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Abstract

Composite soil may consist of composite ground made up of soft soil reinforced by stiff soil
columns or mixed soil made up of thoroughly mixed soft and stiff soils. In general, the beha-

vior of composite soil is not well understood due to non-homogeneous structure of soil
matrices. In this paper, a simplified homogenisation method is proposed to model the beha-
vior of mixed soil and composite ground. It assumes that micro-stress/micro-strain is homo-
geneous in the matrix and the reinforcement of a composite soil and a localization tensor is

developed. A microstructure knowledge-based model is proposed to distribute the micro-
stress/micro-strain in each phase. This assumption largely simplifies the numerical procedure
at the unit cell of composite soils. The validity of the proposed method is verified by com-

paring the predicted parameters with existing experimental data on mixed soils and composite
grounds. Examples show that the proposed method can be applicable to well-randomly mixed
soil and oriented composite ground. # 2002 Elsevier Science Ltd. All rights reserved.
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Nomenclature

Â homogenized compliance
matrix

B bulk modulus
bp stress ratio for mean stress
bs homogenized stress ratio
C stress localization tensor.
C electrical conductivity
Cc compression index of the

soil
D strain localization tensor.
E~ homogenized stiffness

matrix
E Young’s modulus
Ei initial modulus
Eijkl stiffness of the matrix

material.
E50 deformation modulus
e void ratio
e0 initial void ratio
F clay fraction by dry weight
f volume fraction of

inclusion
f0 volume factor
fs volume factor
FR critical content ratio of sand

by dry weight
I fourth order unit tensor.
K modulus number
Kb bulk modulus number
M critical state parameter
m bulk modulus exponent
mv coefficient of compressibility
n modulus exponent
nj outer normal unit vector of

domain V
Pa atmospheric pressure
p0 mean stress
q0 generalized shear stress
ti uniform traction.
ui component of a

displacement vector
u�i fluctuation part of a dis-

placement vector.
V domain for a unit cell
jVj volume of domain V
@V boundary of domain V
Vper domain with periodic

condition
W characteristic function when

"0is applied

Y
_

yi 2 Vj�
0
ijnj ¼ ti

n o
,

Y~ ¼ y 2 Vj"0ijyj ¼ u0i

n o

yj jth component of local
co-ordinate y

� compressive stress
�0
3 effective confining pressure

�ij components of stress tensor
�ij
� �

volume average stress in a
unit cell or macro-stress

�0 macro-stress
�� fluctuation stress
"kl components of strain tensor
"klh i volume average strain in a

unit cell
"0 macro-strain
"� fluctuation strain
� characteristic function when

�0 is applied
� internal friction angle

Subscripts
f reinforcement phase
m matrix phase

Superscripts
d series model
s parallel model
h homogenized model
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1. Introduction

Composite soil is a commonly used soil improvement technique in which the in-
situ soft soil is reinforced by the insertion of stiff soil. In some cases, soft soil is
reinforced by deep mixing, stone columns or sand compaction piles. Such composite
soil matrix would typically consist of soft clay reinforced by stiff soil columns
installed at a regular spacing as shown in Fig. 1(a). This improved ground is com-
monly termed as composite ground. In other cases, the soil matrix consists of thor-
oughly mixed soft and stiff soils as shown in Fig. 1(b) and this is commonly termed
as mixed soil. The study on the behaviour of composite soils has been an interesting
topic in geotechnical engineering. For example, Refs. [1–5] investigated the
mechanical properties of mixed soil using conventional uniaxial or triaxial com-
pression tests. On the other hand, numerical or analytical approaches [6–9] have
been proposed to predict non-linear behaviour of stone-column reinforced foundation
by considering micro-equilibrium and deformation compatibility. Up to date, the

Fig. 1. Composite soils.
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mechanical behavior of mixed soils is still not well understood due to non-
homogeneous microstructures of the soil matrices.
Mathematicians developed a homogenisation method to understand the macro-

behaviors of composite materials with microstructures. Sanchez-Palencia [10] and
Bakhvalov and Panasenko [11] summarized the early applications of homogenisa-
tion method in science and engineering fields. Significant progress has been made
recently in both theoretical and application aspects of the homogenisation method.
These include the theoretical convergence of asymptotic (see for example [12]),
applications in solid mechanics (see for example [13]), seepage problems (see for
example [14]) and ground engineering [15]. However, relatively few studies had been
carried out using the homogenisation method for the nonlinear or elastoplastic
deformation of composite soils. Up to date, the majority of theoretical develop-
ments on the stress–strain behavior of composite ground and mixed soils have been
either empirical or very complex and tedious.
In this paper, a simplified homogenisation method is proposed to predict the

behavior of mixed soil and composite ground. A microstructure knowledge-based
model is proposed to determine the model parameters. The proposed method is
verified using experimental data on composite alloys, randomly mixed soils and
composite ground.

2. Homogenisation method and homogenized moduli

In order to understand the key point of the homogenization procedure, let us
consider a unit cell of composite soils consisting of the matrix material (termed
m-phase) and the reinforcement material (termed f-phase) as shown in Fig. 1. This
unit cell is a representative microstructure of the soil mass. It is a small boundary-
value problem if boundary conditions are given. The micro-equilibrium equation that
governs the unit cell is given as

@�ij
@yj

¼ 0 ð1Þ

where �ij are the components of the stress tensor and yj is the jth component of local
co-ordinate y. As a unit cell comprises of different materials, the micro-constitutive
law that governs each material or phase in a unit cell is given by

�ij ¼ Eijkl"kl ð2Þ

where �ij, "kl are the components of stress and strain tensor respectively and Eijkl is
the stiffness of the material. On the other hand, the macro-stress and macro-strain
on the macro-level are directly associated with the global analysis of a geotechnical
problem. On the macro-level, a unit cell is just regarded as a point with a homo-
genized constitutive law. The macro-stress, �0ij; is usually defined as the volume
average stress in a unit cell, �ij

� �
, as follow:
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�0ij ¼ �ij
� �

¼
1

jVj

ð
V

�ijdV ð3Þ

where V is the domain for a unit cell, and jVj is its volume.
The volume average strain in a unit cell, "ij

� �
, can also be defined as

"ij
� �

¼
1

jVj

ð
V

"ijdV ð4Þ

However, the above strain is equal to macro-strain "ij
� �

¼ "0ij

� �
only if all phases

of materials in a unit cell are free of discontinuity. Such a definition can satisfy the
macro-homogenisation condition and the micro-energy is equivalent to the macro-
energy for the following three types of boundary conditions [15]:

a. Uniform traction, ti, on boundary @V(outer normal unit vector is denoted by nj)

of unit cell V, whose space is denoted as Ŷ (that is, Ŷ ¼ yi 2 Vj�
0
ijnj ¼ ti

n o
)

�ijnj ¼ �0ijnj ð5Þ

b. Uniform displacement on boundary @V. The component of a displacement vector
in a unit cell, ui, is given as

ui ¼ "0ijyj ð6Þ

The space is denoted by Y~ ¼ y 2 Vj"0ijyj ¼ u0i

n o
c. Periodic condition on boundary @V whose space is denoted as Vper

ui ¼ "0ijyj þ u�i ð7Þ

where u�i , being periodic, denotes the fluctuation part of the displacement. �ijnj is
anti-periodic, that is, �ij x; yð Þnj ¼ ��ij x; y þ Yð Þnj.
After solving the boundary-value problem of a unit cell under one of above three

boundary conditions, the micro-distribution of stress and strain within a unit cell is
determined, thus determining the stress/strain localization tensor as follow.
Let D denote the strain localization tensor. The micro-strain, ", is given as

" ¼ D"0 ¼ "0 þ "� ð8Þ

where "0; "� are the macro-strain and micro fluctuation strain, respectively.
The same procedure defines C as the stress localization tensor. The micro-stress,

�, is given as

� ¼ C�0 ¼ �0 þ �� ð9Þ

J.G. Wang et al. / Computers and Geotechnics 29 (2002) 477–500 481



where �0;�� are the macro-stress and its micro fluctuation stress, respectively. Note
that "� and ��are higher order variables than " and �, respectively.
The homogenized moduli, which are represented by homogenized stiffness matrix

E~ and homogenized compliance matrix Â, are defined as

E~ ¼ DTE
� �

ð10Þ

and

Â ¼ ACh i ð11Þ

A is the compliance coefficient of each phase material. Eqs. (10) and (11)
reveal that the homogenized stiffness/compliance matrix is the weighted aver-
age of those of each component in a unit cell. The weights are stress/strain
localization tensors, C and D. The localization tensors have following properties
(where I is unit tensor):

"h i ¼ D"0
� �

¼ Dh i"0 ¼ "0 ) Dh i ¼ I ð12Þ

�h i ¼ C�0
� �

¼ Ch i�0 ¼ �0 ) Ch i ¼ I ð13Þ

3. Solutions for stress/strain localization tensor

Suquet [16] proposed a simplified method for a periodic structure by assuming
that the heterogeneity undergoes a uniform (homogeneous) strain. Wang [15]
presented a numerical algorithm of non-linear homogenisation theory based on a
rigorous mathematical approach. The expressions for the respective localization
tensors can be obtained as (see [15] for details)

Dijkl ¼ �ik�jl �
@Wkl

i

@yj
ð14Þ

or

Cijkl ¼ �ik�jl �
@�kli
@yj

ð15Þ

where W is the characteristic function when "0 is applied to the unit cell, � is the
characteristic function when �0 is applied, and �ik ¼ f1 i¼k

0 i6¼k.
However, it is difficult to apply above rigorous mathematical approach to com-

posite soils because soil microstructures are usually unknown except for some
micro-parameter such as volume fraction for each material phase. A simplified
homogenisation method is proposed in the present study to determine the stress/
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strain localization tensor. That is, the distribution of micro-stress and micro-strain
in a unit cell is assumed to be homogeneous. This assumption would lead to a
closed-form solution of stress/strain localization tensor.
Let the volume fraction of the reinforcement (f-phase) and matrix (m-phase) of a

two-phase material of unit volume shown in Fig. 1 be f and (1�f), respectively.
The symbol f refers to the ratio of f-phase volume to the whole volume in a unit cell.
In the subsequent discussion, the subscript f refers to the f-phase and the subscript m
refers to the m-phase. For example, Ef refers to the stiffness of the f-phase and �m
refers to the stress of the m-phase. Eq. (10) can be rewritten as

E~ ¼ Em þ f DT : Ef � Em
� 	� �

ð16Þ

If the distribution of the micro-stress/strain in a unit cell is known, the localization
tensor can be determined. For example, Eshelby [17] studied a special case whereby
a single anisotropic ellipsoidal inhomogeneity was imbedded into an infinite matrix.
He obtained the strain locatization tensor as

D ¼ I þ E0 Amð Þ
�1 Af � Am

� 	
 ��1
ð17Þ

where E0 is related to "f by

"f ¼ E0"
� þ "0 ð18Þ

where "� is the uniform eigenstrain and "0 is the strain in infinite matrix.
The present study assumes that the stress in each phase of a unit cell is

homogeneous and the stresses in different phases are distributed according to
some proportion. For two-phase materials, one can assume that the incremental
distribution of the micro-stress satisfies the following:

d�f ¼ bsd�m ð19Þ

where bs is termed the stress ratio which is a function of stress state or history that
varies with deformation and loading paths. Eqs. (3), (9) and (19) imply that the
stress localization tensor C is taken as

C ¼

bs
bs � 1ð Þfþ 1

I in f� phase

1

bs � 1ð Þfþ 1
I in m� phase

8>><
>>:

ð20Þ

in which bs is determined from the microstructure of a unit cell. It is noted that this
assumption may make the boundary of phases not satisfying micro-equilibrium.
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However, this assumption is a good approximation for micro-stress distributions.
Furthermore, the above assumption and equation did not require periodicity con-
ditions, thus the stress localization tensor may be applicable for any microstructure.
Determination of the parameter bs depends on complex microstructures of mixed

soils. For truly random materials, the strain in a unit cell can be simulated by a
series model whose parameters are denoted by the superscript d, while stress dis-
tribution in the unit cell may be described by a parallel model whose parameters are
denoted by the superscript s. These models are schematically shown in Fig. 2. The
two models express different aspects of composite soils as follows:
a. Phase stress is homogeneous, i.e. Eq. (19) is true. The corresponding moduli are

Es
f and E

s
m for the two phases. From the parallel conceptual model, the two moduli

have following relationship:

Es
f ¼ bsE

s
m ð21Þ

b. Phase strain is also homogeneous. That is

d"m ¼ bd d"f ð22Þ

The corresponding moduli are Ed
f and E

d
m. The following can be derived from the

series conceptual model:

Ed
f ¼ bdE

d
m ð23Þ

Fig. 2. Two conceptual models to simulate network structure.
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In a truly random material, the two mechanisms exist at the same time and at the
same space. From Eqs. (21) and (23), one has

Ed
f E

s
f ¼ bsbdE

d
mE

s
m ð24Þ

As comparing with Eq. (19), phase moduli should have Ef ¼ bsEm. This implies
that Eq. (24) corresponds to Ed

f E
s
f ¼ Ef and Ed

mE
s
m ¼ Em. For a composite soil

without obvious orientation, it is reasonable to assume that Ed
f ¼ Es

f and E
d
m ¼ Es

m.
That is

Ed
f ¼ Es

f ¼
ffiffiffiffiffi
Ef

p
ð25Þ

and

Ed
m ¼ Es

m ¼
ffiffiffiffiffiffiffi
Em

p
ð26Þ

Finally, one gets the stress ratio as

bs ¼ bd ¼

ffiffiffiffiffiffiffi
Ef
Em

r
ð27Þ

4. Comparison with experimental data on alloys

A linearly elastic composite metal with well-random microstructures is examined
first. The experimental data was taken from Nishimatsu and Gurland [18] who con-
ducted uniaxial compression tests on polycrystalline alloy made of carbonized tungsten
and cobalt. The carbonized tungsten as inclusion of reinforcement material has a
Young’s modulusEf ¼ 7:03� 105MPa and the cobalt asmatrix material has a Young’s
modulus Em ¼ 2:07� 105MPa. The parameter bs is hence determined to be 1.843 using
Eq. (27). By taking the stress localization tensor as that given in Eq. (20), the homo-
genized Young’s modulus,Eh, at any intermediate volume fraction, f, can be determined
as

1

Eh
¼

bsf

Ef
þ
1� f

Em
bs � 1ð Þfþ 1

ð28Þ

For two extremes, Eq. (28) reduces to Eh ¼ Em when f ¼ 0 and Eh ¼ Ef when
f ¼ 1. Fig. 3 gives a comparison between experimental data and theoretical predic-
tions obtained by Eq. (28) . For the full range of f, the predictions agree reasonably
well with the experimental data. They also lie within the lower and upper bounds
proposed by Hashin and Shtrikman [6]. The difference between the predictions and
the experimental data is relatively large for f=0.6 and 0.8. This may be attributed to
the interaction among inclusions.
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Besides predicting the stiffness parameters of a metal alloy, the current method
can be also applied to other properties of an alloy. Landauer [19] presented a set of
experimental data on electrical conductivity on a mixture of lead magnesium
(Mg2Pb) and lead (Pb). Electrical conductivity parameters, Cm and Cf, are given as
55:186� 105 and 473:404� 105mho=m, respectively. An expression similar to Eq.
(28) can be derived for the homogenized electrical conductivity, Ch, in terms of
Cm;Cf and f. The value of bs is determined to be 2.929 using Eq. (27). A comparison
between the measured and predictions of Ch is shown in Fig. 4. The predictions
again agree reasonably well with experimental results for the entire range of f. This
verifies that the current method can be used to determine non-mechanical parameters
of a composite alloy.

5. Applications to mixed soils

The simplified homogenisation method is applied to mixed soils in this section. First
of all, it is used to determine the material parameters of Duncan–Chang [20] model. It is
then used to predict the strength parameter and the coefficient of volume change.

Fig. 3. Comparison of homogenized Young’s modulus of a two-phase alloy.
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5.1. Prediction of Duncan–Chang model parameters

Stark et al. [3] carried out triaxial compression tests to determine the material
parameters of mixed soils for the Duncan–Chang hyperbolic model. The silt mix-
tures were fabricated using a dry mixing technique. The samples were composed of
processed silt and clay mineral contents between 0 to 50% by dry weight. The
samples were compacted at standard Proctor relative compactions (PRC)
between 85 and 100%. They investigated the effect of clay mineral content on
the stress–strain behavior and the Mohr–Coulomb strength parameters for mixed
soils.
Two important parameters for theDuncan–Chang hyperbolic model are summarized.

The first one is the initial modulus, Ei, which is defined by

Ei ¼ KPa
� 0
3

Pa

� �n
ð29Þ

Fig. 4. Comparison of theoretical prediction and experimental data for electrical conductivity of

Mg2Pb� Pb mixture.
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where Pa is the atmospheric pressure (101.3 kPa), K is the modulus number, � 0
3 is

the effective confining pressure and n is the modulus exponent. The second one is the
bulk modulus, B, which describes the nonlinear and stress-dependent volume change
characteristics of soil:

B ¼ KbPa
� 0
3

Pa

� �m
ð30Þ

where Kb is the bulk modulus number and m is bulk modulus exponent.
In the previous example, the simplified homogenisation method was applied to

predict mechanical and non-mechanical properties of alloy based on the volume
fraction of the f-phase, f. However, the proportion of sand and clay for mixed soils is
usually measured by percentage by dry weight. A relationship between f and the clay
fraction by dry weight, F, is therefore necessary in order that the proposed method
can be employed to predict the behavior of mixed soils. In the experiments, F varies
from 0 to 50%. Taking Kf ¼ K0 for F ¼ 0% and Km ¼ K50 for F ¼ 50% for the two

Fig. 5. Young’s modulus number at different Proctor relative compaction (PRC).
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extremes of F. A parameter termed as volume factor, f 0, is employed as an alternative
for f where

f 0 ¼ 1� 2Fð Þ ð31Þ

For two extremes of F, Eq. (31) reduces to f 0 ¼ 0 when F=50% and f 0 ¼ 1 when
F=0%.
Two important parameters, K and Kb, can be approximated using the simplified

homogenisation method. From Eqs. (11) and (20), the homogenized modulus num-
ber, Kh, can be determined by the following unified equation:

Kh ¼
bs � 1ð Þf 0 þ 1

bs f
0

Kf
þ
1� f 0

Km

ð32Þ

Homogenized bulk modulus number, Kh
b , can be also determined in a similar

manner. Figs. 5 and 6 show the measured Kh and Kh
b values for kaolinite–silt

Fig. 6. Bulk modulus number at different Proctor relative compaction (PRC).
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mixtures of various F. It is evident that reasonable agreements are obtained between
experimental data and predictions.

5.2. Strength criterion for mixed soils

The criterion of stress limit (or simply strength) refers to the stress states under an
infinite deformation. Wang [15] showed that the homogenized constitutive law could
be generalized as

��0
� �

¼ Eh

 �

�"0
� �

ð33Þ

The stress limit implies that the determinant of the homogenized Young’s modulus
of the mixed soil, Eh, is equal to zero when the soil reaches its failure status. In this
section, only the critical stress state is examined. Each constituent of the unit cell is
assumed to reach its critical state at the same time when the unit cell is at its critical

Fig. 7. Friction angle at different Proctor relative compaction.
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stress state. Its limit stress state is expressed by the generalized shear stress, q0, and
the mean stress, p0. They are the volume average of their partners given as

q0 ¼ f 0qf þ 1� f 0ð Þqm ð34Þ

p0 ¼ f 0pf þ 1� f 0ð Þpm ð35Þ

Table 1

Properties of mixed soil A [2]

Sample Clay (%) Silt (%) Sand (%) Liquid limit (%) Plastic limit (%) Plasticity index (%)

A-1a 80 20 0 51.6 28 23.6

A-2 64 16 20 41.9 24.3 17.6

A-3 48 12 40 33.2 18.3 14.9

A-4 32 8 60 24.0 12.7 11.3

A-5 24 6 70

A-6 16 4 80

A-7 8 2 90

A-8b 0 0 100

a Kaolin (Gs=2.70).
b Toyoura sand (Gs)=2.65.

Table 2

Properties of mixed soil B [2]

Sample Clay (%) Silt (%) Sand (%) Liquid limit (%) Plastic limit (%) Plasticity index (%)

B-1a 72 28 0 163.8 20.9 142.9

B-2 57 23 20 123.4 16.5 106.9

B-3 43 17 40 89.6 12.7 76.9

B-4 29 11 60 60.0 11.5 48.5

B-5 22 8 70 45.6 12.0 33.6

B-6 15 5 80

B-7 8 2 90

B-8b 0 0 100

a Kaolin and bentonite (Gs ¼ 2:50).
b Toyoura sand (Gs ¼ 2:65).

Table 3

Material parameters

Mixed soil Initial void

ratio e0

Compression index

of sand Ccf

Compression index

of clay Ccm

Critical content

ratio FR

A 0.5 0.0367 0.345 0.18

B 0.689 0.0351 1.219 0.12
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The homogenized critical state parameter for a whole unit cell,Mh, is introduced as

Mh ¼
q0

p0
ð36Þ

For the reinforcement component,

Mf ¼
qf
pf

ð37Þ

and for the matrix component,

Mm ¼
qm
pm

ð38Þ

Fig. 8. Homogenized coefficient of volume change for mixed soil A.
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As compression and shear properties for soils are different, the stress ratios for
both properties should be different. If pf ¼ bppm is assumed for mean stress, follow-
ing equation can be obtained using Eq. (35).

p0 ¼ f 0 bp � 1
� 	

þ 1

 �

pm ð39Þ

or

p0 ¼
f 0 bp � 1
� 	

þ 1

 �

bp
pf ð40Þ

where bp is the stress ratio for the mean stress of a unit cell. The generalized shear
stress should be the volume average of each phase. That is,

q0 ¼ f 0qf þ 1� f 0ð Þqm ð41Þ

Fig. 9. Homogenized coefficient of volume change for mixed soil B.
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Therefore, the critical state parameter of this unit cell is obtained as

Mh ¼
bpf

0

f 0 bp � 1
� 	

þ 1
Mf þ

1� f 0

f 0 bp � 1
� 	

þ 1
Mm ð42Þ

For simplicity, it is assumed that bp ¼ bs and the following form for the homogenized
stress ratio is obtained as

bs ¼

ffiffiffiffiffiffiffiffi
Mf

Mm

r
ð43Þ

Fig. 7 shows a comparison between the measured friction angle and the prediction
obtained using Eq. (42) for the kaolinite-silt mixture. Note that the homogenized
friction angle �h ¼ tan Mh

� 	
. The predictions are again in good agreement with

experimental data.

5.3. Uniaxial compression experimental data from Omine and Ochiai [2]

Omine and Ochiai [2] carried out uniaxial compression tests on two types of mixed
soils, mixed soils A and B. The properties of mixed soils A and B are shown in

Fig. 10. Critical state parameter for mixed soil A.
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Tables 1 and 2, respectively. The proportion of clay, silt and sand refers to percen-
tage by dry weight. They established through experiments that there was a critical
content ratio of sand (denoted by FR) that was found to be 18% for mixed soil A
and 12% for mixed soil B. When the percentage by weight of sand is below the FR,
the reinforcement effect of sands is so small that it can be ignored. The mechanical
properties of mixed soils are almost the same as those of matrix. From Eqs. (11) and
(20), the homogenized coefficient of volume change,mh

v at any f
0, is obtained as follow:

mh
v ¼

bs f
0 mvf þ 1� f 0ð Þmvm

bs � 1ð Þf 0 þ 1
ð44Þ

where mvf and mvm are the coefficient of volume change of sand and clay, respectively.
Experimental data obtained for mixed soil A reveal that the change of void ratio e

with confining pressure � is relatively small. Taking the compression index Cc as the
gradient of the straight line on the e� log � plot and using initial void ratio e0 as
reference, the coefficient of volume change mv can be derived as

mv ¼
0:435Cc
� 1þ e0ð Þ

ð45Þ

Fig. 11. Critical state parameter for mixed soil B.
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The change in e is relatively large for mixed soil B. It would be more appropriate
to use the void ratio e at a given � rather than e0 as the reference. In such case,

mv ¼
0:435Cc

� 1þ e0 � Cclog �ð Þð Þ
ð46Þ

As the effect of the soil mixture is only dominant fromF=FR to F=1, these two values
will be taken as the two extremes for the homogenization method. The same principle of
deriving Eq. (31) is used to obtain a relationship between volume factor f 0and F as

f 0 ¼
1� F

1� FR

� �
ð47Þ

Eqs. (44) and (47) are then used to determine themh
v values for the soil under different

loading pressures. The relevant mvf and mvm values are obtained using Eq. (45) for
mixed soil A and Eq. (46) for mixed soil B, respectively. The material properties for the
two soils are summarized in Table 3. The predicted andmeasuredmh

v values are given in
Figs. 8 and 9. These figures show good agreement with the measured data.

Fig. 12. Relationship between E50 and fs.
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Omine et al. [4] also carried out triaxial compression tests on the soils and the
measured critical state parametersMh for mixed soil A and B are shown in Figs. 10
and 11, respectively. Homogenized Mh are also plotted in Figs. 10 and 11 using the
relationship between f 0 and F given in Eq. (47). Again good agreement is obtained
between the measured and predictions.

6. Applications to composite ground with definite reinforcement orientation

Unlike mixed soils that are a thorough mixture of soft and stiff soils, composite
ground [4,7–9] consists of improved and unimproved parts because stiff soil is
installed as columns and does not mix with the in-situ original soil outside the stiff
soil columns. Furthermore, reinforcements have definite reinforcement orientation
in space. For example, stone-columns are usually installed vertically. For such a
composite ground, two important parameters, deformation modulus E50 and
unconfined compressive strength qu in vertical direction, were usually important to
boundary-value problems. Omine et al. [4] measured these two parameters for a
laboratory prepared cement treated soil. The volume content of improved part in
treated soils is defined as a stirring mix ratio fs. It was measured through the ratio of
areas of improved to unimproved parts in a cross-section of sampling specimen.

Fig. 13. Relationship between qu and fs.
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Micro-stress is again assumed to be homogeneous in improved and unimproved
parts. Because micro-stress is distributed according to stress localization tensor
given by Eq. (20), the micro-stress at the failure status should be

q 0
uf ¼

bs
bs � 1ð Þfs þ 1

quf q 0
um ¼

1

bs � 1ð Þfs þ 1
qum ð48Þ

Therefore, the homogenized strength is established as follows:

qhu ¼ fsq
0
uf þ 1� fsð Þq 0um ¼

bs fsquf þ 1� fsð Þqum
bs � 1ð Þfs þ 1

ð49Þ

For such a case, micro-strain in vertical direction should be the same for each
phase (equal to macro-strain). If Eq. (49) is divided by macro-strain, the homo-
genized deformation modulus is obtained as follows:

Eh
50 ¼

bsfsE50f þ 1� fsð ÞE50m

bs � 1ð Þfs þ 1
ð50Þ

The parameter bs is again determined using Eq. (27). The predictions of E50 and qu
in Figs. 12 and 13 show reasonably good agreement with measured data. This shows
that the current method is also applicable to composite ground. Eq. (50) is a little
different from Eq. (28) of homogenized Young’s modulus. This is because for com-
posite ground, microstructures have definite reinforcement orientation while the
microstructures of alloy or mixed soils are randomly distributed.

7. Conclusion

A simplified homogenisation method is proposed based on the assumption that
micro-stress/micro-strain is homogeneous in the matrix and the reinforcement of a
composite soil. A conceptual model consisting of a series model and a parallel model
is proposed to determine the stress ratio in each phase. Thus, a localization tensor
for a two-phase material is obtained in Eq. (20). This localization tensor is applied
to predict some characteristic parameters such as Young’s modulus or modulus
number, strength parameter for mixed soils and composite ground. The following
conclusions can be drawn:
1. The simplified homogenisation method directly assumes the micro-stress dis-

tribution in each phase, while rigorous procedure of homogenisation theory should
solve a boundary-value problem for a unit cell under periodicity condition or truly
random condition. A closed-form stress localization tensor is then developed to
distribute the macro-stress in each phase. The stress concentration tensor has two
important parameters: stress ratio bs and volume factor f 0. For mixed soils, f 0 is
related to the clay fraction by dry weight F. For composite ground, f 0 is simply the
volume fraction of inclusion/reinforcement. This assumption may not satisfy the
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micro-equilibrium especially at the boundaries of each phase. However, case study
shows that this micro-non-equilibrium is not critical to the parameter prediction.
2. Although homogenisation procedures require periodicity conditions for a unit

cell, the simplified homogenisation method does not limit itself to that condition. In
fact, this method can be applied to both randomly mixed soils and composite
ground with definite reinforcement orientation. This is because the equivalent para-
meter includes the main characteristics of microstructures. Thus, the current method
provides a simple way to predict the material parameter of a composite material at
any intermediate f 0 if material parameters of matrix and reinforcement are known.
3. The stress ratio bs is directly associated with microstructure. Eq. (27) is applic-

able not only for Young’s modulus, but also for the coefficient of volume change
and the strength parameter. This makes the current method applicable to a wide
range of material properties such as electrical conductivity, strength, and the para-
meters for the Duncan–Chang’s hyperbolic model. The simplified homogenisation
method can also effectively predict the mechanical properties of randomly mixed soil
and composite ground with definite reinforcement orientation. However, if the
material has more than two phases and its microstructure has definite orientations,
the current method has its limitation and rigorous procedure of homogenisation
method is recommended for such case.

Acknowledgements

The present study was initiated while the first author was studying for a PhD in
Nagoya University financially supported by the Japanese Government (Mobusho)
Scholarship. The study was completed at the National University of Singapore while
the first author was a postdoctoral fellow supported by the National University of
Singapore—National Science and Technology Board Research Grant No.
RP3940674. Last but not least, the authors wish to acknowledge the fruitful discussions
they had with Dr. K. Omine.

References

[1] Kimura T, Takemura J, Hiro-Oka A, Okamura M. Mechanical behavior of intermediate soils. In:

Leung CF, Lee FH, Tan TS, editors. Proc. Int. Conf. Centrifuge 94. Rotterdam: A.A. Balkema,

1994. p. 13–24.

[2] Omine K, Ochiai H. One-dimensional compression properties of sand-clay mixed soils based on soil

structure. Proc of Japanese Society for Civil Engineers 1992;457(III-21):127–36 [in Japanese].

[3] Stark TD, Ebeling RM, Vettel JJ. Hyperbolic stress-strain parameters for silts. J of Geotechnical

Engineering, ASCE 1994;120(2):420–41.

[4] Omine K, Ochiai H, Yoshida N. Strength properties of sand-clay mixed soils based on soil structure.

Proc of Japanese Society for Civil Engineers 1993;469(III-23):55–64 [in Japanese].

[5] Takemura J, Hirooka A, Suemasa N, Kimura T. Intermediate soils—are they really headache soils.

Journal of Japanese Society for Soil Mechanics and Foundation Engineering 1993;41(7):1–10 [in

Japanese].

[6] Hashin Z, Shtrikman S. A variational approach to the theory of the elastic behavior of polycrystals.

J Mech Phys Solids 1962;10:343–52.

J.G. Wang et al. / Computers and Geotechnics 29 (2002) 477–500 499



[7] Lee JS, Pande GN. Analysis of stone-column reinforced foundations. Int J for Numerical and Ana-

lytical Methods in Geomechanics 1998;22:1001–20.

[8] Schweiger HF, Pande GN. Modelling stone column reinforced soil—a modified Voigt approach. In:

Pietruszczak S, Pande GN, editors. Proc. 3rd Num. Models in Geomech. (NUMOG III). Elsevier

Applied Science, 1989. p. 204–14.

[9] Canetta G, Nova R. A numerical method for the analysis of ground improved by columnar inclu-

sions. Computers and Geotechnics 1989;7(1):99–114.

[10] Sanchez-Palencia E. Non-homogeneous media and vibration theory, Lecture Notes in Physics, vol.

127. Berlin: Springer, 1980.

[11] Bakhvalov N, Panasenko G. Homogenization: averaging processes in periodic media—mathematical

problems in the mechanics of composite materials. Kluwer Academic, 1989.

[12] Panasenko G. Multicomponent homogenized model for strongly nonhomogeneous structures. In:

Bouchitte G, Buttazzo G, Suquet P, editors. Calculus of variations, homogenization and continuum

mechanics. World Scientific Press: 1994. p. 255–9.

[13] Terada K, Kikuchi N. Nonlinear homogenization method for practical applications. In: Ghosh S,

Ostoja-Starzewski M, editor. Computational methods in micromechanics. AMD, 1995. p. 1–16.

[14] Auriault JL, Lewandowska J. On the cross-effects of coupled macroscopic transport equations in

porous media. Transport in Porous Media 1994;16:31–52.

[15] Wang J-G. A homogenization theory for geomaterials: nonlinear effect and water flow. Dr. Eng.

Thesis, Nagoya University (Japan), 1996.

[16] Suquet P. A simplified method for the prediction of homogenized elastic properties of composites

with a periodic structure. Comptes Rendus De L Academie Des Sciences Serie II 1990;311(7):769–74.

[17] Eshelby JD. The determination of the elastic field of an ellipsoidal inclusion and related problems.

Proc Roy Soc London 1957;A241:276–303.

[18] Nishimatsu C, Gurland J. Experimental survey of the deformation of the hard-ductile two-phase

alloy system Wc-Co. Trans American Society for Metals 1960;52:469–84.

[19] Landauer R. The electrical resistance of binary metallic mixtures. J Appl Phys 1952;23:779.

[20] Duncan JM, Chang CY. Nonlinear analysis of stress and strain in soils. J Soil Mech and Found

Engrg Div ASCE 1970;96(5):1629–53.

500 J.G. Wang et al. / Computers and Geotechnics 29 (2002) 477–500


