains to form a big

system equation. In this system equation, stiffness of solid and fluid are very different, thus the system

stiffness equation has bad condition number, usually causing numerical instability. Second, this algorithm
requires matching mesh size along the interface. Matching mesh size on the both sides of interface is difficult

in practice. For example, solid domain usually requires bigger mesh size than fluid domain in order to

achieve the same accuracy. Thus, it is difficult to generate a matching mesh on both sides of the solid–fluid

interface, particularly for the situations that mesh is independently generated in each subdomain. Treat-
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ment of non-matching mesh is an essential issue in the solid–fluid interaction problems. Some affordable

algorithms have been presented by using the Lagrange multipliers to impose this compatibility condition

[7]. Arbitrary Lagrangian Eulerian formulation (ALE) method is a typical hybrid method for the non-

matching mesh [8]. The methods based on the Lagrange multiplier technique satisfy the compatibility

condition in a variational sense and require complex formulations and additional degrees of freedom. Kim

proposed an interface element method (IEM) for non-matching interfaces in space based on moving least-

square-based meshless method [9,10]. This IEM is better than ALE because no intermediate interface media

is required and the accuracy is higher. Third, time-step size may be non-matching among subdomains. As
indicated in Eq. (1), the compatibility condition requires the same variables along the interface at the same

time. As we know, the time-step size depends on mesh size, material stiffness and wave frequency. In the

fluid–structure interaction problem, fluid domain requires much smaller time-step size than solid domain. If

the same time-step size is applied to both solid and fluid domains, the computation cost is much higher,

particularly in solid domain. Spurious effect may appear for porous medium problem if too small time-step

size is adopted [11]. Fourth, big system stiffness equation requires much more computational resources.

Fluid domain usually requires much finer mesh, thus much bigger freedom is introduced. If porous medium

and fluid domains combine together, the scale of the system stiffness equation becomes very big. Such a
system requires big amount of memory and more CPU time.

Domain decomposition [12], partitioned procedure [13] and staggered scheme [14] were developed for

the fluid–structure problems through an iteration scheme. Because fluid and structure occupy different

subdomains, their system equations can be setup individually within their subdomains. This iteration

scheme makes the subdomains satisfy the compatibility of deformation at domain interfaces. Therefore, the

iteration scheme along the interface is the key issue for the success of domain decomposition algorithm. A

simplified iteration scheme, one-time-step delay algorithm, was widely used in coupling algorithms as an

approximation [15,16]. This algorithm relaxes the constraint in Eq. (1) into

Vt
F � n ¼ VtþDt

S � n: ð2Þ
This algorithm partially separates the fluid solver and the solid solver in space. If the time-step size is

sufficiently small, Eq. (2) has sufficient accuracy [17]. However, this algorithm still requires same time-step

size and same node distribution along the interface. Otherwise, non-matching interface algorithm has to be

introduced [7,9,10].
This paper proposes a weak coupling algorithm at the interface for the seabed–wave interaction analysis.

The interface condition between fluid and porous medium domains is assumed to satisfy following weak

coupling criterion:Z T

0

kðVt
F � Vt

SÞ � nkdt6 e; ð3Þ

where e is a tolerance error. Such a treatment can largely relax the constraints on the spatial distributions
of nodes along the interface as well as the time-step size in different subdomains. This treatment has

two important advantages: First, different solvers are used in fluid and porous medium domains inde-

pendently during whole process ½0; T 	 (where T is an time interval). For example, finite difference

method with two-step projection method is used in fluid domain and radial point interpolation meshless

method (radial PIM) [18] is used in porous medium domain. Second, non-matching is allowed not only

for the spatial distributions of nodes along the interface, but also for the time-step size in different sub-

domains.

This paper is organized as follows: Section 2 describes the governing equations for fluid and porous
medium domains, respectively. In porous medium domain, the interaction of pore water pressure and soil

deformation is described by the Biot’s consolidation theory [19]. In fluid domain, the wave propagation

with free surface is governed by the Navier–Stokes equation and volume of fluid (VOF) [20]. The
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compatibility condition along the interface of fluid and porous medium domains is given, too. The
numerical strategy for fluid domain and porous medium domain is discussed in Section 3. A fluid solver is

based on the two-step projection method. The free surface of seawaters is traced through VOF in Eulerian

coordinates and the velocity at the bottom is changeable. A meshless solver for the porous medium is

developed from the Biot’s consolidation theory. This solver is suitable for the movable surface problems

under wave load. The treatment of interface condition through an iteration scheme is discussed in Section 4.

A data mapping between fluid and porous medium domains is proposed through radial point interpolation

technique. The initial condition is also suggested for the iteration scheme. Numerical examples on sinu-

soidal wave are studied to check the convergence of the weak coupling algorithm. Section 6 compares the
results of the current weak coupling algorithm with closed-form solution. The applicability of the current

algorithm to standing and solitary waves is explored. The conclusions are given in Section 7.
2. Governing equations for porous medium and fluid domains

2.1. Governing equation for porous seabed

This section considers only seabed domain V . If the seabed is fully saturated, it has two components of
soil skeleton and pore water. Soil skeleton and pore water interact at micro-level when an external load

such as wave load is applied to the seabed. This interaction can be described by macro-level Biot’s con-

solidation theory [19]. The Biot’s consolidation theory has following six physical concepts:

• Equilibrium equation of soil–water mixture

orij

oxj
þ bi ¼ 0 in V : ð4Þ

Its incremental form in time interval ½t; t þ Dt	
oDrij

oxj
þ Dbi ¼ �

ort
ij

oxj

�
þ bt

i

�
in V : ð5Þ

• Relationship of displacement and strain for soil skeleton

Deij ¼
1

2

oDui

oxj

�
þ oDuj

oxi

�
in V : ð6Þ

• Constitutive law of soil skeleton in differential form

dr0
ij ¼ Dijkl dekl in V : ð7Þ

• Darcy’s seepage law for pore water flow

qi ¼ �Kij

cw

oP
oxj

in V : ð8Þ

• Terzaghi’s effective stress principle

rij ¼ r0
ij þ Pdij: ð9Þ

• Continuity equation

oev
ot

¼ oqi

oxi
; ð10Þ
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where rij, r0
ij and P are total stress tensor, effective stress tensor and excess pore water pressure at any

time t and bi the unit body force. Dui is the displacement increment and Drij, Deij total stress and strain
increments in time interval ½t; t þ Dt	. qi is the discharge of excess pore water in ith direction. cw is the
density of water, of which the value can be taken as 10 kN/m3 in SI system. Dijkl is the material matrix of

soil skeleton determined by constitutive law of materials. Kij is permeability tensor of soil skeleton which

usually has non-zero components Kx in x-direction and Ky in y-direction, respectively. ev is the volume
strain of soil skeleton:

ev ¼
oui

oxi
: ð11Þ

For soil skeleton boundary

ui ¼ �ui0 on S�u � ½0;1Þ;
r0

ijnj ¼ T i on Sr � ½0;1Þ;

�
ð12Þ

where n ¼ f n1 n2 n3 g is the outwards normal direction and ni is its directional cosine.
For pore fluid boundary

P ¼ P0 on Sp � ½0;1Þ;
qi ¼ qi0 on Sq � ½0;1Þ:

�
ð13Þ

For periodicity boundary

Plðx; tÞ ¼ Prðx þ Y; tÞ
uliðx; tÞ ¼ uriðx þ Y; tÞ

�
on SY � ½0;1Þ; ð14Þ

where Y is the wavelength. Subscripts ‘l’ and ‘r’ refer to the left and right side boundaries.

Initial condition

ui ¼ 0
P ¼ 0

�
on V � 0�: ð15Þ

The whole boundary of domain V is closed: S�u [ Sr [ SY ¼ Sp [ Sq [ SY . The interface boundary condition

at the top surface of the porous medium domain is of special importance in the current algorithm. We will

discuss it in details later.
2.2. Governing equation for wave propagation in fluid domain

The motion of incompressible fluid in a bounded domain X is described by Navier–Stokes equations. In
the Eulerian coordinates, continuity and momentum equations are expressed as follows:

oUi

oxi
¼ 0; oUi

ot
þ Uj

oUi

oxj
¼ � 1

q
oP
oxi

þ gi þ
1

q
osij

oxj
in X; ð16Þ

where i; j ¼ 1; 2 for two-dimensional flows. Ui denotes the ith component of the velocity, q the density of
fluid, P the water pressure, gi the ith component of gravitational acceleration. sij is the viscous stress tensor

which is (where l is a viscosity coefficient):

sij ¼ l
oUi

oxj

�
þ oUj

oxi
� 2
3

dij
oUk

oxk

�
: ð17Þ

A big issue to simulate the wave propagation in open space is to trace the free surface during computation.

Because Eulerian coordinates basically are fixed, additional governing equation must be introduced to
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describe this motion of free surface. The volume of fluid (VOF) method [20] provides a robust alternative

for updating the free surface. Its basic idea is to trace the density change within each computational cell.

The free surface can be determined through the density distribution at the corner of each cell [3]. A gov-

erning equation for the density is as follows:

oq
ot

þ Ui
oq
oxi

¼ 0: ð18Þ

In the VOF, the density of a fluid in each computational cell is defined as the averaged density in the cell.

The q ¼ 1 if a cell is full of water, otherwise, 06 q < 1.

2.3. Boundary conditions

The boundaries for fluid domain include the interface between fluid and porous medium, free surface

boundary and virtual boundary at both sides.

2.3.1. Conventional fluid boundary conditions

The virtual boundary is not physical boundary. This boundary is designed to reduce the size of com-

putational domain. In this paper, virtual boundary refers to the left and right hand sides of fluid domain.

Wave sources in seas are usually from horizontal infinity. All domain-based numerical methods such as
finite difference method and finite element method are difficult to treat infinite domain. A simple way is to

truncate the infinite domain into a finite computable domain through a cut-off boundary condition or

virtual boundary. This virtual boundary is sometimes called periodic boundary for sinusoidal wave. Free

surface is another important boundary for wave propagation in seawater. The top surface of fluid domain

in Fig. 1 is the free surface. This free surface boundary condition has kinetic and dynamic components. The

kinetic condition describes the change of geometry, while the dynamic condition gives the continuity of

stress components that is as follows:

P � l
oUi

oxj

�
þ oUj

oxi

�
ninj ¼ rn; ð19Þ

where rn is a prescribed normal stress applied on the free surface.

2.3.2. Interface conditions

Interface between fluid and porous media domains is of special importance. Present interface algorithm

is different from the algorithm that regards the porous medium as rigid skeleton [3,21] because the porous

medium is deformable. Porous medium domain has the velocity of soil particles and the flux of pore water

as well as pore water pressure, while fluid domain has flow velocity and water pressure. Fig. 2 describes the

relationship of the flux, velocity of particles and flow velocity along the interface. If the flow velocity of pore

water is relative to the skeleton of porous medium, the mass conservation equation, if the fluid is
incompressible, can be expressed as follows:

ðqI � n þ _uIð1� nÞÞ � n ¼ UII � n

PI ¼ PII ;
ð20Þ

where PI is pore water pressure in porous medium and PII water pressure in fluid domain. UII is the flow

velocity in fluid domain. n is the porosity of porous medium and n is the normal unit of interface. _uI refers
to the velocity of soil particles which is obtained through the differentiation of displacement: _uI ¼ ou

ot. The

flux qI is obtained through the Darcy law after the distribution of pore water pressure is known: qI ¼ k
cw

oP
on
.

If fluid viscosity is included, a shear stress induced by the horizontal fluid flow should be applied to the

surface of the porous medium. This shear stress is computed using Eq. (17).
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3. Numerical strategy in fluid and porous medium domains

Iteration scheme is used in the current numerical strategy. Fig. 3 gives the iteration loop among fluid

domain X, porous medium domain V and interfaces. This loop has three components, fluid solver, porous
solver and interface solver. Fluid solver computes the fluid velocity and water pressure in domain X and
water pressure along the interface when the fluid velocity is given at the interface. This is a FDM solver

which is developed from discretizing Navier–Stokes equation in Section 2.2. Porous solver is formulated by
discretizing the Biot’s consolidation theory in Section 2.1 through meshless methods [11,22,23]. It can give

displacement and pore water pressure in domain V and particle velocity as well as flux along the interface if
pore water pressure is given along the interface. Interface solver maps the data across the interface and

checks the convergence of the iteration.

3.1. Porous solver for porous medium domain

Meshless method is employed to discretize the Biot’s consolidation theory in Section 2.1. Because the
seabed surface may experience large deformation or moving boundary during wave propagation, meshless

methods are better than FEM for such problems. Let us consider a time interval of ½t; t þ Dt	. The
Fluid solver
For fluid domain (Ω) 

Porous solver
For porous domain (V)

Interface solver

Velocity Water pressure

Particle 
velocity & flux

Pore water 
pressure

Fig. 3. Iteration among different domain solvers.
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displacement increments of soil skeleton are Du in the time interval and pore water pressure is P at the time
t þ Dt. We discretize above spatial variables Du and P with a radial PIM [18] and temporal domain by finite

difference method. The final system equation is obtained as follows [11,22,23]:

K KV

KTV �DthKp

� �
Du

P

� �
¼ DFb þ DFt þ Fr

Dtð1� hÞKpP
t

� �
; ð21Þ

where K is the stiffness matrix of soil skeleton, KV corresponds to the seepage force on the soil skeleton. h is
a parameter for time integration [11]. The force in Eq. (21) has three sources: body force increment (DFb),

traction force increment (DFt) and residual force (Fr) due to un-equilibrium at the previous time step. Let

the Dua, Pa denote the displacement increments and pore water pressure within porous medium domain V .
DuI , PI are the displacement increment and pore water pressure along the interface, respectively. Therefore,
above equation can be rewritten as follows:

K11 K12 K13
K21 K22 K23
K31 K32 K33

2
4

3
5 Dua

Pa

DuI

8<
:

9=
; ¼

FuaðPIÞ
FpaðPIÞ
FuIðPIÞ

8<
:

9=
;: ð22Þ

This equation indicates that pore water pressure PI generates not only pore water pressure and displace-

ment within the porous medium domain, but also the displacement increment DuI as well as flux along the

interface. Once the fluid solver gives the wave load, the response of porous medium is completely deter-
mined.

3.2. Solver for fluid domain

Navier–Stokes equation is basically strongly non-linear due to its advection term. An effective numerical

algorithm, two-step projection method [24,25], is well developed for the numerical solutions of Navier–

Stokes equation. After spatial and temporal discretizations, the Navier–Stokes equation has following

discrete form:

S11 S12 S14
S21 S22 S24
S41 S42 S44

2
4

3
5 Ub

Pb

PII

8<
:

9=
; ¼

FvbðUIIÞ
FpbðUIIÞ
FIIbðUIIÞ

8<
:

9=
;; ð23Þ

where Ub, Pb are velocity and water pressure within fluid domain and PII the water pressure along the

interface. The velocity UII along the interface can be calculated after the Biot’s consolidation problem is

solved in porous medium domain. Therefore, the water pressure PII along the interface is completely
determined by Eq. (23). Eq. (23) is a non-linear equation, because its stiffness matrix is the function of water

pressure and velocity, Sij ¼ SijðUb; Pb; PIIÞ. An iteration algorithm such as two-projection method is

implemented to solve this equation.
4. Treatment of interface condition

4.1. Weak coupling at the interface

Treatment of compatibility condition along the interface is an important issue for the problems of fluid–

solid interactions [2,3,21]. Different coupling schemes have different treatments. For example, a strong

coupling scheme [5] is formulated if the porous medium domain expressed by Eq. (22) is coupling with the

fluid domain expressed by Eq. (23) at each time step and at each interface node. This strong coupling

scheme requires much more computer resource and special numerical techniques. We can relax the com-
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patibility condition to a variational sense or integration over zone, formulating a weak coupling scheme as
expressed in Eq. (3). Weak coupling algorithm allows different domains to use different numerical strategy

such as finite element method, finite difference method or meshless method. This relaxation of compatibility

conditions can allow different nodes and time-step sizes within each subdomain.

The current iteration algorithm is shown in Fig. 4. Along the interface of fluid domain, the input data is

the velocity of fluids which is the summation of the particle velocity and flux of pore water from the porous

medium as indicated in Fig. 2. The output data along this interface is water pressure Pn
II where superscript n

denotes the nth iteration between fluid and porous medium domains. This water pressure is used as the
input of pore water pressure along the interface of porous medium (see Eq. (20)). For porous medium
domain, the output along the interface is the flux (relative velocity) of pore water and particle velocity of

soil. Their summation is denoted as V n
a which is equal to the velocity of fluid Un

II . If following relative errors

are satisfied, the iteration is said to be convergent:

kV nþ1
a � V n

a k
kV n

a k
6 e1 ð%Þ;

kPnþ1
II � Pn

IIk
kPn

IIk
6 e2 ð%Þ; ð24Þ

where the norm is defined as an integral over time interval ½0; T 	 as well as the interface:

kV n
a k ¼

Z T

0

Z
S
jV n

a jdsdt; kV nþ1
a � V n

a k ¼
Z T

0

Z
S
jV nþ1

a � V n
a jdsdt; ð25Þ

where S refers to the interface. e1, e2 are relative errors for the velocity of soil particle and flux from porous
medium domain as well as water pressure for fluid domain at the interface, respectively. Eq. (25) is also

applicable to water pressure PII .
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Fig. 4. Iteration algorithm between two solvers.



3944 J.G. Wang et al. / Comput. Methods Appl. Mech. Engrg. 193 (2004) 3935–3956
4.2. Initial values for iterations

Linear wave theory provides a good initial value for iterations. Let a sinusoidal wave propagate in

irrotational and incompressible waters. If the seabed surface is non-movable and impermeable, the water

pressure at the seabed interface is obtained from the linear wave theory [26]:

P ¼ qgH
2 coshðkhÞ cosðkx � xtÞ ð26Þ

and the velocity of fluid particles is

Uxjz¼�h ¼
gkH
2x

1

cosh kh
cosðkx � xtÞ;

Uy jz¼�h ¼ 0;
ð27Þ

where dispersion equation determines the relation of the angular velocity x, the wave number k, and the
depth of still water h:

x2 ¼ kg tanh kh; ð28Þ
where H is wave height, and g the gravity. Ux is the velocity along x-direction and Uy is the velocity along y-
direction. That the vertical velocity is zero means there is no flow in the normal direction. If the fluid is real

(no viscosity), fluid particles can slip along the interface. However, when wave load applies to deformable

seabed, the soil particle will move and pore water will flow in or out, thus the vertical velocity is non-zero.

This non-zero velocity can be computed through iterations between fluid and porous medium domains.

4.3. Data mapping at the interface

The data exchange between fluid and porous medium domains can be carried out through a data-

mapping algorithm along the interface. This data-mapping algorithm is important to the current weak

coupling algorithm. This is a unique channel to exchange data because the current weak algorithm solves

the responses of fluid and porous medium domains independently. If porous medium and fluid domains

have identical node distribution along both sides of the interface as shown in Fig. 5(a), no data mapping is

required in space. In practice, it is difficult to keep identical node distribution along the interface for both
Fluid

Porous medium

Interpolation pointData exchange 
at each node point Support node for 

Support node for 

Fluid

Porous medium

More nodes in fluid

Interpolation point

Support node for 
Support node for 

Fluid

More nodes in fluid

Fluid

More nodes in fluid

Less nodes in soil

(b)(a)

Fig. 5. Data-mapping algorithm at the interface: (a) strong coupling with one-to-one data mapping and (b) weak coupling with radial

PIM mapping.
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fluid and porous medium domains because the stiffness is much bigger difference. For the non-matching
node distribution as shown in Fig. 5(b), a data mapping is required to exchange the data between two sides

of the interface. Furthermore, fluid domain usually requires much smaller time-step size than porous

medium domain. Data mapping is also necessary in time domain. This paper adopts the radial PIM [18] to

construct the interpolations for both spatial and temporal domains along the interface. The principle for

the radial PIM is briefly described as below.

There is a set of arbitrarily distributed points PiðxiÞði ¼ 1; 2; . . . ; nÞ within an influence domain, where n
is the number of nodes, and approximation function uðxÞ has value ui at each node point xi. Radial PIM

method constructs this uðxÞ through these nodes and the function values at these points. We express this
approximation function uðxÞ by a linear combination of radial basis BiðxÞ and polynomial basis pjðxÞ:

uðxÞ ¼
Xn

i¼1
BiðxÞai þ

Xm
j¼1

PjðxÞbj ¼ BTðxÞa þ PTðxÞb; ð29Þ

where ai is the coefficient for BiðxÞ and bj the coefficient for piðxÞ (usually, m < n). The vectors are defined as

aT ¼ a1 a2 a3 � � � an½ 	;
bT ¼ b1 b2 � � � bm½ 	;
BTðxÞ ¼ B1ðxÞ B2ðxÞ B3ðxÞ � � � BnðxÞ½ 	;
PTðxÞ ¼ ½ p1ðxÞ p2ðxÞ � � � pmðxÞ 	:

ð30Þ

The radial basis function BiðxÞ is only function of distance in space. For example, in two-dimensional space,
the radial basis function is

BiðxÞ ¼ BiðriÞ ¼ Biðx; yÞ; ð31Þ
where ri is a distance between interpolating point ðx; yÞ and node ðxi; yiÞ defined as

ri ¼ ½ðx � xiÞ2 þ ðy � yiÞ2	
1
2: ð32Þ

Polynomial basis functions have following monomial terms:

PTðxÞ ¼ 1 x y x2 xy y2 � � �
� �

: ð33Þ

Let the uðxÞ pass through all n scattered points within the influence domain, and the coefficients ai and bj in
Eq. (29) can be completely determined. For example, the interpolation at the kth point has

uk ¼ uðxk; ykÞ ¼
Xn

i¼1
aiBiðxk; ykÞ þ

Xm
j¼1

bjPjðxk; ykÞ; k ¼ 1; 2; . . . ; n: ð34Þ

The polynomial term is an extra-requirement. Following constraint can insure the uniqueness of this

approximation:Xn

i¼1
Pjðxi; yiÞai ¼ 0; j ¼ 1; 2; . . . ;m: ð35Þ

Above two equations are expressed in matrix form as follows

B0 P0
PT0 0

� �
a

b

� �
¼ ue

0

� �
or G

a

b

� �
¼ ue

0

� �
; ð36Þ

where the nodal vector for function values is

ue ¼ u1 u2 u3 � � � un½ 	T: ð37Þ
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The coefficient matrix B0 on unknowns a is

B0 ¼

B1ðx1; y1Þ B2ðx1; y1Þ � � � Bnðx1; y1Þ
B1ðx2; y2Þ B2ðx2; y2Þ � � � Bnðx2; y2Þ

..

. ..
. ..

. ..
.

B1ðxn; ynÞ B2ðxn; ynÞ � � � Bnðxn; ynÞ

2
6664

3
7775

n�n

: ð38Þ

The coefficient matrix P0 on unknowns b is

P0 ¼

P1ðx1; y1Þ P2ðx1; y1Þ � � � Pmðx1; y1Þ
P1ðx2; y2Þ P2ðx2; y2Þ � � � Pmðx2; y2Þ

..

. ..
. ..

. ..
.

P1ðxn; ynÞ P2ðxn; ynÞ � � � Pmðxn; ynÞ

2
6664

3
7775

n�m

: ð39Þ

The distance is directionless, Bkðxi; yiÞ ¼ Biðxk; ykÞ. Unique solution is obtained if the inverse of matrix G or

B0 exists:

a

b

� �
¼ G�1 ue

0

� �
: ð40Þ

The approximation function or interpolation is finally expressed as

uðxÞ ¼ BTðxÞ PTðxÞ
� �

G�1 ue

0

� �
¼ /ðxÞue; ð41Þ

where the matrix of shape functions /ðxÞ is defined by
/ðxÞ ¼ /1ðxÞ /2ðxÞ � � � /iðxÞ � � � /nðxÞ½ 	;

/kðxÞ ¼
Xn

i¼1
BiðxÞGi;k þ

Xm
j¼1

PjðxÞGnþj;k;
ð42Þ

where Gi;k is the ði; kÞ element of matrix G�1.

Gaussian radial function is widely used in mathematics:

Biðx; yÞ ¼ exp
 

� c
ri

rmax

� �2!
; ð43Þ

where c ðcP 0Þ is a shape parameter [27], and rmax is the radius of an influence domain.
Take an original function y ¼ sinðxÞ as an example to check the interpolation accuracy. Fig. 6 shows the

interpolation accuracy for the function when the interpolation procedure is as follows: First, a cluster of

data point is generated along the x-axis. These nodes are uniformly distributed with an increment of 0.5 in
domain ½0; 7:5	. These node points are used to determine shape functions in which the shape parameter is
taken as c ¼ 2:0. Second, functions values at these node points are calculated from the original function
y ¼ sinðxÞ. Thus, an interpolation is completely determined by shape functions and nodal values. Third,
error function is computed through comparing interpolation and original function in the domain ½0; 7:5	. In
this domain, a set of new nodes with an increment of 0.1 is generated. Interpolation and original function

values are calculated at each node. Their difference was summarized to form an error function. The same

procedure is applied to form error function of derivative. Fig. 6(a) compares the function and derivatives

within this domain and Fig. 6(b) is their error functions. The accuracy of interpolation is non-homogeneous
at each node. The accuracy is higher in the central part and lower near edges, but is within 1%. Therefore,

the current interpolation method can be applied to the data mapping along interface.
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For the current interface, above radial PIM is applied to a spatial-temporal coordinates which is

composed of a curvilinear coordinate in space and time coordinate. All the equations are the same if a

generalized distance including temporal dimension is used.
5. Verification of weak coupling algorithm

5.1. Initial condition

As pointed out in Section 4.2, the seabed is supposed to be fixed in the first iteration. The water pressure

in the fluid domain is obtained through the fluid solver. Then the water pressure along the interface is

applied to the porous medium. The porous solver computes particle velocity of soil and flux of pore water.
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For a sinusoidal wave, the summation of flux and particle velocity is still harmonic as shown in Fig. 7 which
has following form:

Uy ¼ _ut þ qt ¼ VYA sinðkx � xtÞ: ð44Þ
The particle velocity of soils can be calculated from the displacement history:

_ut ¼ ou

ot
� utþDt � ut

Dt
; Vy ¼ _ut

y : ð45Þ

The flux of pore water (qt) at the soil–fluid interface is determined through Darcy’s law:

qt ¼
ky

cw

P tðy2Þ � P tðy1Þ
y2 � y1

; ð46Þ

where y2 is the y-coordinates at the interface and y1 is a point in porous medium domain but near the

interface.

5.2. Computation parameters

A sinusoidal wave is assumed to be period of 5 s, wave height of 0.5 m, and water depth of 5 m. Thus the

wavelength is approximate 30 m. The water has viscosity of 1.0 · 10�6 if it is considered. The soil domain is
taken as 30 m in horizontal length and 10 m in thickness. We consider stiff soil and soft soil. The stiff soil

has the Young modulus of 4.0 · 104 kN/m2, Poisson’s ratio of 0.3, porosity of 0.4 and isotropic permeability
of 1.728 · 10�3 m/s. Pore water is assumed to be incompressible. The unit weight of water was taken as 10
kN/m3. The soft soil has the Young’s modulus of 4.0 · 102 kN/m2 and the other parameters are assumed to
be the same as stiff soil. A finite difference grid is used for fluid solver and a meshless model is generated for
Fig. 8. Grids for finite difference method and node distribution for meshless method.
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porous solver. This numerical model is shown in Fig. 8 in which the interface is amplified for details. The
finite difference grid spaces 0.3 m horizontally and 0.1 m vertically. The meshless model is constructed with

node spacing of 0.75 m horizontally and 0.25 m vertically. This example uses uniform distribution of nodes

over whole porous medium domain, because the effect of regular or irregular distributions of nodes is

neglectable for meshless solver [11,22,23]. Although both domains are discretized by uniform distribution

of nodes, nodes are still un-matching along interface.

5.3. Convergence study

The convergence rates are shown in Fig. 9(a) for stiff soil and Fig. 9(b) for soft soil, respectively. The

time interval for integration is taken as ½0; 10s	 for stiff soil and ½0; 8s	 for soft soil. Only 3–4 iterations are
required to satisfy convergence criterion (e1 ¼ 0:01% and e2 ¼ 0:01%) regardless of the viscosity of fluid.
When the soil is soft, the flux and the particle velocity at the interface are higher. This velocity is far away

from the initial value as shown at the first iteration in Fig. 9(b). After the first iteration, the velocity and the
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water pressure approach to true values. Furthermore, the viscosity of fluid has a little effect on the con-
vergence rate, because the convergence rate is higher without viscosity.

The effect of time intervals on convergence rate is shown in Fig. 9(c). This figure is obtained for the stiff

soil. When the time interval is short, the convergence is fast although the initial iteration has less accuracy.

After only two iterations, the accuracy is sufficient high. Longer time interval involves more iteration, but

the total computation time is still lower. Table 1 compares the computation time in each process. The

shorter the time interval, the more time consumes in the data exchange and the longer total time is.

Determination of a suitable time interval before computation is difficult. If the problem is almost linear in

time domain, longer time interval is recommended. Otherwise, shorter time interval is used to capture the
non-linear properties along the interface. The accuracy of the current weak coupling algorithm depends on

the accuracy of fluid solver, porous solver and interface solver. Fluid solver is non-linear due to free surface

and advection. However, the porous solver is linear if the interface deformation is small. When the

deformation of porous medium is small, the integration of above relative error can be carried out along

only initial interface. Otherwise, the integration should be along the updated interface. Fig. 10 compares the

final distribution of water pressures with the closed-form solution of Eq. (26) when the soil is stiff. The

current water pressure is a little lower than the closed-form solution, because the closed-form solution

assumes a fixed and impermeable seabed.
Table 1

Time consumed in each process

Interval T (s) Steps for fluid solver Steps for porous solver Iterations in each T Times for data exchange

10 5000 100 4 4

8 5000 100 4 8

5 5000 100 3 6

3 5000 100 3 12

1 5000 100 3 30

Note: (1) two periods are computed, (2) above interval is longer than the time steps for both fluid solver and porous solver. If the

interval is smaller than the time step of porous solver but longer than fluid solver, the data exchange time will increase dramatically.
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6. Parametric study

This section will explore the advantages of the current weak coupling algorithm through numerical

examples and parametric study. Water pressure and velocity of soil particles along the interface are main

concerns. The wave types included sinusoidal wave, standing wave and solitary wave.

First, water pressure along the interface is compared between the current method and closed-form

solution. Fig. 11(a) shows a typical distribution of water pressure for the fixed seabed and the current

coupling seabed when the soil is soft. The top surface of the soft seabed will move greatly under water
pressure. This motion has some impact on the water pressure along the interface. For example, if the

velocity of seabed surface can reach the magnitude of 1.15 · 10�1 m/s, the water pressure along the interface
will increase approximately 17% as shown in Fig. 11(b). Fig. 12 compares vertical displacements along the
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interface at initial and final iterations. The displacement is little different for stiff soil; however, the dif-
ference is obvious for soft soil. The current algorithm predicts higher displacement. This result is consistent

with the water pressure along the interface. Therefore, the stiffness of seabed has strong effect on the

distribution of both water pressure and displacement along the interface. The pore water pressure and drag

force within the porous medium will be affected correspondingly. Furthermore, for sinusoidal waves, the

wave-induced water pressure along the interface can be normalized by wave height if the ratio of wave

height to water depth is less than 0.14 as shown in Fig. 13.

Second, the current weak coupling algorithm is applicable to other linear waves. For example, a standing

wave is the superposition of linear waves. If a standing wave exists in the fluid domain, the current algo-
rithm still uses Vy ¼ 0 to start the first iteration. After the second iteration, the velocities of seabed surface at
different times are shown in Fig. 14. These velocities will revise the distribution of water pressure along the
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interface in the subsequent iteration. Conventional method assumes the seabed fixed to get water pressure
along the interface, and applies this water pressure to a deformable seabed [22,23] and gets pore water

pressure and displacement along the interface. Therefore, conventional method is the zero-order iteration

of the current algorithm. Obviously, the current method is of higher accuracy because the effect of seabed

motion is considered. Furthermore, in geotechnical engineering, closed-form solution for the response of
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the seabed is only developed if the water pressure along the interface can be analytically expressed. For
general wave types, it is impossible to obtain an analytical expression of the water pressure along interface,

thus is impossible to get a closed-form solution of seabed response. In the current algorithm, only numerical

distribution of water pressure is required along the interface. This largely simplifies the requirement along

interface and improves the computation accuracy.

Third, the current weak coupling algorithm is also applicable to non-linear water waves such as solitary

wave. Solitary wave is neither oscillatory nor does it exhibit a trough. A solitary wave lies entirely above the

still-water level. Because both its wavelength and its period are infinite, only the ratio of wave height to

water depth is the wave parameter. A wavelength is defined as L ¼ 2p
k and k ¼

ffiffiffiffiffiffi
3H2
4h3

q
. Furthermore, celerity is

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðh þ HÞ

p
. The current algorithm generates wave-induced water pressure through iteration between

the fluid and the porous medium domains. If the wave height is H ¼ 2:7 m and the water depth is h ¼ 5:0 m,
the wavelength is approximately 30 m. Above parameters are used in the computation of fluid domain. The

porous medium is stiff soil. Fig. 15(a) shows the pore water pressure along the interface after four iterations

and Fig. 15(b) shows the vertical velocity of soil particles. This velocity partially represents the motion

of seabed surface under solitary wave. The contours of pore water pressure at t ¼ 1 and 3 s are shown in
Fig. 16. They are all positive.
7. Conclusions

This paper presents a weak coupling algorithm to study the wave–seabed interaction problem. This

algorithm uses spatial and temporal integration over the interface and a time interval to treat the fluid–

seabed interface condition. Data exchange is implemented by a radial point interpolation method. This

method is particularly suitable for non-matching node distributions and non-matching time-step sizes in

fluid and the porous medium domains. Numerical studies were carried out to check the convergence and

accuracy of the current algorithm. Following conclusions are made from these studies.
First, the weak coupling algorithm is usable in the seabed–wave interaction problems whether the waves

are linear or non-linear. For linear wave, our examples use the ratio of wave height to water depth of 0.14.

The convergence can be achieved within 3–5 iterations over a range of time intervals. For non-linear wave

such as solitary wave, the convergence can be also achieved within 3–5 iterations.

Second, this weak coupling algorithm allows different subdomains to use different solvers independently.

This provides an effective way to capture the characteristics in each subdomain. For example, the fluid

solver is based on a two-step projection method, and the porous solver is based on a meshless method. Two

solvers are completely different in numerical algorithms. The finite difference method can easily capture the
discontinuity of derivatives and the free surface in fluid domain, while the meshless method can easily adapt

the local intensity of stress/strain in porous medium. The weak coupling algorithm can take full advantages

of the solvers in different domains.

Third, this weak coupling algorithm allows non-matching distribution of nodes not only in space but

also in time domain. The data exchange is carried out by the radial point interpolation along the interface

of fluid and porous medium domains. This property of non-matching in spatial and temporal dimensions is

especially useful in the fluid–solid interaction problems because fluid domain usually requires denser grid

nodes and smaller time-step size. The spatial and temporal integration relaxes the consistency constraint
along the interface. If a closed-form solution in a subdomain is available, the solver in that subdomain can

be completely replaced and the convergence can be also improved. Anyway, the fixed seabed can be always

used as the initial value in the iterations of the current algorithm.

Fourth, seabed properties will affect the wave propagation in seawaters and thus the water pressure

along the interface. A big difference between the current weak coupling algorithm and the conventional

method lies to the particle velocity along the interface. The velocity is important to the sediment transport
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near the interface. Stiff soil has lower velocity of particles and soft soil has higher velocity. If this velocity is
higher than some critical value, the water pressure at the interface will increase significantly.
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