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SUMMARY

A numerical approach is proposed to model the flow in porous media using homogenization theory. The
proposed concept involves the analyses of micro-true flow at pore-level and macro-seepage flow at macro-
level. Macro-seepage and microscopic characteristic flow equations are first derived from the Navier–
Stokes equation at low Reynolds number through a two-scale homogenization method. This
homogenization method adopts an asymptotic expansion of velocity and pressure through the micro-
structures of porous media. A slightly compressible condition is introduced to express the characteristic
flow through only characteristic velocity. This characteristic flow is then numerically solved using a penalty
FEM scheme. Reduced integration technique is introduced for the volumetric term to avoid mesh locking.
Finally, the numerical model is examined using two sets of permeability test data on clay and one set of
permeability test data on sand. The numerical predictions agree well with the experimental data if
constraint water film is considered for clay and two-dimensional cross-connection effect is included for
sand. Copyright # 2003 John Wiley & Sons, Ltd.

KEYWORDS: homogenization method; characteristic flow; penalty method; permeability; constraint water
film; two-dimensional effect; anisotropy

1. INTRODUCTION

Problems involving seepage in porous media are important in many fields [1–7]. These include
seepage and consolidation problems in land reclamation [1] and underground waste disposal in
geotechnical engineering [2], filter problems in chemical engineering [3, 10], and bio-fluid flow in
bioengineering of human body [4]. Macro-analyses are generally carried out to tackle the
average pore water pressure and velocity in porous medium [5]. However, macro-analysis has
two major disadvantages. Firstly, it can only obtain the macro-pseudo velocity and pore water
pressure within the entire porous media. The true velocity and pore water pressure at pore level
is difficult or impossible to determine. In geotechnical engineering, the true velocity at pore level
is an important factor in the design of filter that protects the sand from boiling and piping [6, 7].
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Secondly, macro-analysis typically employs the coefficient of permeability in Darcy’s law to
express the micro-structure effect of porous medium on micro-hydraulic flow resistance [8, 9].

Many studies have been carried out to investigate the effect of micro-structures on flow in
porous media [2, 3, 6–11]. For example, Kim et al. [11] studied Darcy’s law within a
representative volume element (RVE) through volume averaging theorem. A closed-form of
Darcy’s law was developed from the interaction of pore water and solid particles. Their method
still has two issues remaining to be solved. The first is the relationship between the complicated
micro-structures of porous media and the coefficient of permeability. In particular, the
boundary condition for the RVE is not clear if the computation at micro-scale level is carried
out. The second is that both macro-scale problem and micro-scale problem are not clearly
defined [10]. In the 1970s, a two-scale homogenization theory was developed based on
asymptotic expansions [8]. The homogenization theory can consider the behaviours
simultaneously at both macro- and micro-scale levels. The first important result using
homogenization theory was obtained by Sanchez-Palencia in 1974 on flow through porous
media [8]. Since then, most researches focused on a formal expansion of Navier–Stokes
equation, for example in Reference [12]. Numerical approaches are also proposed [13, 14]. Lee
et al. [14] proposed a mixed mode of pressure and velocity for a solute transfer and dispersivity
problem. Numerical methods for homogenization theory are successful in composite materials
because their micro-structures are designed and determined. However, the situation in
geotechnical engineering is a little different. This is because the micro-structure of soil masses
is usually unknown and only index such as void ratio or weight fraction [15] can be measured.
Some schemes such as Sierpinski carpets [13] or well-random media [16] were proposed to
partially solve this problem in computation. However, these models are not capable of handling
variable soil conditions. In this paper, the concept of equivalent particle size, which can be
determined experimentally, is proposed to join tackle the computation for a variety of soil
conditions.

The mixed mode of velocity and pressure for incompressible Navier–Stokes equation has its
limitation. For example, the zero divergence condition of velocity field will produce a discrete
algebraic system equation with zero diagonal terms if Galerkin’s formulation is used. This
limitation of mixed mode can be circumvented by the penalty method as only velocities are
included in the weak form. The number of unknowns is largely reduced [17], too. One drawback
for the penalty method is the ill-conditioning of the system matrix if penalty parameter is not
appropriately selected. When penalty parameter is sufficiently large, the integration for
volumetric term should be carefully treated. Otherwise, mesh locking may occur for some
meshes. The reduced integration approach [18] can avoid mesh locking. In the authors’
knowledge, the penalty method has not been applied to the characteristic function of fluid flow
in porous media.

This paper proposes a numerical approach to model the flow of porous media from micro-
analysis. The coefficient of permeability of clay and sand is numerically computed. This
numerical approach is based on the two-scale asymptotic analysis of fluid channels in porous
media. It is capable of handling micro-true flow analysis at pore-level and macro-seepage
analysis simultaneously. This is useful to understand the behaviours of seepage at both macro-
and micro-scale levels. As a preliminary, pore wall is assumed to be rigid in this paper. The
characteristic equation at micro-scale level is numerically solved through a penalty method and
reduced integration scheme. In order to carry out the computation in micro-scale level, an
equivalent particle size was introduced into the unit cell. This largely simplifies the complicated
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micro-structures of porous media and makes the computation applicable in practice. As the
equivalent particle size is determined from a pair of macro-scale experimental data, the
geometry of the pores is partially expressed by the equivalent particle. Using this numerical
approach, the micro-structural effects such as constraint water film in clay and multi-
dimensional effect in sand are studied. The numerical predictions are compared with
experimental data.

This paper is organized as follows. Firstly, the micro-fluid flow is described through Navier–
Stokes equation at low Reynolds number along micro-pore channels. A two-scale homogeniza-
tion theory based on asymptotic expansion is introduced to derive the macro-seepage equation
and microscopic characteristic equation. The similarity between the Stokes flow and the
characteristic flow is discussed. This similarity is helpful to construct the solution structures of
the characteristic flow from the known solution of Stokes flow. Secondly, a penalty finite
element approach is developed for the solution of the characteristic equation for incompressible
flow. Reduced integration is adopted for the volumetric term in order to avoid mesh locking.
Thirdly, the proposed numerical model is verified by the comparison of the permeability of two
sets of experimental data on clay and one set of experimental data on sand. The effects of
constraint water film for clay and two-dimensional cross-connection for sand are investigated
and finally, concluded.

2. MICRO-CHANNEL FLUID FLOW IN POROUS MEDIA

Micro-channel fluid flow in porous media is usually assumed to follow the Navier–Stokes flow
for low Reynolds number. However, boundary conditions for such a problem are complicated.
For the micro-channel fluid flow, the governing equation and boundary conditions can be
generally expressed as follows:
Equation of motion

�
@P
@xi

þ m
@2Vi
@xi@xj

þ rXi ¼ 0 ð1Þ

Continuity equation (incompressible case)

@Vi
@xi

¼ 0 ð2Þ

Boundary conditions

Vi ¼ 0 on G

Vi ¼ %VV i on GF

or

P ¼ %PP on GF ð3Þ

where Vi is the true velocity in the pore channel of porous media, P the pore water pressure, m
the coefficient of viscosity, r the density of water, rXi the unit body force, G the fluid–solid
interface, and xi is the ith component of co-ordinates. %VV i and %PP are the prescribed velocity and
pressure on fluid external boundary, GF; respectively. Index i is a free index and index j is a
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dummy index that denotes the summation. For two-dimensional flow i; j ¼ 1; 2 and for three-
dimensional flow i; j ¼ 1; 2; 3:

An exact solution is normally required to evaluate the above equations along all pore
channels in the porous media. This requires huge computation time because of complexity of
micro-channels. An approximation of the true fluid flow should include the main properties of
fluid flow in porous media at both macro- and micro-levels. Homogenization theory based on
asymptotic expansions is an appropriate tool to describe the two-scale properties simulta-
neously. In the homogenization approach, a local problem at micro-scale describes the micro-
characteristic flow, and a macro-seepage problem at macro-scale analyses the average pore
pressure and velocity. The micro- and macro-flows are linked through the homogenized
coefficients of permeability.

3. ASYMPTOTIC EXPANSION

3.1. Periodic expansion with scale parameter

Figure 1 expresses a typical porous medium domain of flow. The micro-channels are
complicated and simplified one-dimensional (1D) or two-dimensional (2D) unit cells can be
regarded as the fundamental cells. A scale parameter e is employed to link the unit cell and
whole flow domain:

y ¼
x

e
ð4Þ

where x are global co-ordinates and y local co-ordinates. True variables such as velocity and
pressure are hence functions of e; denoted as V e

i ðxÞ and P eðxÞ: They can be expressed with
following asymptotic expansions:

V e
i ðxÞ ¼ e2V 0

i ðx; yÞ þ e3V 1
i ðx; yÞ þ � � �

P eðxÞ ¼ P 0ðx; yÞ þ eP 1ðx; yÞ þ � � �
ð5Þ

The V a
i ðx; yÞ and P a

i ðx; yÞ ða ¼ 0; 1; 2; . . .Þ are functions of global co-ordinates x and local co-
ordinates y. The Y-periodicity is expressed as

P eðx; yÞ ¼ P eðx; yþ YÞ

V a
i ðx; yÞ ¼ V a

i ðx; yþ YÞ
ð6Þ

Body force of fluid is expressed using the same expansion:

X e
i ðxÞ ¼ X 0

i ðxÞ þ e1X 1
i ðx; yÞ þ e2X 2

i ðx; yÞ þ � � � ð7Þ

Mathematical chain rules for scale parameter e are as

@

@xi
)

@

@xi
þ

@

@yk

@yk
@xi

¼
@

@xi
þ

1

e
@

@yi
ð8Þ

for the first-rank derivatives and

@2

@xi@xi
)

@2

@xi@xi
þ

2

e
@2

@xi@yi
þ

1

e2
@2

@yi@yi
ð9Þ

for the second-rank derivatives.
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The motion equation in Equation (1) is discussed. A e-series polynomial is obtained from
Equation (5) to (9). This polynomial can be expressed in the following form:

X1
a¼�1

ð . Þea ¼ 0 ð10Þ

Equation (10) should be held for any e; which implies that the coefficients denoted by ‘ . ’ are
zeros for all order e: The coefficients at different orders e express different physical meanings.
For example, the coefficient for the e�1-term is

@P 0

@yi
¼ 0 in YF ð11Þ

where YF is the fluid domain in a unit cell. Equations (11) implies that P 0ðx; yÞ ¼ P 0ðxÞ: In
another word, the zero-order pore pressure is independent of local co-ordinates y. This result is
of special importance because P 0ðxÞ is the leading term of pore water pressure. This suggests that
the homogenization method be applicable for this case.

A recursive relation is developed through the coefficient of e0-term. The governing equation
for the higher-order pore water pressure P 1 is obtained as

�
@P 0

@xi
�

@P 1

@yi
þ m

@2V 0
i

@yk@yk
þ rX 0

i ¼ 0 in YF ð12Þ

The same expansion is applied to the continuity equation given by Equation (2):

e
@V 0

i

@yi
þ e2

@V 0
i

@xi
þ

@V 1
i

@yi

� �
þ � � � ¼ 0 in YF ð13Þ

This expansion is held for any scale parameter e: For the e1-term, incompressible condition is
again obtained at micro-level as follows:

@V 0
i

@yi
¼ 0 in YF ð14Þ

The recursive formula is obtained from the e2-term:

@V 0
i

@xi
þ

@V 1
i

@yi
¼ 0 in YF ð15Þ

The boundary condition at the fluid–solid interface, G; can be also expanded as follows:

e2V 0
i þ e3V 1

i þ � � � ¼ 0 on G ð16Þ

The above equation is decomposed into

V 0
i ¼ 0; V 1

i ¼ 0; . . .on G ð17Þ
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The ð@P 0=@xk � rX 0
k Þðk ¼ 1; 2; 3Þ is a function in terms of x co-ordinates only. The two-scale co-

ordinates are separated as follows:

V 0
i ¼ �

@P 0

@xk
� rX 0

k

� �
vki

P 1 ¼ �
@P 0

@xk
� rX 0

k

� �
pk

ðk ¼ 1; 2; 3Þ

ð18Þ

where vki and pk are the characteristic functions of velocity and pressure, respectively.
Normalization of the equations denoted by Equations (12) and (14) yields a characteristic
equation for unit cell as well as no-slip and periodic conditions. This characteristic equation is
termed as a local problem. The average equation over whole unit cell domain is called a macro-
seepage problem.

3.2. Local problem

Equation of motion

�
@pk

@yi
þ m

@2vki
@yj@yj

þ dik ¼ 0 ðk ¼ 1; 2; 3Þ ð19Þ

Continuity equation (incompressible case)

@vki
@yi

¼ 0 ðk ¼ 1; 2; 3Þ ð20Þ

Boundary conditions

vki ¼ 0 on G

pkðx; yÞ ¼ pkðx; yþ YÞ

vki ðx; yÞ ¼ vki ðx; yþ YÞ

)
periodicity condition on GF

ð21Þ

It is helpful to compare above governing equations and boundary conditions of vki with the
Navier–Stokes equations for velocity Vi:

(1) Navier–Stokes flow expressed by Equation (1) has true body force, while characteristic
flow expressed by Equation (19) has characteristic body force fdikg: This characteristic body
force is not a physical force. It exists only for micro-characteristic flow when the macro-flow is
along that direction. Therefore, the characteristic body force is also termed as pseudo-body
force.

(2) Incompressible condition is true for both characteristic flow and Navier–Stokes flow. The
fluid at micro-scale is still incompressible.

(3) Both flows have no-slip boundary condition along the fluid–solid interface G: This is the
physical description for the no-slip condition at both macro- and micro-scale levels.

(4) However, boundary conditions are different on the fluid boundary GF: The Navier–Stokes
flow gives velocity %VV i; pressure %PP or shear stress (a mixed boundary), while the characteristic
flow requires only periodicity on the artificial fluid boundary GF:
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Therefore, both flows should have similar structure of solutions. This similarity of solution
structures provides a clue to pursue an analytical or numerical solution of characteristic flow
from the solution of Navier–Stokes flow.

3.3. Macro-problem–Seepage equation

At macro-scale, the main concern is to obtain the average velocity or pore water pressure in a
unit cell. The well-known Darcy’s law can be obtained through a volume averaging of true
velocity in a unit cell, *VV0

i : Particularly, the averaging of Equation (18) is given as

*VV0
i ¼

1

jY j

Z
YF

V 0
i dV ¼ Kij rX 0

j �
@P 0

@xj

� �
ð22Þ

where the permeability tensor, Kij; is the volume average of characteristic velocity given as

Kij ¼
1

jY j

Z
YF

vji dV ð23Þ

where jY j is the volume of the unit cell which includes the fraction of solid matrix. The
permeability of porous media is a macro-tensor. It is completely computed from the micro-flow
velocity, vji ; in terms of volume averaging or porosity of the porous media. Equation (23) is
therefore a linkage between macro- and micro-analyses. The macro-seepage problem is obtained
through an average procedure of the continuity equation of Equation (15):

@

@xi
Kij

@P 0

@xj
� rX 0

j

� �� �
¼ 0 ð24Þ

The permeability tensor can be determined analytically through characteristic flow within
micro-fluid channels. The key issue for the characteristic flow is how to compute the
characteristic function vji : A numerical procedure based on penalty finite element method is
proposed.

4. WEAK FORMS OF LOCAL PROBLEM AND ITS DISCRETIZATION

4.1. Weak forms of local problem

A bulk modulus l is introduced to replaces the original incompressible condition with a slightly
compressible condition as follows:

@vki
@yi

þ
pk

l
¼ 0 ð25Þ

If l is big enough, the approximation is sufficiently accurate. For example, when
l ! þ1; pk=l ! 0: Using Equation (25), the equation of motion Equation (19) can be
expressed as

l
@2vkj
@yi@yj

þ m
@2vki
@yj@yj

þ dik ¼ 0 ð26Þ

Equation (26) significantly reduces the complexity of the computation procedure because only
characteristic velocity is included. Its weak form is obtained by applying a weight function dvi
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(dvi ¼ 0 on G) that only varies with the fast variable y and is the Y-periodicity, dviðyÞ ¼ dvi �
ðyþ YÞ: Z

YF

l
@2vkj
@yi@yj

þ m
@2vki
@yj@yj

 !
dvi dV ¼ �

Z
YF

dvidik dV ð27Þ

By applying the Green–Gauss theorem to the second term at the left-hand side, one getsZ
YF

m
@2vki
@yj@yj

dvi dV ¼
I
@YF

m
@vki
@yj

njdvi ds�
Z
YF

m
@vki
@yj

@ðdviÞ
@yj

dV ð28Þ

The boundary term is zero becauseI
@YF

m
@vki
@yj

njdvi ds ¼
Z
G
m
@vki
@yj

njdvi dsþ
Z
GF

m
@vki
@yj

njdvi ds ð29Þ

Since the first term vanishes due to no-slip condition (dvi ¼ 0 on G), and the second term
vanishes due to periodicity on fluid boundary GF: Similarly, the first term of Equation (27)
becomes asZ

YF

l
@2vkj
@yi@yj

dvi dV ¼
I
@YF

l
@vkj
@yj

nidvi ds�
Z
YF

l
@vkj
@yj

@ðdviÞ
@yi

dV ¼ �
Z
YF

l
@vkj
@yj

@ðdviÞ
@yi

dV ð30Þ

Thus, the weak form of Equation (26) is finally expressed asZ
YF

l
@vkj
@yj

@ðdviÞ
@yi

dV þ
Z
YF

m
@vki
@yj

@ðdviÞ
@yj

dV �
Z
YF

dvk dV ¼ 0 ð31Þ

This is a weak form of the local problem with penalty method. When the bulk modulus l (as
penalty parameter) is determined, the characteristic velocity vki can be uniquely solved.

4.2. Discretization of characteristic velocity

Fluid domain YF is divided into n sub-domains, whose sub-domain Ys is an element. Each
element has m nodes. The characteristic velocity in an element is approximated in terms of the
nodal characteristic velocity V k

ij and shape function Fj:

vki ffi
Xm
j¼1

V k
ijFj ð32Þ

The weight function is approximated using the same shape function:

dvi ffi
Xm
j¼1

dVijFj ð33Þ

where dVij is the weight function at the jth node.
Equation (31) can be discretized into

ðKv þ KvpÞVk ¼ Fk ðk ¼ 1; 2; 3Þ ð34Þ

where the stiffness matrix associated with shear part is

Kv
rs ¼

Z
Ys

m
@Fr

@yj

@Fs

@yj
dV ð35Þ
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and the stiffness matrix associated with volume part is

Kvp
rs ¼

Z
Ys

l
@Fr

@yi

@Fs

@yj
dV ð36Þ

The characteristic loading induced by characteristic body force is

F k
si ¼ dik

Z
Ys

Fs dV ð37Þ

Special care should be taken for the numerical integrations of Kv and Kvp: Otherwise, mesh
locking will take place for non-triangle elements. In this paper, the reduced integration
procedure [18] is used for stiffness Kvp; while normal integration is applied to stiffness Kv:

5. NUMERICAL PROCEDURES AND EXAMPLES

The micro-structures of porous media are complex. This paper simplifies these micro-structures
into 1D flow and 2D flow models as shown in Figure 1. With these models, the effect of bulk
modulus is studied. This numerical method is then applied to study the permeability of clay and
artificial sand. For clay, the effect of constraint water film around particles is studied in detail.

Figure 1. Seepage through porous media.
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For sand, multi-dimensional effect is studied by comparing 1D results with 2D results. Finally,
anisotropic flow is numerically analysed.

5.1. Numerical procedure and computational parameter

Isoparametric elements with 8-nodes are used in computations. Shear stiffness, Kv; is
numerically treated by 3� 3 point Gaussian integration, while volumetric stiffness, Kvp; is
numerically treated by 2� 2 point Gaussian integration. No-slip condition is imposed on fluid–
solid boundaries. In addition, periodic condition is applied on artificial fluid–fluid boundaries
GF: Material parameter includes water viscosity m=rg ¼ 1:2� 10�2 cm s at 158C: Figure 2 shows
the effect of penalty parameter (bulk modulus) l on the coefficient of permeability for one-
dimensional flow. Two-dimensional isotropic flow yields similar results. When l is small, the
error of numerical results is big. However, numerical results approach to a stable value when
l510: Figure 3 shows 1D and 2D flow patterns when l ¼ 10: These results indicate that the
proposed numerical procedure is reasonable as long as l is larger than 10. Hence in subsequent
computations, the penalty parameter is taken as 10.

5.2. Permeability of clay and constraint water film effect

5.2.1. Equivalent particle size. In the first example, the coefficient of the permeability of clay is
studied using the experimental data from Casteleiro [19] who had carried out seven types of
experiments to determine the coefficient of permeability of dredged clay. These experiments

Figure 2. Effect of penalty parameter on permeability.
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include conventional consolidation, single load consolidation, slurry consolidation, direct
permeability, gravity drainage, vacuum drainage, and field infiltration tests. Figure 4 plots the
coefficients of permeability against void ratio, e; of the dredged clay.

A micro-structural model termed unit cell is necessary to compute the micro-flow and
the coefficient of the permeability for a given void ratio using the proposed numerical
approach. The 1D unit cell shown in Figure 1 has two important geometrical parameters:
equivalent particle size d and void ratio e: The coefficient of the permeability is generally
expressed as

k ¼ f ðd; e; mÞ ð38Þ

As the coefficient of viscosity is a constant at a given temperature, the equivalent particle size
can be back calculated through a single experimental data of ðk; eÞ: For this model, a typical
experimental data is taken as ðk; eÞ ¼ ð1:565� 10�8 m=s; 3:5115Þ: The equivalent particle size is
determined to be 7:66� 10�5 cm based on this set of data. Using the equivalent particle size, the
coefficient of the permeability can be computed for various void ratios. The numerical results
are represented by thick solid line in Figure 4. Similarly, 2D isotropic unit cell model as shown
in Figure 1 is also used to predict the coefficient of the permeability. It is found that the 2D

Figure 3. Flow patterns for 1D and 2D flows.
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results are slightly lower than the 1D ones. Thus multi-dimensional effect is insignificant for
this clay.

Numerical results agree reasonably well with experimental data for the clay with void ratio
larger than 3. However, numerical predictions are higher than experimental data for the clay
with void ratio smaller than 3. We take another set of ðk; eÞ ¼ ð3:76� 10�10 m=s; 1:5Þ to
reanalyse the model. This new pair of experimental data roughly represents the mean of
conventional consolidation tests (majority of these test data have void ratio less than 3).
The dash line as shown in Figure 4 is the numerical predictions. Although the model
predicts reasonably well for void ratio smaller than 3, it clearly under-predicts the
permeability with larger void ratio. Equivalent particle can include some range of void ratios;
however, it cannot cover whole void ratios. These discrepancies may be due to the effect of
constraint water film.

5.2.2. Effect of constraint water film. Constraint water film refers to the adhesive water film
around a particle. This water film is of special importance to the materials with small particles
such as clay, because it forms a typical two-layer micro-structure [20]. As established earlier,
one-dimensional flow applies for clay. The effect of constraint water film is simulated by a
distribution of coefficient of viscosity along normal direction as shown in Figure 5. This
distribution is contrast to a constant viscosity all flow channels. The viscosity coefficient
increases considerably within some distance from its partial surface. The water film narrows
flow channels, thus reducing the permeability of clay. The reduction ratio depends on pore sizes.
The smaller the pore size is, the larger the reduction ratio of flow channels. For clay with the
same particle size, smaller void ratio yields greater reduction. The measured void ratio of clay is
not effective to free water passages. An effective void ratio is defined as that void ratio for free
water passages. If the thickness of constraint water film is Dd; the effective void ratio e is then

0 2 4 86 10
1E-012

1E-011
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1E-007

1E-006

Void ratio e

C
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y 
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/s
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using (k,e)=(1.565x10-8m/s, 3.51)

by Casteleiro (1975)

Present work (No water film)

using (k,e)=(3.76x10-10m/s, 1.5)

Conventional consolidation

Single load consolidation

Slurry consolidation
Direct permeability
Gravity drainage

Vacuum drainage

Field infiltration

Figure 4. Comparison of numerical predictions with Casteleiro’s experimental data.
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determined by

e ¼
d01 � Dd
d0 þ Dd

ð39Þ

and the equivalent particle size is

d ¼ d0 þ Dd ð40Þ

where superscript ‘0’ refers to the state without water film ðDd � 0Þ: A simple closed-form
solution is obtained for the coefficient of the permeability in one-dimensional flow:

k ¼
rg
3m

ðd01 � DdÞ3

d0 þ d01
ð41Þ

where ðd0 þ d01 Þ is the characteristic size of a unit cell. When d01 � Dd40; there is no flow passage
and k ¼ 0: This implies that a critical void ratio exists. When the actual void ratio is below this
critical void ratio, the coefficient of the permeability is zero. At this time, constraint water film
completely blocks flow channels.

The thickness of constraint water films varies with constituents of clay. Polubarinova-
Kochina [20] found that the thickness should not exceed 0:5 mm: A thickness of 0:2 mm water
film is assumed in this example. The numerical predictions which include constraint water films
are denoted by the dash dot line in Figure 4. The agreement is good between numerical and
experimental k values for the entire range of void ratios. This shows that the effect of constraint
water film plays an important role for clay with relatively small void ratio. Because the
equivalent particle size of clay is small, the water film can block the flow passage heavily.

The permeability of remolded clays has been experimentally studied by Carrier and Beckman
[21] who conducted stress-controlled and constant rate-of-deformation consolidometer tests. A
total of 52 samples are represented, of which 22 are phosphatic, 13 are dredged materials, and 17
are remolded natural clays. Figure 6 compares the Carrier–Beckman’s experimental data with
the numerical results with/without water film. The equivalent particle size is 5:7 mm from test
point ðk; eÞ ¼ ð1:77� 10�8 m=s; 5:0Þ: The water film is taken to be 0:2 mm thick. In general, the
numerical results agree reasonably well with experimental data. The effect of water film is only

Figure 5. Double water film model.
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noticeable when the void ratio of clay is small. Numerical results using 2D isotropic unit cell
model are close to 1D results. This confirms that 1D model is sufficient to predict the
permeability of clay.

5.3. Permeability of sand and two-dimensional effect

Artificial uniform sand named as Wigner–Seitz grains was tested by Carman [22]. The
equivalent particle size is to be 0:1135 cm if the data point ðk; eÞ ¼ ð4:694� 10�5 m=s; 1:4437Þ is
used. The experimental data are plotted in Figure 7. A small void ratio is taken so as to avoid
possible multi-dimensional effect. The numerical results agree generally well with experimental
data except for void ratio larger than 3. As sand has much bigger pore size than clay, the water
film effect is not important. For sand, a major factor for this discrepancy may be from the multi-
dimensional effect. This effect refers to the flow resistance at inter-connective pores. A
conceptual 2D model is proposed to investigate the multi-dimensional effect.

The real flow channel in porous media is not always 1D. The zigzag channel flows interact
with each other, thus increasing flow resistance. A simple 2D unit cell is conceived in Figure 1.
Channels cross each other and their widths are d1 and d2: Characteristic particle size is assumed
to be d and d1 is equal to d2 for an isotropic flow. The void ratio e is

e ¼ 1þ
d1
d

� �2

�1 ð42Þ

The coefficient of permeability can be determined if particle size and void ratio are known. This
relation can be used to determine the equivalent particle size d if ðk; eÞ is known. When d is
known, the coefficient of the permeability can be determined for any void ratio. Figure 8
compares the distribution of characteristic velocity at void ratios e ¼ 0:331 and 1:25;
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Figure 6. Comparison of numerical predictions with Carrier–Beckman’s experimental data.
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respectively. When the pore size is small, crossing effect is small and ignorable as illustrated in
Figure 8(a). However, the effect cannot be ignored when pore sizes are big. For a bigger pore as
shown in Figure 8(b), the cross-effect is significant and hence one-dimensional flow solution is
not adequate to predict the coefficient of the permeability accurately. The numerical results
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Figure 7. Comparison of numerical predictions with Wigner–Seitz grain experimental data.

Figure 8. Cross-connection effect for different void ratios. (a) Void ratio ¼ 0:331 and (b) void ratio ¼ 1:25:
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with/without cross-effects are all plotted in Figure 7. It is evident that the 2D model is able to
predict the coefficient of permeability for all void ratios. In summary, constraint water film
affects the pore flow for small particles in small void ratio zone, while multi-dimensional effect
affects the pore flow for big particles in large void ratio zone.

5.4. Effect of particle shape and anisotropic flow

Anisotropy of permeability is an important topic in practice. An anisotropic numerical model is
shown in Figure 9. The model varies flow channel d2 while keeping flow channel d1 constant.
Such a simulation is valid for clay as the shape of clay components is relatively flat [23]. A
parameter study is carried out on a unit cell with 13 mm� 13 mm in size. This unit cell represents
a 2D isotropic flow with clay particles of 11 mmðd1Þ by 11 mmðd2Þ and flow channel of 2 mm wide.
By varying d2 and keeping d1; the numerical permeability along the d1 and d2 channels are
shown in Figure 9. Two findings are made from the numerical results. Firstly, the coefficient of
the permeability along d1 channel is almost constant due to same pore size in this direction. This
implies that the flow in this direction is hardly affected by the flow in other directions. Secondly,
the coefficient of the permeability along d2 channel increases with pore size d2: When pore sizes
in both directions are the same, the permeability becomes identical. This is the case for isotropic
flow. A limit case for d2 ! 0 should be specially noted. For this limit case, the pore flow is only
along d1 channel. From the view of micro-analysis, an anisotropic flow is decomposed into two
one-dimensional flows, as void ratio and characteristic particle size are all along that direction.
In other words, one-dimensional numerical model is sufficient to describe a two-dimensional
permeability if a directional porosity and a directional particle size are introduced into the
present numerical model.
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Figure 9. Anisotropic permeability due to anisotropic fluid channels.
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6. CONCLUSIONS

A numerical model for the flow in porous media is proposed and the coefficient of permeability
is then computed. The characteristic equation at micro-level and seepage equation at macro-
level are developed from a two-scale homogenization process of the Navier–Stokes flow in
porous media. A penalty finite element approach is put forth to solve the characteristic equation
at micro-level. The coefficients of permeability computed from the proposed approach are
compared with experimental data for clays and sands. The effect of constraint water film is
studied for clay while two-dimensional flow effect is studied for sands. Finally, anisotropy of
permeability is discussed through the current numerical model. From these analyses, following
conclusions can be drawn.

Macro-seepage equation and microscopic characteristic equation at low Reynolds number are
obtained from the Navier–Stokes equation through a two-scale homogenization method. The
Stokes flow and micro-level characteristic flow have some similarity in solution structures. This
similarity indicates that characteristic flow is just a special case of Navier–Stokes flow. Their
differences include body force and artificial boundary condition.

Penalty method is an efficient numerical approach in solving the characteristic equation if the
penalty parameter adopted is sufficiently large. As only characteristic velocity is included in the
weak form, penalty method minimizes unknowns in FEM. Reduced integration is applied to
treat the volumetric integration in order to avoid mesh-locking for non-triangular element.

Constraint water film of clay has a vital effect on the coefficient of the permeability when the
void ratio is small. However, the multi-dimensional effect can be ignored for clay because of
small pore sizes. Constraint water film blocks flow channels and thus reduces the permeability of
clay. Examples reveal that water film effect is significant when void ratio is less than 2. If the
characteristic particle size of clay is taken as the particle size plus the thickness of constraint
water film, one-dimensional model of unit cell is sufficiently accurate to predict the coefficient of
permeability of clay.

Multi-dimensional effect becomes important for sand when void ratios are large as larger
cross-channels produce greater resistance. On the other hand, constraint water film effect is
established to be insignificant for sand.

NOMENCLATURE

d equivalent particle size
e void ratio
F k
si characteristic loading

Kij permeability tensor of porous media
Kv
rs element shear stiffness matrix

Kvp
rs element volume stiffness matrix

k coefficient of permeability
m nodal number in an element
n element number
P ; P eðxÞ pore water pressure
%PP pore water pressure at fluid boundary
P 0ðxÞ leading term of pore water pressure
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PI plastic index
PL plastic limit
pk characteristic pressure
Vi; V e

i ðxÞ true velocity
%VV i velocity at fluid boundary
*VV0
i macro-pseudo velocity of porous media flow

V k
ij Nodal characteristic velocity

vki characteristic velocity
x global co-ordinates
xi ith component of coordinates
rXi unit body force
Y domain of a unit cell
y local co-ordinates
YF fluid domain in a unit cell
Ys sub-domain or element domain
e scale parameter
m coefficient of viscosity
r density of water
G fluid–solid interface
GF fluid boundary or artificial fluid boundary
l bulk modulus or penalty parameter
dij characteristic body force or pseudo-body force
dvi weight function
dVij weight function at the jth node.
Fj shape function
Dd thickness of the constraint water film
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