SOILS AND FOUNDATIONS Vol. 44, No. 1, 125-142, Feb. 2004
Japanese Geotechnical Society

NUMERICAL METHOD FOR CONSOLIDATION ANALYSIS OF LUMPY
| CLAY FILLINGS WITH MESHLESS METHOD

Tovoakl Nocgamr?), W. WaNG? and J. G. WANG™)

ABSTRACT

A numerical method is developed for consolidation analysis of lumpy clay fillings by using the double porosity
model and the meshless method. Lumpy clay fillings consist of inter-lump voids and a clay matrix, which further
consists of soil frame and pores. When a load is applied to these fillings submerged in the water, pore water pressures
are generated and dissipate in the inter-lump voids and matrix. The model accounts for the coupling between the defor-
mation of the soil skeleton and the excess pore water pressures in both the matrix and inter-lump voids, and also the
fluid exchange between the inter-lump voids and matrix. The meshless method based on the radial point interpolation
method (radial PIM) is used for spatial discretizations of displacement and pore water pressures. The order of interpo-
lation function for the displacement is one order higher than that for pore water pressure to improve the numerical
problem. Time domain is discretized through the backward Euler algorithm. The developed method is verified through
a benchmark problem and two centrifuge tests. Finally, the effects of variations of various key parameters on the
consolidation process are numerically studied for one-dimensional and plane strain (two-dimensional) problems. It is
found that the developed numerical approach can successfully simulate the consolidation behavior of lumpy clay
fillings despite their complex behaviour.

Key words: consolidation, double porosity medium, lumpy clay, meshless method, radial point interpolation (IGC:
E2/E7/E13)

while a micro-system is made of the clay matrix in an
INTRODUCTION individual lump. The behaviors of pore water pressure

Land reclamation has been a common practice for dissipations in inter-lump voids and the clay matrix are
creating valuable land in civil engineering. Two kinds of  quite different from each other. This is attributed to the
filling methods have been used for land reclamation with  distinctly different permeability and compressibility
dredged clay. The first method is hydraulic fillings, where  between the clay matrix and inter-lump structure. Adding
hydraulic force is used to transport and place fills. The further complexity, inter-lump voids may be closed-up
soils are fluidized or muddy in this method. Fills placed in  with loading. In order to investigate such complex
this manner are fairly homogeneous and idealized as a  geotechnical characteristics of lumpy clay, centrifuge and
porous medium with relatively uniform pores. Conven- one-dimensional laboratory tests were conducted at the
tional consolidation theories are applicable for such fills.  National University of Singapore. For examples, Leung
A cramp bucket is also used for dredging seabed soils. In et al. (1996, 2001) used prototype dredged clay lumps
such dredging, stiff clay scooped from the seabed formsa in their tests, while Manivannan (1999) used different
lump. The second filling method is to directly dump these reduced sizes in centrifuge tests. Consolidation and
clay lumps into the reclamation site as a fill material. This  deformation characteristics of lumpy clay fillings were
not only solves the disposal problem of dredged soils but  observed physically in these tests.
also saves land reclamation costs. One of the earliest Numerical simulation of the consolidation process of
dumping filling projects was reported in Halmstad lumpy clays is quite complicated because of strong
Harbor in Sweden (Hartlen and Inters, 1981). Since the  heterogeneity in their structures, which results from
1980’s, several reclamation projects have been completed  coexistence of micro and macro porous systems which
or are in progress in Singapore with lumpy fillings are mutually distinct. Conventional consolidation theo-
(Ganesan, 1998; Leung et al., 1996, 2001; Wong, 1997). ries such as Terzaghi’s or Biot’s consolidation theory

Lumpy clay fillings are a dual porosity system: a are not applicable for such soils. Up to date, only a few
macro-system is made of lumps and inter-lump voids, numerical simulations have been tried to describe the
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consolidation characteristics of lumpy fillings. Wang et
al. (1997) proposed a homogenization method to formu-
late the heterogeneous consolidation behaviors of
dredged lumpy clays. It is based on the Terzaghi-Rendul-
ic consolidation theory that does not include the defor-
mation of the macro-system, in which the physical prop-
erties of the clay matrix and inter-lumpy voids are consid-
ered separately. The double porosity concept is a quite
effective approach to analyze the behavior of a fissured
porous media, mainly used in petroleum and water
resources engineering (Elsworth and Bai, 1992; Berryman
and Wang, 1995; Bai et al., 1994; Bai and Roegiers, 1994;
Ghafouri and Lewis, 1996; Valliappan and Khalili, 1990).
Nogami et al. (2001) applied this double porosity concept
model to the consolidation analysis of lumpy clays for the
first time. They developed a matrix transfer method for
its numerical solution. In their solution, only a one-
dimensional condition was considered for consolidation
of lumpy clay fillings and thus a constant total stress was
assumed during the whole consolidation process.
However, applicability of the double porosity model was
examined to only a limited extent in their study.

Mesh-dependency methods such as the Boundary
Element Method (BEM) and Finite Element Method
(FEM) are powerful means to solve the coupled soil
consolidation problems. However, both BEM and FEM
are mesh-based methods, which require a pre-defined
connectivity for all the elements. As a result, the genera-
tion of suitable meshes for the problem domain can take
most of the computational time and effort, rather than
solving the governing partial differential equations them-
selves. And it is widely acknowledged that mesh genera-
tion remains one of the biggest challenges in mesh-based
methods

To avoid the difficulties arising from mesh generation,
considerable efforts have been devoted to the develop-
ment of a so-called meshless method. It abandons the
element concept for constructing approximation func-
tions for field variables and only uses a set of nodes to
discretize the problem domain. There is no fixed connec-
tivity among nodes and hence it can remove or at least
alleviate the difficulty of meshing and re-meshing the
problem domain by simply adding or deleting nodes.

The initial idea of meshless methods dates back to the
smooth particle hydrodynamics (SPH) methods for
modeling astrophysical phenomena (Lucy, 1977). Since
then, the research into meshless methods has achieved
remarkable progress and these have been reported in
literatures, such as Diffuse Element Method (DEM)
(Nayroles et al., 1992), Element-Free Galerkin Method
(EFGM) (Belytschko et al., 1994), Reproducing Kernel
Particle Method (RKPM) (Liu et al., 1995), h-p clouds
(Duarte and Oden, 1996), the Partition of Unity
(Babuska and Melenk, 1997) etc.

Modaressi et al. (1996) first adopted the meshless
concept to develop a mixed DEM-FEM approach for a
transient coupled analysis for consolidation of soil,
where the displacement of the soil skeleton is modeled by
standard finite elements and the pore water pressure by

element free nodes. After that, Modaressi et al. (1998)
solved the problem of analyzing consolidation of three-
phase porous medium by applying the mixed EFGM-
FEM approach. Nogami and his co-workers (2001)
adopted EFGM to solve Biot’s consolidation equations
for a wide range of engineering problems. In addition,
EFGM was also adopted by Murakami et al. (2001) to
analyze the behavior of saturated soil. All of the above
meshless approaches to solve Biot’s consolidation equa-
tions share the same essential characteristics in that they
are all based on moving least-square (MLS) approxima-
tions and their interpolation shape functions are poly-
nomials associated with nodal values by weighted least-
squares approximations.

Unlike other meshless methods employing the MLS,
the basic idea of point interpolation method (PIM) is to
provide an interpolation method through a data point, sO
that the enforcement of essential boundary conditions
may be simplified. The basis used in PIM is polynomials.
The order of polynomials is dependent on the number of
nodes which contribute to the approximation. It has its
shape functions with Kronecker delta properties and only
one inverse matrix to obtain its shape function and
derivatives. Wang et al. (2001) adopted this method for
the transient coupled field analysis of soil consolidation
and obtained satisfactory results.

However, PIM is not without shortcomings. The main
drawback of PIM is that singular matrices may occur if
the arrangement of a set of scattered nodes is not CONSis-
tent with the order of basis. In order to overcome this
difficulty, a point interpolation meshless method based
on radial basis functions (radial PIM) was proposed by
Wang and Liu (2002). The most attractive characteristic
of the radial PIM is that singularity can be successfully
avoided for arbitrarily scattered nodes by adopting the
radial and polynomial basis function together. Wang et
al. (2002) applied it to solve the Biot’s consolidation
equations and obtained satisfying results. However,
because the radial PIM meshless method still depends on
the background meshes to perform the integration, it 1S
regarded as a pseudo-meshless method.

This paper developed a numerical method for consoli-
dation analysis of lumpy clay fillings, adopting the
double porosity model and the meshless method based on
the radial point interpolation method. First, consolida-
tion equations are presented for lumpy clay fillings by
using the double porosity model. These equations are
discritised with the radial PIM, specially formulated with
the interpolation functions of mutually different order
for displacement and pore water pressures. The devel-
oped method and computer code are verified by using
other numerical methods and centrifuge test results.
Finally, the consolidation characteristics of lumpy fillings
are studied through parameter studies.

GOVERNING EQUATIONS

Lumpy clay fillings consist of randomly distributed
lumps as a macro-system and the clay matrix in an
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Fig. 2. Representation of lumpy clay fillings through double porosity
model

individual lump as a micro-system as shown in Fig. 1.
When an external load is applied to the fillings, pore
water pressure is generated not only within inter-lump
voids but also within matrix pores. As a result, the fluid
exchange takes place between the two domains as the
fluid in inter-lump voids is squeezed out. Although the
pore fluids in matrix pores and inter-lump voids occupy
different spaces, this process is formulated assuming that
a homogeneous quantity of each in the two domains is
distributed uniformly over the lumpy clay space as shown
in Fig. 2. According to such a treatment, two pore water
pressures are defined at each spatial point. This “‘two-
pressure at one point’’ scenario is a convenient treatment
often used in the computational field. Soil particles and
pore fluid are assumed to be incompressible.

For comprehensive presentation, the consolidation
equations for the double porosity medium are briefly
presented. Details can be found in references (Khalili and
Valliappan, 1995; Wilson and Aifantis, 1982; Lewallen
and Wang, 1998). Scripts 1 and 2 in the formulations
presented below denote respectively the clay matrix
(micro-system) and the inter-lump frame structure
(macro-system) of lumpy clay fillings.

Deformation Equations

A volume of lumpy clay fillings as shown in Figs. 1 and
2 is considered. Its equilibrium equation is expressed with
the total stress (¢7) and body force per unit volume (b;) as

(03).;+bi=0 (1)

In this paper, (;)=a(*)/at, (;),,:az(*)/ax,-at and () ;=
d(*)/ox; are defined; and index summation is implicit.

An equivalent effective stress law for double porosity
media can be obtained by using a single effective stress
law (Nur and Byerlee, 1971), expressed as

gy =05+ 0y PO+ 0 Py dij (2)

where J,; is Kronecker’s delta; g; denotes the equivalent
effective stress for double porous media; p; and pg
denote pore water pressures in clay matrix and inter-lump
voids, respectively; and dy and J are defined as (L1,

2001)

m. m,
N 3
o - 02 - (3)

with the compressibility of matrix (m.) and the overall or
macro volumetric compressibility of lump clay fillings
(m). For linearly elastic medium, m is expressed with
Poisson’s ratio v and Young’s modulus E:

1 —=20)(1+ :
=( u)1+v) in the one-dimensional condition
(1-v)E

(4a)

~2(1=2v)(1 +v)
me E

in the two-dimensional condition

(4b)

Increments of volumetric strains are expressed as (Li,
2001)

de.uy= 0mde, — mc(dg)— ne)dpay+ mc(dp — ne)dpe  (5a)

deyo = dpde. + m(dp) — ney)dpay — m(e— ne)dpe (5b)

where “‘d’’ expresses the increment; n,, is the porosity of
inter-lump porous medium; and &,q, &« and &, are
respectively the volumetric strains of clay matrix, inter-
lump frame structure and overall system. €. is expressed
as

o
0Xi

In this paper, the double porosity formulation is used
for consolidation of lumpy clay fillings. The development
of formulation is based on the linear elastic condition.
Such formulation can be justified since the linear elastic
soil is generally used in practice in the predication of pore
water pressure dissipation. By using an appropriate non-
linear constitutive law, it can also be extended for non-
linear analysis. Hooke’s law and equivalent strain ¢;; for
lumpy clay fillings can be written respectively as

(6)

Ev

gij= ZGSU + Aekké,-j (73)
1 ou; an
b 2 (an ax;) ( )

where G and A are Lame’s constants.
From Egs. (1) through (7), the Navier equation for
lumpy clay fillings is obtained as
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0%u; 0°u; ) 230 aPo
+(A+G +on— 10
0X;0X; ( ) 0X;0X; D ax X; @ dX;

G +b;=0. (8)

Flow Equations
Darcy’s law is assumed for seepage flow in either clay
matrix or inter-lump voids, namely

Kij() 0P ©)
Yw 0x j

Qiw= —

where Giw, ki and p., are respectively the discharge of
fluid, permeability and excess pore water pressure; in-
dices o denotes clay matrix (a=1) or inter-lump porous
media («=2); and i and j denote the x-coordinate (i and
j=1) or z-coordinate (i and j=2). A rate of fluid ex-
change between the matrix and inter-lump voids, g, is
assumed to be proportional to their pressure difference,

expressed as
G =(—1DY(pny—Po) (@=1,2) (10)

where y is the fluid exchange factor which is governed by

ki 0°(po) _ _ 5 Ui

Boundary and Initial Conditions

The domain of lumpy clay fillings is denoted as €2 and
its boundary is as I". The fluids in clay matrix and inter-
lump voids are assumed to be full in the domain £, which
is representated in Fig. 3. The boundary and initial condi-
tions are stated as
(1) Displacement boundary condition:

ui(x, t)y=ui(x;t) vxerl,,teT (14a)

(2) Traction boundary condition:

T. vxerl,, teT (14b)

o A=

(3) Pore water pressure boundary conditions:
{pm(x, D=pu(x; 1) vx&€Ily, t€T
Po(x, )=pa(x; t) vx&€Il,,, t€T

(4) Flux boundary conditions:

(14¢)

kjj ap(x) _
- = —d(; er, ; eT
yw axj q (l) Vx am

: (14d)
kijopPay _ G, eI teT
yw axj i(2) Q)0

(5) Initial conditions:

ui(x; 0)=uoi(x)

1Pn(X; 0)=Ppony(x) VXEL
Py (X; 0)=Poxy(x)

where 74 is the outward normal unit vector to the bound-
ary I'; tloi, Poay and Py are the initial values; and w;, T;,
D and Gi (=1, 2) are respectively displacement, trac-

(14e)

P

the permeability, shape, and porosity of each medium.
The continuity of fluid mass within a unit volume of

lumpy clay fillings can be written as

aSV(a)
Gy =

dXi at
Equation (11) states that the volume change of an ele-
ment in the lumpy clay domain is due to the flow stored

and the exchange of fluid between matrix and inter-lump
voids in the element. Equation (11) is rewritten as

(11)

dE. aq,
3 tu) ™ 4 y(pay— P)
< X; | (12)
66v(2)= _BCIi(z)_ (PP
Tt ax, 1~ P

In the paper, the lumpy clay fillings are assumed to be
layered homogenously. The distribution of permeability
along depth is step-wise and homogenous within a layer.
Therefore, from Egs. (5) ~ (8) and Eq. (12), the continui-
ty equation for lumpy clay fillings is obtained as

17(2)

e Oy~ N — M 0 — N +
Yw  0Xi0X; D ax:9t MmO~ Ne)) — ot Oy —ne) 7, 3t Y(Poy—Pw)
i (13)
Kij2) 3°(P) _ 9’ u—'——m‘(é . )317(1) +mu(S )-E(—Zz—y(p o)
Yo 0Xi0X; (2) 3x: 9t \d2)™ 2 9~ A Y, 1~ P

P(n)(xat) = ﬁ(])(xﬁ)
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SUT T

Free draining surface
on; =Ti

<H

u,(x,t) =u;(x;t)

“ <H

\Vi

u (x,t) =u,(x;t)

VARV

<H

Free draining bottom

@ o

u,(x,t) =u,(x;t)

Fig. 3. Boundary conditions for lumpy clay fillings based on double
porosity model

tion, fluid pressure and fluid flows that are prescribed re-
spectively at Iy, I's, ITp,» Tpas Loy and Iy, of I', which
satisfy

ruUFa
Nl

=Fpu)UFQ(n_Fp(z)UI-'Q(z)zr
:rp(l)OFQ(l)zrp(z)NQ(z)zg’
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NUMERICAL APPROACH

Variational Formulations

Using the variational displacement du; as a weight and
taking Eq. (7a) and (7b) into consideration, a weak form
of the equilibrium equation is written as

g {0e;}T{0,;}dQ+ 5(1)S {Ou; .} {puydQ

Q Q

+ 0@ S {0u; i} ' {petdQ
Q

N

= {Ju,-}T{Y_",-}dI“+S {5ui}r{ni}{p(1)}df
Yr, I,

N

+ {Jui}r{ni}{p(z)}dF—S {5u1}r{bl}dg (15)

Uro

Similarly with the variational fluid pressures dpq) and
dpwa), weak forms of the continuity equations (Eq. 13) are
written as

, 1
5(1)5 {5p(l)}r{ui,i}d —y—g {5pm,,-}[k,-,-(,)]{p(,),j}dQ
Q wYQ

N

—m (0 — Nw)) {5,0(1) P D ydQ2
v

N

{5,0(1) } T{ P +dQ
Q

+m(0p)— )

LV

=Y SQ {517(1) } T{p(l) 1dQ + y S {5.0(1)}T{P(2)}d9

+§ {5p(1)}r{q(1)}dF=O (163)

FQ(U

, 1
5(2) S {517(2) } T{ui,i rdQ—— S {517(2).1' } [kij(Z)] { p(z),j}dQ
Q

Ywda

+m.(0p) — ) S {Opay } A pay HdR2

Q

- mc(5(2) —Ne)) S {5,0(2) FH P rdQ2
Q

+y XQ {opay} ' { Doy 1dQ — )’S {5p(2)}T{P(2)}dQ

+S {5p(2)}T{Q(2)}dF=O (16b)

FQ(Z)

Spatial Discretization

The meshless method based on the radial Interpolation
Method (PIM) (Wang and Liu, 2002) is adopted to dis-
cretize the displacement and pore water pressure. The
meshless method uses the influence domains instead of
elements for interpolation as illustrated in Fig. 4. This
largely overcomes the problems associated with the use of
elements and facilitates the application of the meshless
method to irregular node distributions.

In the process, the interpolation functions are formu-
lated for both displacement and pore water pressure.
Stress is the derivative of displacement by the space
coordinates. This leads to one-order higher derivatives of
the displacement than the pore water pressure in the

domain

Influence domain in meshless method

Fig. 4.

continuity equation. Therefore, the interpolation func-
tion for displacement should be one-order higher than
that for pore water pressure, for consistent accuracy
between the stress and pore water pressure. This unequal
order approximation is generally used in finite element
method. However, the previously developed radial PIM
does not consider it. In order to improve the possible
numerical problems caused by inconsistency of accuracy
between the displacement and pore water pressures, a one
order higher interpolation function is specially used for
the displacement than that for the pore water herein
(Appendix B). This is the first time that unequal order
approximation has been adopted in the meshless
methods. Compared to previously developed radial PIM,
the unequal order approximation of radial PIM gives
higher numerical accuracy.

Using such interpolation functions as shape functions,
the displacement and pore water pressure are written as,
respectively

ux)=d,(x)u’
Po(x) = Dy (X)p,, (17)

where =1 and 2 stand respectively for the pore pressures
in matrix and inter-lump voids; and @,(x) and @D,(x)
denote respectively shape functions for displacement and
pore water pressures, as explained in the Appendix; and
u¢ and p° are the nodal values.

With the relationship in Eq. (17), Eq. (15) and Eqgs.
(16a) and (16b) written in weak forms are spatially
discretized as

(K ]{u} + 00 [Kelipw} +6m[Kul{pa} ={R} (18a)
5(1)[K21]{d} — [[K2] + )’[Kn]]{P(l)} + y K] {P(z)}

—a[Kul{pw} — P }]1= {Qw} (18b)
0@ [Kn] {u} — [[K2] + y[K2s]] {P(z)} + y[K2] {P(l)}

+a[Kull{pa} — {Pay 1 ={0x} (18c¢)

where, with the assumption of zero pore water pressures
on traction boundary,
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[K,,]-—-S B'DB,dQ? [K121=S B, ®,dS2

Q2 Q2

[R]=S (DZTdI"+S ®ThdQ [K21]=S (B, ®,)7d
I, Q

Q

| r |
[Kzz] = B3TK(1)B3dQ [Kz;,] '—'—"S (D'{(Dpd!)
Ywo Q
1 c
[Kul=—\ BiKqB;dQ
Ywdo
{Qu)} = “S {(pp}T(](l)dr {Qn} = "S {qu}Tqmd]“
Ty Ty
‘b, N
0 _ - _
9%, Py 0P, |
0D, dx ax
Bi= | 0 Bo= | | By=|
3X2 Qg a¢p
a¢u ad)u L ax2 J L ax?- P
LdXxy  dx |

a=mc(0p— Ny)

It is understood in the above expressions that: K, is the
permeability matrix of clay matrix; K is the permeabil-
ity matrix of the inter-lump porous medium; T is the
surface traction matrix; D is the material matrix of linear
elasticity; and gq, and g, are the matrices of boundary
flux.

Temporal Discretization

The time domain is discretized through the finite differ-
ence method. In this manner, a function f(x) integrated
from f to t+ At is expressed as

S f(xX)dx=At[6f(t)+(1—8)f(t+A41)] (19)

where ¢t and At denote time and time increment, respec-
tively; and 6=0, 0.5 and 1 correspond respectively to the
fully explicit Euler algorithm, Crank-Nicolson algorithm
and backward Euler algorithm. After time discretization
by using Eq. (19), Eqgs. (18a)~ (18c) are rewritten as,
respectively

[Kunl{ Au}' 2"+ 60y [Kn]{ Apay } 72!

+ 00 [Knl{dpa ' ' =[4R] (20a)

Oy [Kul{ Au} — [04t[Kn]+ (a+ ybAt)[Knll{ AP}
+(a+y04t[Ku){A4pa}
=At[[Kxn]+ y[Kusllphy — Aty [Kulpp + [400)

O [Kul{ Au} +(a+y0At[Kn){ Apu} — [04t[K2)
+(a+y604t[KulD{4pe }
= — Aty [Knlpyy + At[[K] + Y [Kxs1lpoy + [4 0] (20¢)

(20b)

VERIFICATIONS

Implementation of the Radial PIM Meshless Method

In the present meshless method based on the radial
PIM, the order of the interpolation function for the
displacement is one order higher than that for the excess
pore water. This is reflected by adopting linear polynomi-
als (m in Appendix A is equal to 3) for the pore water
pressures and quadric polynomials (m in Appendix A is
equal to 6) for the displacement. The minimum radius of
each influence domain is generally taken as 1.5 m. Radial
PIM meshless method requires certain number of nodes
to construct the shape function. It is found that around 6
to 30 numbers of nodes can lead to good results in the
preliminary numerical studies; otherwise reasonable
results can not be obtained. Hence, if the number of
nodes contained in an influence domain is less than 6, its
radius of the domain is enlarged to encompass at least 6
nodes. The shape parameter for a Gaussian type function
(b in Eq. (38) in Appendix A) is 2.01. It 1s found that,
when orders of interpolation functions are mutually une-
qual between those for pore water pressure and displace-
ment, the backward Euler algorithm (f=1) in time in-
tegration can avoid spurious oscillation in the radial PIM
meshless method [Wang et al. 23]. Hence, the backward
Euler algorithm is used for computation herein.

A suitable pattern of nodal arrangement is examined.
For a typical one-dimensional problem as shown in
Fig. 5(a), nodes are arranged as in Fig. 5(b) for regular
distribution and Fig. 5(c) for irregular distribution. The
top surface is fully permeable for the clay matrix and the
inter-lump structure and bottom surface is rigid and
impervious. The soil layer is 10 m thick. A uniform load
of 10 kPa is applied to the top surface. Material constants
used in the computation are E=10 MPa, v=0, kg)=1X
10-* m/year, k=1% 107" m/year, np=0.1, and y=1X
10~*. Figure 6 shows the effect of node distribution on the
history of pore water pressure dissipation at the base of
the lumpy clay fillings. The results obtained with irregular
node distribution almost match those obtained with
regular node distribution for both the matrix and In
inter-lump voids. Hence, it can be confirmed that the
current numerical approach is not sensitive to the way of
node distribution. In the following computation, only
regular node distribution is used.

Comparison with Other Numerical Methods

One-dimensional consolidation of fissured clay has
been previously formulated and analyzed with the double
porosity model by using the finite element method
(Khalili et al., 1999) and the matrix transfer method (Li,
2002). Since the computational approach developed in
this paper is also applicable to fissured clay, these
analyzed cases are also analyzed by this method for
verification of the formulation and computer code first.
In this study, the time factor 7, is defined as

_kayt ko

t 21
— 1)

v
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where d is the maximum drainage path and k¢, and A
are isotropic. Also, average degrees of consolidation for
the clay matrix, inter-lump voids and overall lumpy clay
system are defined as, respectively

h
S pnadz
Upn=1— ,? (22a)
S DPondz
0
h
S P dz
Upsp=1-— 2 (22b)
S Do»dz
0
u:—% (22¢)

where S, and S., are respectively the surface settlement at
time ¢ and the ultimate surface settlement; Uy, U and U
are respectively average degrees of consolidation for the
clay matrix, inter-lump voids (fissures) and overall lumpy
clay system (overall fissured clay).

Figure 7 shows the distributions of excess pore water
pressures along depth in the matrix and inter-lump voids
at T,=0.5. Figure 8 shows the variation of the average
degree of consolidation with time for the overall system.
Good agreements are observed among the results com-
puted by the three different methods.

Centrifuge Test
The experiments have been conducted at the National

University of Singapore Geotechnical Centrifuge to study
the consolidation behavior of the lumpy clay fillings.
Details of this centrifuge are described in Lee et al.
(1991). To study the consolidation and deformation
characteristics of lumpy clay fillings physically, Wong
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Table 1. Parameters in numerical computation for centrifuge model
test 1
Parameter | Definition | Magnitude | Unit
" | gzjrg;i compressibility of lumpy 6.2%x10-° | kPa~'
m, Compressibility of the clay matrix | 9.3x10™* | kPa™'
ko Permeability of clay matrix 3x107* | m/year
K Permeability of inter-lumpy voids 3x 107" | m/year
v Poisson’s ratio 0.35 —
E Drained bulk modulus 870 KPa
‘n(z, Porosity of inter-lump void 0.2 —
: Y Fluid exchange factor 4.5%107° —
Table 2. Different distributions of k,, and m used in computation for

centrifuge test 1

[
\\_ Case 1 Case 2 Case3
Surface lkg 1.2k 1.9%
B Surface Surface 9k,
Part A: 2
Distnbution of g‘
o ? T Bottom 53R Bott
@ OK om 0. ] /(m
Surface 1m Surface 1.2m Surface 1.9m
>
o
Part B: o
Distribution of m 3
5
= Bottom ! Bott
Bottom T om 0.8m om 0.1m

Applied stress = 120 kPa

ERE
' Free draining surface ' T
> <H
H> <H I15m
> <H
Free draining bottom 1

A &
—— 10m —

(a) Schematic view of boundary conditions of
the soil in centrifuge test (in prototype)

(b) Node distribution used in meshless
method analysis (336 nodes)

Fig. 9. Conditions used in test 1 and analysis

(1997) used uniform size of dredged clay lumps in experi-
ments, while Maninannan (1999) carried out centrifuge
tests with different size lumpy clays. Their centrifuge tests
were conducted under 100 g. In the tests, the model setup
consisted of a strong box with its frontal portion made of
perspex that allowed the entire test process to be captured
on a video camera. The lumpy clay used in the studies
was taken from the New Container Terminal site in
Singapore. By using a cylindrical scoop, the clay balls
were taken from the recompressed soil in the tub. The
clay balls were then placed by hand in hexagonal face
packing in layers in the container. Thumb pins were at-
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Fig. 10. Comparison of test results and numerical results for different
distributions of k,, along depth (test 1)

tached onto the surface of selected clay balls located close
to the perspex wall. The pins were made to face outward,
such that their movements could be measured with
reference to the measuring tapes placed on the cylinder.
Further details of the experimental set-up for lumpy clay
fillings consolidation are given in Wong (1997). Two
centrifuge model tests were conducted to study the
consolidation characteristics of lumpy clay fillings in the
one-dimensional condition (Leung et al., 1996, 2001;
Wong, 1997). They were conducted under the pressures
260 kPa and 120 kPa applied on the surface in each test.
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O 2 years

+ 7 years

m = constant

16 ) ' | ] l ¥ l
0 40 80 120

Excess pore water pressure inside
inter-lump voids (kpa)

(b) Excess pore water pressure in inter-lump voids

The developed numerical method is examined by using
these test results, mainly with respect to the applicability
of the double porosity model for the consolidation
analysis of lumpy clay fillings.

The basic parameters involved in the governing
equations for lumpy clay fillings are 4, G, nw), m., m, K,
ko and y. The large-scale one-dimensional drained
compression tests were also conducted on clay lumps,
when the centrifuge model tests were conducted. The
average values of m1 and ng, over the depth are estimated
from the compression tests conducted on clay lumps
(Wong, 1997). m. and n, are estimated from element tests
conducted on clay matrix (Wong, 1997). Since the con-
solidation behavior of lumpy clay fillings is governed by
k. at the early stage of the consolidation process, K@) 18
estimated at the early stage observed in the large scale test
on clay lumps. On the other hand, k, is estimated mainly
at a very late stage of consolidation process observed in
the above tests. Past experience with similar clay and the
finite element analysis are also utilized to estimate the rest
of parameters (Mannivanann, 1999) except y. Modifying
the expression originally proposed by Warren and Root
(1963) for rock mass with fissure networks, the fluid ex-
change factor y for lumpy clay fillings is estimated from

_ Cky
Ty,

(23)

where ¢ is the shape factor of the clay matrix and / is
the equivalent average diameter of clay lumps. Table 1
summarizes these estimated values of the parameters.
Because detailed material information on lumpy clay
fillings during the centrifuge tests is not available, several
distributions of the parameters along depth are consid-
ered based on the above estimated average values over the
depth. They are listed in Table 2. Figure 9 shows the
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arrangement of nodes and the boundary conditions used
for the analyses.

Numerical results computed for the first centrifuge test
are shown in Figs. 10~ 12 for pore water pressure distri-
butions along the depth at two different times and for
time histories of the surface settlement. The results in
Fig. 10 are obtained for various distributions of k, with
depth while keeping m uniform along the depth. The
results in Fig. 11 are obtained for various distributions of
m with depth while keeping &, uniform along the depth.

Current approach

0-9 Centrifuge test

O 2years

+ 7 years

k = constant

16 T r  { ' ) '
0 40 80 120

Excess pore water pressure inside
inter-lump voids (kPa)

(b) Excess pore water pressure in inter-lump voids

The results in Fig. 12 are obtained when both k) and m
vary with depth according to Case 3. It 1s confirmed 1n
these figures that the used parameters with distributions
of ki) and m according to Case 3 can produce computed
results close to those observed in the centrifuge test for
both pore water pressures in the matrix and inter-lump
voids.

Since the experimental setup and model for lumpy clay
in the second test were practically the same as those in the
first test except for the intensity of applied pressure, the
numerical results are computed with the parameters
which were confirmed in the first test results. The second
test results are now compared with the numerical results
in Fig. 13. Good agreement between the numerical and
experimental results are observed for both excess pore
water pressures in the matrix and inter-lump voids. Based
on Eq. (23) that was originally proposed for the rock
mass, the fluid exchange factor, y, can be estimated some-
where from 4 X 107> to 5% 107°. For this reason, the nu-
merical results computed with y=4x10"° and 5x107°
are also shown in Fig. 13 for comparison. It is seen in the
figure that parameter y in this range alters the numerical
results relatively little and those with y=4x 107> are still
in good agreement with the test results. The above com-
parisons imply that the double porosity model can predict
the consolidation behavior of lumpy clay fillings reasona-
bly well. Therefore, the current approach appears to be
effective provided that proper material properties are
given.
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distribution of both m and k,, along depth (test 1)

CONSOLIDATION BEHAVIOUR OF LUMPY CLAY
FILLINGS |

In this section numerical experiments are carried out to
study the consolidation behavior of lumpy clay fillings
for one-dimensional and two-dimensional problems.

One-dimensional Consolidation Problem

Figure 14 shows typical variations of average degrees
of consolidation with time in the matrix and inter-lump
voids. Three distinct stages are observed in the consolida-
tion behavior of lumpy clay fillings. Stage I is character-

Current approach

Centrifuge result

O 2years

+ 7 years

0 40 80 120 160
Excess pore water pressure inside clay matrix (kPa)

(b) Excess pore water pressure in inter-lump voids

ized by the rapid dissipation of excess pore water pressure
in inter-lump voids but very little dissipation in the
matrix. This is due to a higher permeability in inter-lump
voids and a lower permeability in the matrix. As a result,
the pore water pressure drops quickly in inter-lump voids
and more load is transferred from the inter-lump voids to
the clay matrix, which leads to a fluid pressure raise in the
clay matrix before it starts to dissipate and hence the
average degree of consolidation for the clay matrix is
slightly larger than 1. Stage II is characterized by a sig-
nificant exchange of fluid between the matrix and inter-
lump voids, in which the pore water in the matrix leaks
into inter-lump voids rather significantly due to the pres-
sure difference developed between the matrix and inter-
lump voids. The leak from the matrix slowdowns the rate
of pore pressure dissipation within inter-lump voids. The
duration of this stage depends mainly on the fluid
exchange factor (y). This fluid exchange is governed by
the average porosity of inter-lump voids and the
permeability of the matrix as expressed by Eq. (23). The
larger fluid exchange factor results in a shorter duration
of stage II. The last stage or stage 11 is characterized by a
dominant dissipation of pore water pressure in the matrix
since most of the pore water in the inter-lump voids has
dissipated at stage III.

For the one-dimensional consolidation problem, nu-
merical experiments are conducted to study the effects of
variations of the fluid exchange factor, p, permeability
ratio, Rx(= k@ /ka), and compressibility ratio, 0,(=m. /
m). Figure 15 shows the effect of variation of Ry on the
average degree of consolidation, defined as S, /Sw. As Ry
gets smaller, the permeability of inter-lump voids
becomes closer to that of the clay matrix. This situation
occurs as the openings of inter-lump voids are reduced in
the consolidation process. When it progresses to a sig-
nificant degree, inter-lump voids become not as effective
in draining and the pore water is drained mostly through
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the matrix which results in a longer drainage path. On the
other hand, a larger R, implies higher permeability of
inter-lump voids. Then, the pore water pressure in the
inter-lump voids dissipates more quickly. After sig-
nificant progress of drainage in inter-lump voids, these
voids become good drainage paths for pore water in the
matrix speeding up the consolidation process.

The effects of variation of ) are shown in Fig. 16. A
more rapid consolidation rate is seen for smaller J;, in the
figure. This is because deformation of the matrix is more
difficult for a smaller J,,. As a result, the fluid pressure
dissipates relatively more through inter-lump voids than

Current approach

Centrifuge test

0 20 40 60 80
Excess pore water pressure inside
inter-lump voids (kPa)

(b) Excess pore water pressure in inter-lump voids

out of the matrix, which increases the consolidation rate
as a whole.

The effects of variation of y are shown in Fig. 17. 1t 1s
observed that a longer consolidation time is required for
smaller y. This may be attributed to the fact that a higher
fluid exchange rate between the matrix and inter-lump
voids yields more rapid seepage of the fluid from the
matrix into inter-lump voids and thus faster dissipation
of pore pressure in lumpy clay fillings. Figure 18 shows
the average degree of consolidation in matrix and inter-
lump voids for two different y. A shorter duration of
stage 11 is observed for the higher fluid exchange factor as
expected from the above argument.

Two Dimensional Consolidation Problem

A load is assumed to be applied on a limited area of the
top surface as shown in Fig. 19. Only one particular set of
the parameters (y=1x107°, Ry=100 and J3)=0.5) is
considered for this two-dimensional problem, in which
the surface is assumed to be free-draining and the bottom
is assumed to be rigid and imperious. Figure 20 shows the
time histories of pore water pressure dissipations in
matrix and inter-lump voids at the bottom of the fillings
located at the center of the loaded area. The curves are
similar to those observed in the one-dimensional consoli-
dation problem and the consolidation process can still be
divided into three distinct stages: stage I controlled by
inter-lump voids; stage II controlled by both matrix and
inter-lump voids; and stage III controlled by the matrix,
which is characterized by the dominant dissipation of
pore water pressure in the matrix since most of the pore
water in the inter-lump voids has dissipated at stage III.

Figures 21 and 22 show respectively the distributions of
excess pore water pressure along the vertical and horizon-
tal planes at three different times. These planes are lo-
cated respectively at the center of the loaded area and at
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1 m below the soil surface. The pore water pressure in the
inter-lump voids dissipates faster than that in the clay
matrix. Figure 23 shows vertical settlements of the layer.
Due to the immediate settlement under the undrained
condition (deformation without change in soil volume),
the difference between the excess pore water pressures at
t=0.2, 0.4 and 0.6 years is much larger than the differ-
ence between the settlements at these times. Figure 24
compares the consolidation behavior of clay as a single
porosity soil and lumpy clay as a double porosity soil, for
both the one-dimensional and two-dimensional condi-
tions. The material properties of single porosity soil,
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Fig. 16. Consolidation rate for different ratio of compressibility (9))
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Fig. 17. Consolidation rate for different fluid exchange factor (y)

which is assumed to possess a continuous distribution of
a single type of void space satisfying a single permeabil-
ity, are the same as those of the matrix in lumpy clay. It is
seen that the effect of inter-lump voids on consolidation
time is much more pronounced for the one-dimensional
condition than for the two-dimensional condition.

CONCLUSIONS

A numerical method is developed for consolidation
analysis of lumpy clay fillings by using the double porosi-
ty model and the meshless method. The developed
method can consider: coupling of the deformation of soil
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skeleton and the pore water pressures in both the clay
matrix and inter-lump voids; and the fluid exchange
between clay matrix and inter-lump voids. The pore
water pressures and displacement are spatially discretized
by using the Radial PIM meshless method with unequal-
order interpolation functions. The developed method 1is
verified through numerical results obtained by other
methods and experimental results obtained by two cen-
trifuge tests. Parameter studies are carried out for one-
dimensional and two-dimensional problems. The follow-
ing conclusions can be drawn from these studies:
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Fig. 20. Dissipation of excess pore water pressures in clay matrix and
inter-lump voids at the base of the lumpy clay fillings located at the
center of loaded area

(1) The double porosity model is well applicable for
consolidation analysis of lumpy clay fillings. It is
capable of taking into account the interaction
between the deformation of soil skeleton and the
pore water pressures in both the clay matrix and
inter-lump voids, and also the fluid exchange
between the matrix and inter-lump voids.

(2) The meshless method is effective for computation of
consolidation behavior of lumpy clay fillings.

(3) The permeability ratio (Rx), compressibility ratio
() and fluid exchange factor (y) govern the
consolidation process of lumpy clay fillings. The
consolidation progresses faster for the higher
permeability ratio, lower compressibility ratio and
higher fluid exchange factor.

(4) The behaviours of pore water pressure dissipations
are different in the clay matrix and inter-lump voids.
When the permeability ratio is higher, the pore
water pressure dissipates faster in inter-lump voids
but slower in the matrix. When the compressibility
ratio is lower, the pore water pressure dissipates
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slower in inter-lump voids but faster in the matrix.
As the fluid exchange factor increases, the pore
water pressure dissipates slower in inter-lump voids
but faster in the matrix.

ACKNOWLEDGEMENT

The authors wish to acknowledge R. Manivanann for
making the experimental results available for the present
study.

<
(a9}
Z
X
“é e =02 year
> 4
5 o t=0.4 year
£ 27 * *
§ | x t=0.6 year
o
o‘ e
5 3 y = 1x107
3
© i v o(1)= 0.5
8 4 Rk =1000
O
= -
()
5 | l ¥ ]’ | J I
0 10 20 30

Horizontal distance (m)

(a) Clay matrix

5%
5
2 &
2w
8.9 0.8
R
2 ‘El <
L 35
230 1.2 — e (=0.2 year
oS =Y y = 1x1073
QL o
3] - = _
5.5 o t=0.4 year 5(1)_0.5
1.6 — X 1=0.6 year R=1000
2 | | ] | | l | § '
0 10 20 30

Horizontal distance (m)

(b) Inter-lump voids

Fig. 22. Dissipation of pore water pressure along the horizontal plane
1 m below surface at various times

REFERENCES

1) Babuska, I. and Melenk, J. M. (1997): The partition of unity
method, Int. J. for Numerical Methods in Engrg., 40, 727-758.

2) Bai, M. and Elsworth, D. (2001): Coupled process in subsurface
deformation, flow, and transport, ASCE Press, Reston, VA, USA.

3) Bai, M., Ma, Q. and Roegiers, J. G. (1994): A nonlinear dual-
porosity model, Applied Mathematics Modelling, 18, 602-610.

4) Bai, M., Meng, F., Elsworth, D, Abousleiman, Y. and Roegiers, J.
G. (1999): Numerical modeling of coupled flow and deformation in
fractured rock specimens, Int. J. for Numerical and Analytical
Methods in Geomechanics, 23, 141-160.

5) Bai, M. and Roegiers, J. G. (1994): Dual-porosity behavior of
naturally fractured reservoirs, Int. J. for Numerical and Analytical
Methods in Geomechanics, 18, 359-376.

6) Barenblatt, G. 1., Zheltov, 1. P. and Kochina, N. (1960): Basic con-
cepts in the theory of seepage of homogeneous liquids in fissured



140 NOGAMI ET AL.

0.002 -
O v—
E ¥
= - cg
i
= Double porosity Single porosit
k> -0.002 = medium rr%edi}:lm Y
E | % |
j=
2 o =(.2 year
0.004 = o t=0.4 year
7 X 1t=0.6 year
'0.006  § ' 1 ' ¥ l
0 10 20 30
Horizontal distance (m)
Fig. 23. Vertical settlement profile along the surface at various times

rocks, J. of Applied Mathematics and Mechancis, 24, 1286-1303.

7) Bear, J. (1972): Dynamics of fluids in porous media, American
Elsevier, New York.

8) Belytschko, T., Lu, Y. Y. and Gu, L. (1994): Element-free Galerkin
methods, Int. J. for Numerical Methods in Engrg., 37, 229-256.

9) Berryman, J. G. and Wang, H. F. (1995): The elastic coefficients of
double-porosity models for fluid transport in jointed rock, J. of
Geophysical Research, 100, 24611-24627.

10) Callari, C. and Federico, F. (2000): FEM validation of a double
porosity elastic model for consolidation of structurally complex
clayey soils, Int. J. for Numerical and Analytical Method in
Geomechanics, 24, 367-402.

11) Duarte, C. A. and Oden, J. T. (1996): Hp clouds-An h-p meshless
method, Numerical Methods for Partial Differential Equations, 12,
673-705.

12) Elsworth, D. and Bai, M. (1992): Flow-deformation response of
dual-porosity media, J. of. Geotech. Engrg., 118, 107-124.

13) Ganesan, V. (1998): Layered clay-sand scheme of land reclamation,
Ph.D thesis, National Univ. of Singapore.

14) Ghafouri, H. R. and Lewis, R. W. (1996): A finite element double
porosity model for heterogeneous deformable porous media, Inr.
J. for Numerical and Analytical Method in Geomechanics, 20,
831-844.

15) Hartlen, J. and Inters, C. (1981): Land reclamation using fine-
grained dredged material, Proc. 10th Int. Conf. on Soil Mechanics
and Foundation Engrg., Stockholm, 145-148.

16) Khalili, N. and Valliappan, S. (1995): Fissured clay consolidation: a
mathematical model, Proc. Int. Symp. on Compression and Con-
solidation of Clayey Soils, Hiroshima, Japan, 10-12.

17) Khalili, N., Valliappan, S. and Wang, C. F. (1999): Consolidation
of fissured clays, Géotechnique, 49, 75-89.

18) Lee, F. H., Tan, T. S., Leung, C. F., Yong, K. Y., Karunaratne, G.
P. and Lee, S. L. (1991): Development of geotechnical centrifuge
facility at the National University of Singapore, Proc. Int. Conf.
Centrifuge 91, Ko and McLean, Rotterdam, Holland, 11-17.

19) Leung, C. F., Lau, A. H., Wong, J. C. and Karunaratne, G. P.
(1996): Centrifuge model tests of dredged material, Proc. 2nd Int.
Conf. on Soft Soil Engrg., Nanling, China, 1, 401-406.

20) Leung, C. F., Wong, J. C., Manivanann, R. and Tan, S. A. (2001):
Experimental evaluation of consolidation behavior of stiff clay
lumps in reclamation fill, Georech. Testing J., 24 (2), 145-156.

21) Lewallen, K. T. and Wang, H. F. (1998): Consolidation of
a double-porosity medium, Int. J. of Solids Structures, 35,

O ——
g 02— Double porosity model
1 2 eee=- Single porosity model

Average degree of consolidation

10000

1000

0.01 0.1 1 10 100
Consolidation Time (years)

(a) Two-dimensional condition

Double porosity model

0m  &®&=~=«e <cecece= Single porosity model

t

S
Soo

Average degree of consolidation

10000

1000

0.01 0.1 1 10 100
Consolidation Time (years)

(b) One-dimensional condition

Fig. 24. Effects of double porosity on one-dimensional and two-
dimensional consolidation behaviours

4845-4867.

22) Li, M. (2001): Consolidation of clay with permeable elements,
Master thesis, National Univ. of Singapore.

23) Liu, W. K., Jun, S. and Zhang, Y. F. (1995): Reproducing kernel
particle methods, Int. J. for Numerical Methods in Fluids, 20,
1081-1106.

24) Lucy, L. B. (1977): A numerical approach to the testing of the
fission hypothesis, The Astronomical J., 1013-1024.

25) Mannivanann, R. (1999): Land reclamation using dredged
materials, Research Proposal for Ph.D. Pre-Exam, National Univ.
of Singapore.

26) Modaressi, H. and Aubert, P. (1996): A diffuse element-finite
element technique for transient coupled analysis, Int. J. for



NUMERICAL METHOD 141

Numerical Methods in Engrg., 39, 3809-3838.

27) Murakami, A., Kawabata, H. and Aoyama, S. (2001): EFGM anal-
ysis for saturated soil, Computer Methods and Advances in
Geomechanics (eds. by Desai et al.), 1, 153-156.

28) Nayroles, B., Touzot, G. and Villon, P. (1992) Generalizing the
finite element method: diffuse approximation and diffuse elements,
Computational Mechanics, 10, 307-318.

29) Nogami, T., Wang, W. and Li, M. (2001): Consolidation of lumpy
clay fills, Proc. Computational Mechanics—New Frontiers for New
Millennium, Ist Asian-Pacific Congress on Computational
Mechanics, Sydney, Australia.

30) Nur, A. and Byerlee, J. D. (1971): An exact effective stress law for
elastic deformation of rock with fluids, J. of Geophysical Research,
76, 6414-6419.

31) Valliappan, S. and Khalili, N. (1990): Flow through fissured porous
media with deformable matrix, Int. J. for Numerical Methods in
Engrg., 29, 1074-1094.

32) Wang, J. G., Leung, C. F. and Chow, Y. K. (1997): Consolidation
analysis of lumpy fills using a homogenization method, Proc. 9th
Int. Conf. on Computer Method and Advanced Geomechanics,
1075-1080.

33) Wang, J. G. and Liu, G. R. (2002): A point interpolation meshless
method based on radial basis functions, Int. J. for Numerical
Methods in Engrg., 54, 1014-1201.

34) Wang, J. G. and Liu, G. R. (2002): A point interpolation meshless
method based on radial basis functions, Int. J. for Numerical
Methods in Engrg., 54, 1623-1648.

35) Wang, J. G., Liu, G. R. and Lin, P. (2002): Numerical analysis of
Biot’s consolidation process by radial point interpolation method,
Int. J. of Solids and Structures, 39, 1557-1573.

36) Wang, J. G., Liu, G. R. and Wu, Y. G. (2001): A point interpola-
tion method for simulating dissipation process of consolidation,
Computer Methods in Applied Mechanics and Engrg., 190,
5907-5922.

37) Warren, J. E. and Root, P. J. (1963): The behavior of naturally
fractured reservoirs, Transactions, AIME., 23, 245-255.

38) Wilson, R. K. and Aifantis, E. C. (1982): On the theory of
consolidation with double porosity, Int. J. of Engrg. Science, 20,
1009-1035.

39) Wong, J. C. (1997): Model studies of lumpy fill, Master Thesis,
National Univ. of Singapore.

APPENDIX A: RADIAL POINT INTERPOLATION
METHOD

Consider an approximation function u(x) in the in-
fluence domain. This function has a set of arbitrarily dis-
tributed points P;(x;) (i=1, 2,- - -, n) within the influence
domain. n is the number of nodes. The function has value
u; at each node point x;. The radial PIM method
constructs the u(x) through a linear combination of radial
basis B;(x) and polynomial basis p;(x):

u(x)= }5 Bi(x)a; + f: P;(x)b;=B"(x)a + PT(x)b (24)
i=1 Jj=1

where a; is the coefficient for B;(x) and b; the coefficient
for pi(x) (usually, m < n). The vectors are defined as

a’=[a,a,a;- - - a,]
b'=[b,b,---b,]

B'(x)=[B:(x) B:(x) B3(x)- - - B,(x)]
P (x)=[p:(x) p2(x)- - - P (x)]

Generally, the Bi(x) has the following form for a two-
dimensional problem

(25)

Bi(x)=Bi(r;)=Bi(x, »)

ri=[(x—x)*+(y—y)1"
Polynomial basis functions have following monomial
terms:

(26)

PT(x)=[1 xyx*xyy* -] (27)

The coefficients a@; and b, in Eq. (24) are determined by
enforcing the u(x) to pass through all n scattered points:
U= U(X¢, Vi) = E a;Bi(x¢, i)+ E b; Pi( Xk, Y«)

i=1 j=1
k=1,2,---,n (28)

A constraint is necessary to insure that the approximation
is unique:

Y. Pi(xi, y)ai=0 j=1,2,---,n (29)
i=1
[t is expressed in matrix form as follows
By, P a u a ut
ol floh o e fi-lo) e
P 0J) b 0 b 0

where the vector for function values at each node is

ut=[u, up us- - -u,)" (31)
The coefficient matrix B, on unknowns a is
/Bl(xl,)ﬁ) By(x1, Y1) Bn(xx,}’x)\
B, = Bn(x.z, ¥2) Bz(x.z, »2) Bn(x‘Za »2) (32)
| Bi(Xn, Yn)  Ba(Xns V) B, (Xny V)| nxn
The coefficient matrix P, on unknowns b 1s
/Px(xl,)’l) P>(x1, y1) Pm(«\'n,)’n)\g
P ’ P’ X2, V2 Pm Xa, V2 l
p, = 1(x.2 )2) 2 ( : »2) ( | Y ), (33)
' |
\Pl(xn’ yn) P2(xn9 yn) Pm(xna yn))i nxm
The solution is obtained if the inverse of matrix G or By
exists:
=5 {of 64
bl 0
The interpolation is finally expressed as
ue
u(x)=[BT(x)PT(0)]G™'= { 0} = ¢(x)u’ (35)

where the matrix of shape functions ¢(x) is defined by

d(x) = [p1 (X)P2(x) - - - Pi(x) - - - D, ()]

n _ m - (36)
di(x) = E Bi(x)G; «+ E Pi(x)G, .«
i=1 j=1

where G, is the (i, k) element of matrix G™'. The deriva-
tives of shape functions are
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a¢k _ Z aBl =’ ‘

T ax C JEI T (37)
0k _yn 9B, o o 9P

v =y C ,-}:1 3y O

Gaussian type radial functions are widely used in
mathematics:

Bi(x, y)=exp (- br})

where b(b=0) is a shape parameter. The partial deriva-
tives are again obtained as follows

(38)

B,
OB _2bBi(x, y)(x—x)
0x
o (39)
; L= —2bBi(x, Y)(y—y)
y

APPENDIX B: UNEQUAL ORDER APPROXIMA-
TION FOR RADIAL PIM

The radial PIM constructs the interpolation function
through a linear combination of the radial basis and
polynominal basis in the above expressions. The order of
interpolation function referred to in this paper is the
order of the polynominal base that is associated with P,.
When the order is higher, the term m in the summation
sigh in the polynominal basis portion is larger. The
unequal order approximation is used for the finite ele-
ment method, but it is new to the meshless method. The
effect of the unequal order approximation approach on
the computational results is examined. A typical one-
dimensional problem shown in Fig. 5(a) and a regular
node distribution are adopted. Material constants used in

Table A. Relative error distribution of pore water pressure inside the

clay matrix and inter-lump voids with depth under the equal approxima-
tion scheme and unequal approximation

Equal order approximation | Unequal order approximation

D(ig;h Pore water Pore water Pore water Pore wate.r
pressure inside| pressure inside |pressure inside| pressure inside
clay matrix P’nter—lump voids| clay matrix [inter-lump voids
0 0 0 0 0
2 —4.56 -5.32 —3.42 —5.01
4 —5.21 -6.22 —5.02 —4.89
6 —-4.11 4.17 —3.88 3.75
8 3.21 | —-3.22 —-2.12 -2.01
10 —5.83 —4.22 —-3.74 1.27

the computation are E=10MPa, v=0, k;,=1x10"*
m/year, ko= 1x 10~! m/year, np=0.1,and y=1x 107",
Table A shows the relative error distribution of pore
water pressure inside the clay matrix and inter-lump voids
with depth under the equal approximation scheme and
unequal approximation. The relative error is defined as:

PIM __ ,,FEM
—pP

p

Eu= =Y X 100(%)

where pFEM and p™™ mean the excess pore water pressure
computed from the FEM and radial PIM respectively.
From the table, it is shown that the unequal approxima-
tion scheme has less relative error than the equal approxi-
mation scheme (the conventional radial PIM) and thus is

of higher accuracy.



