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Abstract

A two-dimensional numerical procedure is presented to analyse the transient response of saturated porous elastic soil

layer under cyclic loading. The procedure is based on the element-free Galerkin method and incorporated into the

periodic conditions (temporal and spatial periodicity). Its shape function is constructed by moving least-square ap-

proximants, essential boundary conditions are implemented through Lagrange multipliers and the periodic conditions

are implemented through a revised variational formulation. Time domain is discretized through the Crank–Nicolson

scheme. Analytical solutions are developed to assess the effectiveness and accuracy of the current procedure in one and

two dimensions. For only temporal periodic problems, a one-dimensional transient problem of finite thickness soil layer

is analysed for sinusoidal surface loading. For both temporal and spatial periodic problems, a typical two-dimensional

wave-induced transient problem with the seabed of finite thickness is analysed. Finally, a moving boundary problem is

analysed. It is found that the current procedure is simple, efficient and accurate in predicting the response of soil layer

under cyclic loading.

� 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Pore water pressure; Element-free Galerkin method; Moving least-square approximants; Lagrange multiplier; Cyclic
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1. Introduction

Saturated soil can be idealised as two-phase media comprising deformable soil skeleton and pore fluid.

The transient response of the saturated soil is especially important to understand the deformations and the

pore water pressures generated by ground motion. This response is a key factor to the analyses of buildings,

machine foundation, offshore structures, wave propagation in geological medium due to blast or earth-
quake, and pile driving. A fluid-filled porous medium theory was proposed by Biot (1941) to analyze this

transient response. Most of the transient response problems are solved by numerical methods such as finite
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element method (FEM) and finite difference method (FDM) in conjunction with appropriate time inte-

gration schemes. Typical FEM methods were proposed by Sandhu and Wilson (1969), Ghaboussi and

Wilson (1972, 1973), Ghaboussi and Dikman (1978), Prevost (1982), Zeinkiewicz et al. (1977), Zeinkiewicz

(1980) and Zeinkiewicz and Shiomi (1984). However, it is difficult for FEM to analyze the problems as-
sociated with moving boundary. A meshless method is an effective alternative.

This paper will study the transient response of seabed under wave loading using meshless element-free

Galerkin method (EFGM). The wave-induced transient response has its own characteristics: first, wave

loading is applied on the surface of seabed through water pressure. If shallow water is concerned, this wave

loading still has energy to produce impact on the seabed. When water wave propagates over seabed, a cyclic

pressure will exert on the surface of seabed, thus causing pore fluid in the seabed to flow and seabed to

deform. Transient fluctuation of pore water pressure generates the transient reduction of effective stress,

and thus seabed may lose its strength momentarily during a cyclic wave. Second, water over the seabed and
pore water in seabed interact each other. The soil of the seabed has an effect on the wave train. This in-

teraction also makes the water-seabed interface complicated. Furthermore, an object placed on the seabed

may move along the seabed surface. This is a moving boundary problem.

Several publications are available for the wave-induced pore pressures and effective stresses analysis.

Most of these are based on Biot�s consolidation theory (1941). The approaches can be roughly classified into
two categories: analytical approaches and numerical methods. Among analytical approaches, Yamamoto

et al. (1978) and Madsen (1978) considered compressible pore fluid in a porous seabed of infinite thickness

subjected to a two-dimensional wave. Their final governing equation, for saturated isotropic soils, was a
sixth-order linear differential equation. Later Okusa (1985) reduced the order of the governing equation to

fourth order. However, they assumed periodic variables in time domain and in space, and thus the solution

is not general. As the governing equations are generally difficult to solve analytically for finite soil thickness,

Thomas (1988) developed a semi-analytical one-dimensional finite element procedure to simulate the wave-

induced stresses and pore water pressures. He also assumed that all variables are harmonic. His formulation

was tremendously complicated. Among numerical algorithms, FEM and FDM were main tools. Although

they are successful in many problems, some difficulties remain in the treatment of mesh distortion asso-

ciated with moving boundary conditions. Recently developed meshless methods could overcome these
disadvantages because meshless methods do not use any element. On this meaning, meshless methods are

attractive for the transient analysis of wave-induced seabed responses.

A two-dimensional transient problem under wave-induced load has essential and natural boundaries

that are periodic in time and in space. The periodic temporal boundary conditions are easily implemented in

numerical procedures. However, a special procedure is required for the implementation of boundary

conditions with periodicity in space. This paper will develop a variational approach to treat periodic

temporal and spatial boundary conditions, which are common boundaries in those transient problems

under cyclic loading.
Meshless methods are recently developed numerical techniques. EFGM proposed by Belytschko et al.

(1994) is a successful meshless technique that requires only nodes to discretize a problem domain. Its shape

functions are constructed by moving least-square (MLS) approximants (Lancaster and Salkauskas, 1981).

Other forms of meshless methods include reproducing kernel particle method (Liu et al., 1995), h� p clouds
(Duarte and Oden, 1996), the partition of unity (Babuska and Melenk, 1997), smooth particle hydro-

dynamics (Monaghan, 1988), and radial point interpolation method (Wang and Liu, 2002).

This paper presents a meshless element-free Galerkin procedure to solve the transient response of fluid-

saturated porous elastic soil under cyclic loading. The EFGM is firstly applied to a one-dimensional
problem. This is a typical temporally periodic problem to investigate the transient response of a fully

saturated, elastic and isotropic porous soil layer subjected to sinusoidal surface loading. A two-dimensional

wave-induced transient problem for a seabed with finite thickness is studied when subjected to a progressive

wave. This problem includes both temporal and spatial periodic boundary conditions. A moving boundary
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problem is also designed to check the capability of the current procedure. This paper is organised as

follows. First, brief descriptions of MLS approximants are presented. Then, governing equations for

fluid-saturated elastic–porous medium are described. Periodic temporal and spatial boundary condi-

tions are incorporated into the variational formulations. The numerical implementation for above varia-
tional formulations is presented. Finally, examples are used to assess the performance of the current

procedure.

2. Moving least-square approximation

MLS method is employed in the EFGM to approximate a function uð�xxÞ with uhð�xxÞ, where uð�xxÞ is the
actual function and uhð�xxÞ is its approximation. The approximation consists of three components: a basis,
usually a polynomial; a weight function associated with each node; and a set of coefficients that depend on

node position. The weight function is non-zero only over a small sub-domain around the node. This non-

zero domain is called compact support or domain of influence. The overlap of the nodal domains of in-

fluence defines a nodal connectivity.

2.1. Moving least-square approximants

The MLS approximant (Lancaster and Salkauskas, 1981) uhð�xxÞ is posed as follows:

uhð�xxÞ ¼
Xm
j¼0

pjð�xxÞajð�xxÞ � pTð�xxÞað�xxÞ ð1Þ

where pjð�xxÞ is monomial in the space co-ordinates, �xxT ¼ ½x; z�, and ajð�xxÞ its coefficient. In a complete
polynomial of order k (including m terms), pjð�xxÞ and ajð�xxÞ are given by

pTð�xxÞ ¼ ½ 1 x z x2 xz z2 . . . zk � ð2Þ

aTð�xxÞ ¼ ½ a0ð�xxÞ a1ð�xxÞ . . . amð�xxÞ � ð3Þ
At each point �xx, ajð�xxÞ is so chosen as to minimize the weighted residual L2-norm:

J ¼
Xn
I¼1

wð�xx� �xxIÞ½pTð�xxÞað�xxÞ � uI �2 ð4Þ

where n is the number of nodes I in the neighbourhood of �xx for which the weight function wð�xx� �xxIÞ 6¼ 0,
and uI refers to the nodal index of u at �xx ¼ �xxI . The minimum of J with respect to að�xxÞ gives

að�xxÞ ¼ A�1ð�xxÞBð�xxÞu ð5Þ
where A ¼ pTwð�xxÞp and B ¼ pTwð�xxÞ.
Therefore, the approximation is obtained as

uhð�xxÞ ¼
Xn
I¼1

Xm
j¼0

pjð�xxÞðA�1ð�xxÞBð�xxÞÞjIuI ¼
Xn
I¼1

/Ið�xxÞuI ð6Þ

where the shape function /Ið�xxÞ is defined by

/Ið�xxÞ ¼
Xm
j¼0

pjð�xxÞðA�1ð�xxÞBð�xxÞÞjI ¼ pTA�1BI ð7Þ
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Their spatial derivatives are obtained as

/I;�xx ¼ ðpTA�1BIÞ;�xx
or

/I;�xx ¼ pT;�xxA
�1BI þ pTðA�1Þ;�xxBI þ pTA�1BI ;�xx ð8Þ

where

BI;�xxð�xxÞ ¼
dwð�xx� �xxIÞ
d�xx

pð�xxIÞ; A;�xx ¼
Xn
I¼1

dwð�xx� �xxIÞ
d�xx

pð�xxIÞpTð�xxIÞ; ðA�1Þ;�xx ¼ �A�1A;�xxA�1

2.2. Weight functions

Weight function wIð�xxÞ � wð�xx� �xxIÞ plays an important role in the EFGM. The weight function should be
non-zero only over a small neighbourhood of �xxI . Usually, wIð�xxÞ � wð�xx� �xxIÞ ¼ wIðdIÞ, where dI ¼ k�xx� �xxIk is
the distance between the two points �xxI and �xx. The wð�xx� �xxIÞ should be smooth enough. If wð�xx� �xxIÞ is C1
continuous, and a linear polynomial basis is used, the shape function /Ið�xxÞ would be C1 continuous
(Lancaster and Salkauskas, 1981). Cubic spline weight function is considered in the present formulation:

wð�xx� �xxIÞ ¼

2

3
� 4 dI

dmI

� �2
þ 4 dI

dmI

� �3
; for

dI
dmI

� �
6
1

2

4

3
� 4 dI

dmI

� �
þ 4 dI

dmI

� �2
� 4
3

dI
dmI

� �3
; for

1

2
<

dI
dmI

� �
6 1

0; for
dI
dmI

� �
> 1

8>>>>>>><
>>>>>>>:

ð9Þ

where dmI is the size of the compact support of �xxI . Generally dmI ¼ dmaxcI . The dmax is a scaling parameter
known as support size factor. The cI is the maximum distance between two neighbouring nodes in each
direction (Dolbow and Belytschko, 1998). Circular or square domains of influence are usually used in

practice.

2.3. Enforcement of essential boundary conditions

MLS shape functions do not satisfy the Kronecker delta criterion: /Ið�xxjÞ 6¼ dij. That means the MLS
approximants are not equal to the true function at nodes unless the weight function is singular, i.e.,

uhð�xxÞ 6¼ uI . In other words, the approximation at the Ith node depends on the nodal index uI as well as other
nodal indices within the domain of influence of node I . Although several techniques have been developed to
enforce essential boundary conditions, this paper will use Lagrange multiplier method as an easy and direct

method to impose essential boundary conditions (Belytschko et al., 1996).

3. Weak form and numerical implementation

3.1. Governing equations

Soil skeletons are assumed to be elastic, isotropic and homogeneous. Pore water flows follow Darcy�s
law. Body forces as well as compressibility of the pore water are also taken into consideration. The transient
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response of porous medium under wave-induced loading is generally described by Biot�s consolidation
theory (1941) and Verruijt�s storage equation (1969), which are expressed respectively as follows:

Do2uþ osp þ b ¼ 0 ð10Þ

os
ou
ot

� �
� nb

op
ot

� k
cw

o2sp ¼ 0 ð11Þ

where u is the displacement; p, the pore water pressure; b, the body force vector; n, the porosity of soil
skeleton; k, the soil permeability; b, the compressibility of pore fluid; and cw, the unit weight of pore fluid; t,
the real time. For a plane strain problem,

D ¼ E
ð1þ mÞð1� 2mÞ

1� m m 0

m 1� m 0

0 0
1� 2m
2

2
64

3
75; o ¼

o

ox
0

0
o

oz
o

oz
o

ox

2
666664

3
777775; os ¼

o

ox
o

oz

2
64

3
75

The effective stress is expressed in terms of displacement as

r0 ¼ Dou ð12Þ

3.2. Boundary conditions

Boundary conditions include soil skeleton and fluid boundaries as

uðx; tÞ ¼ �uuðx; tÞ on Cu ð13aÞ

pðx; tÞ ¼ �ppðx; tÞ on Cp ð13bÞ

r � n̂nðx; tÞ ¼ �ttðx; tÞ on Cr ð13cÞ

k
cw

op
on̂n

ðx; tÞ ¼ �uuðx; tÞ on Cu ð13dÞ

�uu and �tt indicate pore water flux and traction, respectively. n̂n is the unit normal to boundary Cr. Cu, Cp, Cr

and Cu are the boundaries where displacement, pore water pressure, total stress and flux of pore water are

prescribed. Obviously, they satisfy following relations:

Cu [ Cr ¼ C and Cu \ Cr ¼ ;

Cp [ Cu ¼ C and Cp \ Cu ¼ ;

where C is the boundary of problem domain.

3.3. Periodic boundary conditions

Temporal periodic conditions are for one-dimensional analysis, while spatial and temporal periodic

boundary conditions are for multi-dimensional analysis. For example, when a sinusoidal traction propagates

over the seabed surface, the soil response is spatially periodic. For such a problem, a certain length of soil
mass along the horizontal direction is analysed. This length is equal to at least one wavelength of cyclic
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loading. Such an analysis model creates two virtual boundaries at both ends, denoted as Cvl and Cvr. Because
soil responses are identical at these virtual boundaries, the spatial periodic conditions can be expressed as:

uvl ¼ uvr ð14aÞ

pvl ¼ pvr ð14bÞ
where uvl; uvr and pvl; pvr are the displacements and pore water pressures on the left and right side virtual
boundaries, respectively. Eqs. (14a) and (14b) are new boundary conditions and will be incorporated into

the variational formulations.

3.4. Variational formulations

The variational (or weak) forms for Eqs. (10) and (11) and (13a)–(13d), (14a), (14b) are formulated with

trial functions of uð�xx; tÞ and pð�xx; tÞ, Lagrange multipliers k1ð�xx; tÞ, k2ð�xx; tÞ, k3ð�xx; tÞ and k4ð�xx; tÞ and their
corresponding test functions dvð�xx; tÞ, dpð�xx; tÞ, dk1ð�xx; tÞ, dk2ð�xx; tÞ, dk3ð�xx; tÞ and dk4ð�xx; tÞ. Trial functions do not
satisfy essential boundary conditions so that they are imposed with Lagrange multipliers. The subscripts �1�
and �2� stand for the displacement and the pore water pressure on respective boundaries (Cu and Cp). The
subscripts �3� and �4� stand for the displacement and the pore water pressure on virtual boundaries Cvu and
Cvp. A weighted residual form for these equations is obtained as follows:Z

X
dvðDo2uþ osp þ bÞdX þ

Z
X

dp os
ou
ot

� ��
� nb

op
ot

� k
cw

o2sp
�
dX þ

Z
Cu

dvuðu� �uuÞdC

þ
Z

Cr

dvrðr � n̂n��ttÞdC þ
Z

Cp

dppðp � �ppÞdC þ
Z

Cu

dpu
k
cw

op
on̂n

�
� �uu

�
dC

þ
Z

Cvl

dvvuudC
�

�
Z

Cvr

dvvuudC
�
þ

Z
Cvl

dpvppdC
�

�
Z

Cvr

dpvppdC
�

¼ 0 ð15Þ

Integrating by parts the first two terms of first integral and third term of the second integral and choosing

dvr ¼ �dv and dp/ ¼ �dp, Eq. (15) is partitioned into six equations. Defining k1 ¼ r � n̂n on Cu,
k2 ¼ ðk=cwÞðop=on̂nÞ on Cp and the associated trial functions as dk1 ¼ dvu, dk2 ¼ dpp, dk3 ¼ dvvu and
dk4 ¼ dpvp, Eq. (15) becomes (see Modaressi and Aubert, 1996 for further details):Z

X
Dou � odvdX þ

Z
X
p � os dvdX ¼

Z
Cr

�ttdvdC �
Z

Cu

k1 dvdC þ
Z

X
b � dvdX

�
Z

Cvl

k3 dvdC
�

�
Z

Cvr

k3 dvdC
�

ð16aÞ

Z
X

dp � os
ou
ot

� �
dX �

Z
X
nbdp � op

ot
dX þ

Z
X

k
cw

osp � os dpdX ¼
Z

Cu

dp �uudC �
Z

Cp

k2 dpdC

�
Z

Cvl

k4 dpdC
�

�
Z

Cvr

k4 dpdC
�

ð16bÞ
Z

Cu

dk1udC ¼
Z

Cu

dk1�uudC ð16cÞ
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Z
Cp

dk2pdC ¼
Z

Cp

dk2�ppdC ð16dÞ

Z
Cvl

dk3udC ¼
Z

Cvr

dk3udC ð16eÞ

Z
Cvl

dk4pdC ¼
Z

Cvr

dk4pdC ð16fÞ

3.5. Discrete equations

The MLS approximant in Eq. (6) is used to discretize the spatial variables in the weak form in Eqs.

(16a)–(16f). The spatial approximants are as follows:

uð�xxÞ ¼
Xn
I¼1

/IuI ð17aÞ

pð�xxÞ ¼
Xn
I¼1

/IpI ð17bÞ

k1ð�xxÞ ¼
Xm
I¼1

NIk1I ð17cÞ

k2ð�xxÞ ¼
Xm
I¼1

NIk2I ð17dÞ

k3ð�xxÞ ¼
Xm
I¼1

NIk3I ð17eÞ

k4ð�xxÞ ¼
Xm
I¼1

NIk4I ð17fÞ

In Eqs. (17a)–(17f) NI is a shape function of Lagrange interpolant and m is the node number in influence
domain. Time integration scheme is generally expressed for any function f ðtÞ asZ tþDt

t
f ðtÞdt ¼ Dt½hf ðt þ DtÞ þ ð1� hÞf ðtÞ� ð18Þ

where 06 h6 1, and t and Dt denote the real time and its increment, respectively. Therefore, the final
discrete equations are obtained as following matrix form:

½R�½Stþ1� ¼ ½F � þ ½Q�½St� ð19Þ

where ½R�, ½Stþ1�, ½F �, ½Q� and ½St� are given in Appendix A. It is noted that the ½R� and ½Q� are the function
of parameter h. When h ¼ 0:5, the time integration is Crank–Nicolson scheme (Wang et al., 2002; Karim
et al., 2001).
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3.6. Numerical implementation

The implementation procedure for above numerical model is as follows:

1. Define geometrical dimensions and material properties of the domain X.
2. Choose basis and weight functions for MLS approximants.

3. Set up nodal coordinates and determine domain of influence for each node.

4. Define integration cells and determine Gauss points for each integration cell Xi and boundary cell Cui,

Cpi, Cti and Cui. Set up their weights and Jacobian.

5. Loop over Gauss points:

a. Determine neighbouring nodes of each Gauss point.

b. Compute shape function and derivatives at the Gauss points.
c. Assemble matrix BI , AJ , KIJ , LIJ , MIJ and HIJ (Appendix A) to compute R and Q.
d. End Gauss point loop.

6. Integrate along boundaries to get the fuI ; fpI ;GIK ;G0
IK ;G

vl
IK
;Gvr

IK
;G0vl

IK
;G0vr

IK
; fk1I and fk2I (Appendix A) to

compute F matrix.
7. Solve the system equation of Eq. (19) to get nodal indices of u and p. Determine displacements and pore
water pressures at each node using Eqs. (17a) and (17b).

8. Determine effective stress r0 at each Gauss point through Eq. (12).

4. Assessment of the current numerical procedure

Typical one- and two-dimensional problems are studied for the transient response of soil mass under

cyclic loading. A two-dimensional computer code is made for a plane strain problem. Numerical model

parameters are listed as follows: linear basis function ðm ¼ 3Þ in Eq. (2), cubic spline weight expressed in
Eq. (9) with dmax ¼ 2:5. The domain is discretized with regularly distributed nodes for approximation and
regular background cells for integration. Gauss quadrature with 4� 4 points is used for the integration of
the Galerkin weak form. Linear Gauss quadrature with four points is used for the line integration of the fp,
fk1 , fk2 vectors and G, G

0 , Gvl, Gvr, G0vl, G0vr matrices along essential boundaries, as well as force fu vector
along traction boundaries. The time integration parameter h is taken as 0.5.

4.1. One-dimensional transient soil response under cyclic loading

Fig. 1 is the problem where cyclic loading is 100 sinð-tÞ kN/m2 and the - is the angular frequency. If the
load period is taken as 20 s, the frequency - is 0.31416 rad/s. The load on the soil surface is assumed to last
for 240 s (12 cycles). Body force of the soil is not taken into consideration.

The soil thickness ðhÞ is assumed to be 20 m. Soil is isotropic and elastic with Young�s modulus,
E ¼ 2500 kN/m2; Poisson�s ratio, m ¼ 0:3; porosity, n ¼ 0:4; isotropic permeability, k ¼ 2:5� 10�2 m/s.
Water parameters are: density, cw ¼ 10 kN/m3; compressibility, b ¼ 4:1� 10�6 m2/kN. The boundary
conditions are as follows: topsoil surface is completely permeable ðp ¼ 0Þ and the bottom is rigid ðuz ¼ 0Þ
and impermeable ðonp ¼ 0Þ. Only temporal periodic boundary conditions are needed for this problem.
There are no virtual boundaries Cvl and Cvr. This leads to the simplification of various elements of Eq. (19)
as given in Appendix A.

Fig. 2 gives the physical model and its meshless model. The soil column is of unit width (L ¼ 1 m) and of
the thickness of h ¼ 20 m. There are no flow and movement along the horizontal direction as shown in Fig.
2(a). Eighty-two (82) equally spaced nodes as shown in Fig. 2(b) are included in the meshless model, where
background cells for integration are enclosed by dotted lines. In order to simulate periodic loading, time

6018 M.R. Karim et al. / International Journal of Solids and Structures 39 (2002) 6011–6033



Fig. 2. 1-D model and its meshless scheme. (a) 1-D model and (b) node distribution.

Fig. 1. Typical one-dimensional problem subjected to cyclic loading. (a) Problem description and (b) load history.
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step size is so selected that it is a multiple of the load period. A time increment of 0.0125 s is used until 0.125

s and for the remaining time step size is chosen as 0.125 s. Such a choice has a total of 2410 time steps within

the 240 s.

An analytical solution is obtained from the frequency domain analysis of the governing equations of
Eqs. (10) and (11). The analytical solutions for displacement ðuÞ, pore water pressure ðpÞ and effective stress
ðr0Þ are obtained as

p ¼ �ImfðF þ Ge�az þ HeazÞe�i-tg ð20aÞ

u ¼ �Im
��
� nbFzþ R

a
Ge�az � R

a
Heaz � T

�
e�i-t

�
ð20bÞ

r0 ¼ �Im nb
mv
F

��
þ R
mv
Ge�az þ R

mv
Heaz

�
e�i-t

�
ð20cÞ

where z is measured from seabed surface. Other constants in Eqs. (20a)–(20c) are given by

a ¼ a1 � ia2 and a1 ¼ a2 ¼
ffiffiffiffiffiffiffiffi
-
2Cv

r
ð21aÞ

R ¼ nb
�

� k
Cvcw

�
ð21bÞ

F ¼ r0mv
nb � R

� �
ð21cÞ

G ¼ � r0mv
nb � R

� �
e�2ah

ð1þ e�2ahÞ ð21dÞ

H ¼ � r0mv
nb � R

� �
1

ð1þ e�2ahÞ ð21eÞ

T ¼ r0mv
nb � R

� �
nbh ð21fÞ

where mv is the coefficient of compressibility; Cv, the coefficient of consolidation and r0, the amplitude of
cyclic loading.
Fig. 3 compares displacement, pore water pressure and effective stress obtained by the current procedure

with analytical solutions at t ¼ 120 s (6 cycles). Good agreement is observed for the displacements, pore
water pressures and effective stresses. All numerical results are oscillation-free. Figs. 4 and 5 are the tem-

poral response of displacements, pore water pressures and effective stresses. The analytical solutions are

also plotted for comparison. In general, the numerical results agree well with the analytical solutions and

the accuracy of numerical model is reasonably high.

4.2. Two-dimensional transient wave-induced response in a seabed of finite thickness

4.2.1. Meshless model

A two-dimensional transient problem as shown in Fig. 6 is studied under wave-induced loading. Self-

weight of soil masses is not taken into consideration. This is a typical transient problem with periodic
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boundary conditions in both time and space. The boundary conditions are listed as follows: The bottom Cb
is fixed and impermeable. Seabed surface Ct has traction boundary Cr and pore water pressure boundary

Cp. If the relative acceleration between water and soils is neglected, these boundaries are expressed as
follows:

r0
z ¼ 0; rxz ¼ 0 on Ct ð22aÞ

�pp ¼ p0 cosðax� -tÞ on Ct ð22bÞ

where a ¼ 2p=l is the wave number; l, the wavelength; - ¼ 2p=T , the wave frequency; T , the wave period
and x, the horizontal coordinate. The amplitude factor p0 in Eq. (22b) is related to wave pressure. The first-
order linear wave theory (Madsen, 1976) gives

p0 ¼
cwH

2 cosh adw
ð23Þ

in which H is the wave height and dw still water depth. The traction boundary in Eqs. (22a) and (22b) can be
directly implemented through total traction on the seabed surface:

Fig. 3. Distribution of displacement, pore water pressure and effective stress at 120 s. (a) Displacement (m), (b) pore water pressure

(kN/m2) and (c) effective stress (kN/m2).
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�tt ¼ p0 cosðax� -tÞ on Ct ð24Þ
The same material parameters as one-dimensional case are used except the Young�s modulus of soil
skeleton ðEÞ chosen as 1� 104 kN/m2. The p0 in Eq. (23) is assumed to be 100 kN/m2. The wavelength l is
taken as 15 m and one-wavelength soil layer is taken for computation. The computation time is taken as

250 s (12.5 cycles).

Fig. 7 gives two meshless models for this problem. The regular node distribution (Fig. 7(a)) has 441

nodes and the irregular node distribution (Fig. 7(b)) has 461 nodes. The dotted lines form background cells.
The irregular node distribution is used to check the effect of node distribution. Time step size is chosen as

Fig. 4. Displacement history at the surface of the soil layer.

Fig. 5. History of pore water pressure and effective stress at the bottom. (a) Pore water pressure and (b) effective stress.
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0.125 s throughout the 250 s except at initial stage. At the initial stage, time step size is taken as 0.025 s until
0.125 s. A total of 2004 time steps are used for the entire 250 s.

4.2.2. Analytical solution

The analytical solution is the extension of Madsen (1978)�s work from infinite thickness to finite
thickness. This analytical approach is different from the numerical scheme proposed by Thomas (1988).

Displacements (uz and ux), pore water pressure ðpÞ, effective stress (r0
zz; r

0
xx and r0

xz) are obtained as

uz ¼ Re i ½
��

� ðC1 � C2zÞ�e�az þ ½ðC3 � C4zÞ�eaz þ
d
a
ðC2e�az þ C4eazÞ �

a
a
ðC5e�az � C6eazÞ

�
eiðax�-tÞ

�
ð25Þ

ux ¼ Re ðC1f
�

� C2zÞe�az þ ðC3 � C4zÞeaz þ C5e�az þ C6eazgeiðax�-tÞ� ð26Þ

p ¼ Re Gi
1� 2m ½d

��
� 3þ 4m�ðC2e�az � C4eazÞ þ 2að1� mÞ 1

�
� a2

a2

�
ðC5e�az þ C6eazÞ

�
eiðax�-tÞ

�
ð27Þ

Fig. 7. Meshless model for the 2-D transient problem. (a) Regular node distribution and (b) irregular node distribution.

Fig. 6. A 2-D wave-induced transient problem.
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r0
zz ¼ Re

�
� 2Gi
ð1� 2mÞ f

�
� að1� 2mÞðC1 � C2zÞ þ ð1� mÞðd � 1ÞC2ge�az � fað1� 2mÞðC3 � C4zÞ

þ ð1� mÞðd � 1ÞC4geaz þ a m

�
� ð1� mÞ a2

a2

�
ðC5e�az þ C6eazÞ

�
eiðax�-tÞ

�
ð28Þ

r0
xx ¼ Re

�
� 2Gi
ð1� 2mÞ fað1

�
� 2mÞðC1 � C2zÞ þ mðd � 1ÞC2ge�az þ fað1� 2mÞðC3 � C4zÞ

� mðd � 1ÞC4geaz þ a 1
�

� m � m
a2

a2

�
ðC5e�az þ C6eazÞ

�
eiðax�-tÞ

�
ð29Þ

r0
xz ¼ Re½�G½f2aðC1 � C2zÞ � ðd � 1ÞC2ge�az � f2aðC3 � C4zÞ þ ðd � 1ÞC4geaz

þ 2aC5e�az � 2aC6eaz�eiðax�-tÞ� ð30Þ

Fig. 8. Displacement, pore water pressure and effective stress along vertical section x ¼ 7:5 m. Distribution of (a) vertical displacement,
(b) pore water pressure and (c) vertical effective stress.
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Above constants C1, C2, C3, C4, C5 and C6 satisfy following six linear equations:

að1� 2mÞðC1 þ C3Þ � ð1� mÞðd � 1ÞðC2 � C4Þ � a m

�
� ð1� mÞ a2

a2

�
ðC5 þ C6Þ ¼ 0 ð31aÞ

2aC1 � ðd � 1ÞðC2 þ C4Þ � 2aC3 þ 2aC5 � 2aC6 ¼ 0 ð31bÞ

½d � 3þ 4m�ðC2 � C4Þ þ 2að1� mÞ 1
�

� a2

a2

�
ðC5 þ C6Þ ¼

p0ð1� 2mÞ
Gi

ð31cÞ

C1eah þ hC2eah þ C3e�ah þ hC4e�ah þ C5eah þ C6e�ah ¼ 0 ð31dÞ

�C1eah þ
d
a

�
� h
�
C2eah þ C3e�ah �

d
a

�
þ h
�
C4e�ah �

a
a
ðC5eah � C6e�ahÞ ¼ 0 ð31eÞ

a½d � 3þ 4m�ðC2eah þ C4e�ahÞ þ 2að1� mÞa 1
�

� a2

a2

�
ðC5eah � C6e�ahÞ ¼ 0 ð31fÞ

Fig. 9. Displacement, pore water pressure and effective stress along horizontal section at z ¼ 10 m. (a) Vertical displacement, (b) pore
water pressure and (c) vertical effective stress.
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where the parameters are defined as follows:

d ¼
ð3� 4mÞnb þ 1� 2m

G

nb þ 1� 2m
G

ð32aÞ

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � j2

p
ð32bÞ

j2 ¼ i-cw
k

ðnb þ mvÞ ð32cÞ

mv ¼
ð1� 2mÞð1þ mÞ

Eð1� mÞ ð32dÞ

4.2.3. Comparison of numerical results with analytical solution

Fig. 8 compares the numerical results with analytical solutions for displacements, pore water pressures,
effective stresses respectively at t ¼ 150 s (7.5 cycles). From these figures, it is found that nodal distributions
have little effect on the numerical results of the current procedure. However, the accuracy is reasonably

Fig. 10. History of displacement, pore water pressure and effective stress at the point ðx; zÞ ¼ ð7:5; 10Þ. (a) Vertical displacement, (b)
pore water pressure and (c) vertical effective stress.
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acceptable even for irregular node distribution. The deviation between regular and irregular node distri-

butions can be further reduced if sufficient nodes are enclosed in an influence domain. Numerical results

have no oscillation regardless of node distributions. This characteristic is not readily achievable in FEM.

Fig. 9 shows the distribution of displacement, pore water pressure and effective stress along horizontal
section z ¼ 10 m (mid-depth) (regular node distribution) and at t ¼ 250 s (12.5 cycles). The agreement
between the EFGM and analytical solutions are satisfactory. All numerical results are oscillation-free. Fig.

10 compares the temporal response of displacement, pore water pressure, effective stress at the point

ðx; zÞ ¼ ð7:5; 10Þ. The EFGM and analytical solutions agree very well again.
As a summary, the current procedure can simulate the transient responses of the seabed whether node

distributions are regular or not. The regular node distribution has higher accuracy while the irregular node

distribution still has reasonable accuracy. The EFGMmay be an oscillation-free algorithm even the Crank–

Nicolson algorithm is used in time domain. However, the FEM has difficulty in choosing a suitable time
step size with oscillation-free. This is an advantage of the current method over FEM.

5. Moving boundary problem

This problem checks the capability of the EFGM for moving boundary problems. An impermeable

mass-less body of infinite length is moving along the top surface of the seabed at a constant speed. The

seabed is subjected to wave-induced load. The top surface is permeable except the boundary enclosed by the

impermeable body. The both side boundaries are still assumed to be periodic. Fig. 11 gives the meshless
models at the various time steps. The nodes have uniformly distributed fixed nodes (461 hollow-circle

nodes) as well as non-uniform moving nodes (the filled-circle nodes). The moving nodes are changing in

numbers and positions with time, depending on the position of the impermeable body (as noted by the dark

straight line on the top of the soil surface). The impermeable body moves at a constant speed of 0.05 m/s.

Dashed lines form background cells which remain unchanged during the whole computation.

Computational parameters for seabed soil and wave are the same as those in Section 4.2. At any time

step, non-uniform moving nodes are positioned over an assumed highly variable zone of dimensions of

ðl1 þ l2Þ and h1 along horizontal and vertical directions respectively. l1 is taken as 2 m or distance of the
edge of the impermeable body from left boundary whichever is smaller, l2 is taken as 2 m or distance of the
edge of the impermeable body from right boundary whichever is smaller, and h1 is taken as 5 m down from
0.25 m level from the top soil surface. Depending on the zone size, the number and position of the moving

nodes are determined by an automatic node generator. The number of moving nodes varies from 32 to 55 in

this example.

Soil responses are recorded only at the fixed nodes throughout the whole computation. The moving

nodes are locally introduced at any time step to give higher density of nodes within the influence domain of

the fixed nodes. This improves the accuracy of interpolation within that local zone. When a node is added
at any time step, the responses at that node in the immediate previous time step is interpolated through the

approximations given by Eqs. (17a) and (17b). The nodal indexes are then calculated as

ujm ¼
Xnf
I¼1

/fIufI

 
�
Xnf
I¼2

/tI ufI

!
/j ð33Þ

where um is the nodal index at the newly added node; uf , the nodal index at the fixed node; /f , the shape
function determined against only for fixed nodes; /t, the shape function determined against for both fixed
and new (or moving) nodes.

Fig. 12 gives the contour of pore water pressures at different times. The distribution of the cyclic loading
applied on the top at the respective time is also shown. The dark straight line shows the position of the
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impermeable body. These contours show that the movement of the impermeable body affects the soil re-
sponses considerably. The EFGM can easily simulate such kind of problems. This is because the movement

and position of the moving nodes are easily accumulated within the fixed nodes and, as the nodes are

independent of the background cells for integrations, no extra process is involved in carrying out the whole

Fig. 11. Meshless models at various time steps for moving boundary conditions. (a) At 482nd step (when top surface becomes im-

permeable up to 3 m from left). (b) At 1202nd step (when top surface becomes impermeable up to 7.5 m from left). (c) At 2402nd step

(when whole top surface becomes impermeable).
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numerical procedures. FEM requires meshes and their connectivity, and the update of mesh is complex and

time-consuming. Therefore, this is not an easy task for FEM.

6. Conclusions

A two-dimensional numerical procedure is presented based on the EFGM to analyse the transient res-

ponse of saturated porous elastic soil under wave-induced loading. In this procedure, displacement and

excess pore water pressure are approximated using the same shape functions constructed by MLS ap-

proximants. Lagrange multipliers are employed to implement essential and periodic boundary conditions.

A one-dimensional example is designed for temporal periodic conditions and a two-dimensional example
for both temporal and spatial periodic conditions. Analytical solutions are developed for the finite thickness

of soils to check the accuracy of the current numerical procedure. Finally, the moving boundary problem is

designed to check its capability.

Fig. 12. Contours of pore water pressures with moving body after (a) 75 s, (b) 100 s, (c) 150 s and (d) 300 s.
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The current procedure revised variational formulations to incorporate temporal and spatial periodic

boundary conditions. Whether the problems are one-dimensional or two-dimensional, the current proce-

dure provides very accurate prediction of the transient soil response.

The current procedure performs very well not only for regular node distributions but also for irregular
node distributions. Irregular node distribution has lower accuracy but the accuracy is acceptable. The

numerical results are oscillation-free, while FEM has difficulty to get oscillation-free results for the same

time step size. The current procedure is easy and effective to treat moving boundary problems. This is

because the EFGM has the flexibility to add or remove nodes easily from the discretized domain. This is an

advantage over the FEM.

Analytical solutions are developed in this paper to check the accuracy of the current procedure. This

solution is the extension of Madsen (1978)�s work from infinite soil thickness to finite thickness. The
comparison between analytical solutions and numerical results show that the current procedure has high
accuracy for both temporal and spatial periodic problems like wave-induced transient responses.

As a numerical method, the current procedure can be easily extended to the anisotropic, non-homo-

geneous seabed. This paper just regards water wave as a periodic loading on the seabed although the seabed

and water wave interaction is an interesting topic.
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Appendix A

After the interpolation in Eqs. (17a)–(17f) are introduced into the weak forms of Eqs. (16a)–(16f) and the

time integration Eq. (18) is applied, the discrete system equations are obtained as follows:

KIJutþ1J
þ LIJptþ1J

þ GIKktþ1
1K

þ ðGvl
IK
� Gvr

IK
Þktþ1
3K

¼ fuI ðA:1aÞ

LTIJ u
tþ1
J þ ðHIJ Dth �MIJ Þptþ1J þ G0

IK Dthktþ12K þ DthðG0vl
IK
� G0vr

IK
Þktþ1
4K

¼ LTIJ u
t
J �MIJptJ þ DtfpI � HIJ Dtð1� hÞptJ � G0

IK Dtð1� hÞkt2K � Dtð1� hÞðG0vl
IK
� G0vr

IK
Þktþ1
4K

ðA:1bÞ

GTIKu
tþ1
K ¼ fk1I ðA:1cÞ

G0T
IKp

tþ1
K ¼ fk2I ðA:1dÞ

ðGvlTIK � GvrTIK Þutþ1K ¼ 0 ðA:1eÞ

ðG0vlT
IK � G0vrT

IK Þptþ1K ¼ 0 ðA:1fÞ

The matrix form for above equations is as follows:

½R�½Stþ1� ¼ ½F � þ ½Q�½St� ðA:2Þ

where ½R�, ½Stþ1�, ½F �, ½Q� and ½St� are given by
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½R� ¼

K L G 0 ðGvl � GvrÞ 0

LT ðhDtH �MÞ 0 hDtG0 0 ðG0vl � G0vrÞDth
GT 0 0 0 0 0

0 G0T 0 0 0 0

ðGvlT � GvrTÞ 0 0 0 0 0

0 ðG0vlT � G0vrTÞ 0 0 0 0

2
6666664

3
7777775

ðA:3Þ

½Q� ¼

0 0 0 0 0 0

LT �ðDtð1� hÞH þMÞ 0 �Dtð1� hÞG0 0 �DtðG0vl � G0vrÞð1� hÞ
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
6666664

3
7777775

ðA:4Þ

½Stþ1�T ¼ utþ1 ptþ1 ktþ11 ktþ12 ktþ13 ktþ14
� �

ðA:5Þ

½St�T ¼ ut pt kt1 kt2 kt3 kt4
� �

ðA:6Þ

½F �T ¼ fu Dtfp fk1 fk2 0 0½ � ðA:7Þ

The superscript ðt þ 1Þ denotes the current time ðt þ DtÞ. Other notations include

KIJ ¼
Z

X
BTI DBJ dX ðA:7aÞ

LIJ ¼
Z

X
/IAJ dX ðA:7bÞ

MIJ ¼ nb
Z

X
/I/J dX ðA:7cÞ

HIJ ¼
k
cw

Z
X
ATI AJ dX ðA:7dÞ

GIK ¼
Z

Cu

�NNK/I dC ðA:7eÞ

G0
IK ¼

Z
Cp

�NN 0
K/I dC ðA:7fÞ

Gvl
IK
¼
Z

Cvl

�NNK/I dC ðA:7gÞ

Gvr
IK
¼
Z

Cvr

�NNK/I dC ðA:7hÞ

G0vl
IK

¼
Z

Cvl

�NN 0
K/I dC ðA:7iÞ
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G0vr
IK

¼
Z

Cvr

�NN 0
K/I dC ðA:7jÞ

fuI ¼
Z

Cr

�tt/I dC þ
Z

X
b/I dX ðA:7kÞ

fpI ¼
Z

Cu

�uu/I dC ðA:7lÞ

fk1I ¼
Z

Cu

�NNK�uudC ðA:7mÞ

fk2I ¼
Z

Cp

�NN 0
K�ppdC ðA:7nÞ

BI ¼ oð/IÞ ¼
/I ;x 0

0 /I;z

/I ;z /I ;x

2
4

3
5 ðA:7oÞ

AJ ¼
/I ;x

/I;z

� �
ðA:7pÞ

�NNK ¼ Nk 0
0 Nk

� �
ðA:7qÞ

�NN 0
K ¼ ½Nk� ðA:7rÞ

For one-dimensional problem, above matrices are simplified into:

½R�onedi ¼

K L G 0

LT ðhDtH �MÞ 0 hDtG0

GT 0 0 0

0 G0T 0 0

2
664

3
775 ðA:8Þ

½Q�onedi ¼

0 0 0 0

LT �ðDtð1� hÞH þMÞ 0 �Dtð1� hÞG0

0 0 0 0
0 0 0 0

2
664

3
775 ðA:9Þ

½Stþ1�Tonedi ¼ ½ utþ1 ptþ1 ktþ11 ktþ12 � ðA:10Þ

½St�Tonedi ¼ ½ ut pt kt1 kt2 � ðA:11Þ

½F �Tonedi ¼ ½ fu Dtfp fk1 fk2 � ðA:12Þ
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