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Abstract

A radial point interpolation meshless (or radial PIM) method was proposed by authors to overcome the possible

singularity associated with only polynomial basis. The radial PIM used multiquadric (MQ) or Gaussian as basis

functions. These two radial basis functions all included shape parameters. Although choice of shape parameters has

been a hot topic in approximation theory and some empirical formulae were proposed, how these shape parameters

affect the accuracy of the radial PIM has not been studied yet. This paper studied the effect of shape parameters on the

numerical accuracy of radial PIM. A range of suitable shape parameters is obtained from the analysis of the condition

number of the system matrix, error of energy and irregularity of node distribution. It is observed that the widely used

shape parameters for MQ and reciprocal MQ basis are not even close to their optimums. The optimal shape pa-

rameters are found in this paper to be simply q ¼ 1:03 and R ¼ 1:42 for MQ basis and c ¼ 0:003–0:03 for Gaussian

basis. � 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Meshless methods have achieved remarkable progress in recent years. Main efforts have been focusing on
different approximation methods over a cluster of scattered nodes. Radial point interpolation method
(radial PIM) [1] is one of meshless methods. It was used to solve partial differential equations for solid
mechanics over unstructured nodes. The radial PIM has several attractive features. First, its approximation
function passes through each node point in the influence domain and thus has the interpolation with delta
property. This property makes the implementation of essential boundary conditions much easier than the
meshless methods based on the moving least-square methods such as element-free Galerkin (EFG) method
[2]. Second, its shape functions and derivatives are easily developed only if basis functions and distributions
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of nodes are determined. The widely used radial basis functions (rbfs) are multiquadric (MQ) [3] and
Gaussian (EXP) [4]. They are true grid free schemes for approximating surfaces in an arbitrary number of
dimensions. Third, the basis functions are continuously differentiable and integrable. This is useful for rbfs
to solve differential equations. Finally, the exponential convergence rate of MQ [5] makes it superior to the
EXP and other rbfs such as thin plate spline (TPS) [6].

Rbf has more than 30-year history, however the history to use rbf in solving partial differential
equations (PDEs) is short. Kansa [7] was the pioneer who adopted radial basis functions to solve Navier–
Stokes equations of fluid flow. He discretized the PDEs directly over unstructured nodes through MQ
basis functions. His method was similar to finite difference method (FDM) but suitable for any scattered
distribution of nodes. He found that the key factor in obtaining accurate results was the condition
number of the MQ coefficient matrix. The condition number can be adjusted through variable shape
parameters. Collocation methods were recently developed as a promising meshless method [8–12]. Col-
location methods should be called as true meshless methods because they do not require any element for
either interpolation or integration. The associated problem of full system matrix can be solved by in-
troducing compactly supported basis functions [9,12]. However, collocation methods have two issues of
demerits except numerical stability: The first issue is the treatment of boundary conditions including
internal and external boundaries. Current treatments are almost the same methods as those used in
FDM. Such treatments will destroy some properties of system stiffness matrix such as symmetry. The
second issue is the requirement of higher derivatives of shape functions. Higher derivatives are sometimes
difficult to be developed in practice, especially in the overlapping zone of compactly supported domains.
This is because the lower smoothness always occurs in the center point and edge [9] of such a domain.
Meshless methods based on weak forms such as radial PIM eliminate above disadvantages. The weak
form requires lower order of derivatives in internal points and along boundary conditions. This makes
the implementation of boundary conditions much easier. A disadvantage for such a meshless method is
that background cell is required for integration.

The advantages of the meshless methods with rbfs are attractive, however there are two issues still to
be solved: first, MQ and EXP are generally used as globally supported functions instead of local ones.
Globally supported functions produce a full system matrix. A full system matrix is a headache problem
due to ill-conditioning, memory requirement and computation efficiency. Some methods such as domain
decomposition are employed to divide a big problem into many small quasi-local problems [7]. This
decomposition can produce a sparse system matrix. Radial PIM [1] used compactly supported domain
and produced a banded system matrix. Second, MQ and EXP basis functions involve shape parameters
[1,12]. Our preliminary numerical study [1] indicates the shape parameters have important effect on
the accuracy of the radial PIM. How the shape parameters affect the accuracy has not been studied
yet.

The choice of shape parameters has been a hot topic in data fittings [13–16]. Franke [13] evaluated about
30 interpolation schemes in two dimensions and found that the most accurate two schemes were MQ and
TPS. He suggested the shape parameter R ¼ 1:25D=

ffiffiffiffi
N

p
in MQ basis. Where D is the diameter of the

minimal circle enclosing all data points and N is the number of data points. Hardy [3] recommended
R ¼ 0:815d where d ¼ ð1=NÞ

PN
i¼1 di and di is the distance between the ith data point and its nearest

neighbor. Rippa [14] proposed an algorithm for selecting a good value of shape parameter in MQ, inverse
MQ and Gaussian interpolants. Carlson and Foley [15] obtained a result that the optimal shape parameter
was most strongly influenced by the magnitude of function values, the number of data points. But their
location in the domain has little influence. All above are working on the global data domain and only the
accuracy of approximation is concerned. In the numerical solutions of PDEs, Golberg et al. [10,16] dis-
cussed the error analysis for the dual reciprocity method (DRM) with rbf approximation and boundary
integral equations. They found that the convergence behavior of the DRM depends on both interpolation
error and the error of boundary element method (BEM). They used a technology of cross validation to
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optimize the shape parameter of MQ basis. That technology is based on statistical cross validation. Kansa
[7] proposed a scheme that allows the shape parameter of MQ to vary with basis functions. He observed
that the more distinct the entries of the MQ coefficient matrix are, the lower the MQ coefficient matrix
condition number becomes, and the better the accuracy is. All of them just optimize a single shape pa-
rameter in rbfs.

However, the error of radial PIM comes from two sources: radial basis approximation and Galerkin
weak form. This is because influence domain is local instead of global. The shape parameters have vital
effect on the compactly supported property of influence domain. A general theoretical analysis on how the
shape parameter is associated with the accuracy of approximation is difficult. Based on our previous paper
[1], this paper will numerically and systemically study the effect of shape parameters of MQ and Gaussian
basis functions on the accuracy of radial PIM. MQ here is a little different from the original MQ or re-
ciprocal multiquadric (RMQ) where the shape parameter q ¼ 0:5 or �0.5. This paper is organized as
follows: In Section 2, we review the point interpolation by rbfs and Galerkin weak form of two-dimensional
(2-D) solid mechanics problems. The shape parameters are introduced for MQ and EXP basis functions. In
Section 3 the accuracy of approximation is evaluated through interpolation and condition number. Section
4 studies some numerical examples to find out the range of good shape parameters. Finally, the optimal
shape parameters are recommended.

2. Outline of radial point interpolation meshless method

The radial PIM has two essential components: Interpolation through rbfs and Galerkin weak form. This
section will briefly review the two components.

2.1. Radial point interpolation

Construct an interpolation of u xð Þ to pass through all nodes using rbf Bi xð Þ and polynomial basis
function pj xð Þ as follows:

uðxÞ ¼
Xn
i¼1

BiðxÞai þ
Xm
j¼1

PjðxÞbj ¼ BTðxÞaþ PTðxÞb ð1Þ

where ai is the coefficient for Bi xð Þ and bj is the coefficient for pi xð Þ, n is the number of nodes in an influence
domain of x, m is the polynomial term which is usually m < n. The vectors are defined as

a ¼ a1; a2; a3; . . . ; an½ �T;
b ¼ b1; b2; . . . ; bm½ �T;
BT xð Þ ¼ B1 xð Þ;B2 xð Þ;B3 xð Þ; . . . ;Bn xð Þ½ �;
PT xð Þ ¼ p1 xð Þ; p2 xð Þ; . . . ; pm xð Þ½ �:

ð2Þ

Radial basis is a function of distance ri defined as follows:

BiðxÞ ¼ BiðriÞ;

ri ¼ xð
h

� xiÞ2 þ yð � yiÞ2
i1=2

:
ð3Þ

Polynomial basis has following monomial terms:

PT xð Þ ¼ ½1; x; y; x2; xy; y2; . . .�: ð4Þ
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Enforcing the interpolation pass through all n scattered points within the influence domain, a set of
equations on the coefficients ai and bj is setup:

uk ¼ u xk; ykð Þ ¼
Xn
i¼1

aiBi xk; ykð Þ þ
Xm
j¼1

bjPj xk; ykð Þ; k ¼ 1; 2; . . . ; n: ð5Þ

The radial term transforms a multidimension into one-dimension, and the polynomial term improves the
polynomial accuracy of the interpolation. As commented in [4] and our research [1], addition of polynomial
terms does not improve greatly the accuracy for non-polynomial functions. But theoretical study [17] re-
vealed that there was no guarantee that the interpolating condition could be satisfied without the addition
of polynomial terms. Furthermore, the coefficients should be constrained so that the interpolation is unique
[18]. Following constraints are usually imposed:Xn

i¼1

Pj xi; yið Þai ¼ 0; j ¼ 1; 2; . . . ;m: ð6Þ

Eqs. (5) and (6) are expressed in matrix form as follows:

B0 P0

PT
0 0

� �
a
b

� 	
¼ ue

0

� 	
or G

a
b

� 	
¼ ue

0

� 	
ð7Þ

where the vector of function values at each node is

ue ¼ u1; u2; u3; . . . ; un½ �T: ð8Þ

The coefficient matrix B0 on unknowns a is

B0 ¼

B1 x1; y1ð Þ B2 x1; y1ð Þ 	 	 	 Bn x1; y1ð Þ
B1 x2; y2ð Þ B2 x2; y2ð Þ 	 	 	 Bn x2; y2ð Þ

..

. ..
. ..

. ..
.

B1 xn; ynð Þ B2 xn; ynð Þ 	 	 	 Bn xn; ynð Þ

2
6664

3
7775

n
n

: ð9Þ

The coefficient matrix P0 on unknowns b is

P0 ¼

P1 x1; y1ð Þ P2 x1; y1ð Þ 	 	 	 Pm x1; y1ð Þ
P1 x2; y2ð Þ P2 x2; y2ð Þ 	 	 	 Pm x2; y2ð Þ

..

. ..
. ..

. ..
.

P1 xn; ynð Þ P2 xn; ynð Þ 	 	 	 Pm xn; ynð Þ

2
6664

3
7775

n
m

: ð10Þ

The distance is directionless, Bk xi; yið Þ ¼ Bi xk; ykð Þ. Unique solution is obtained if the inverse of matrix G

exists:

a

b

� 	
¼ G�1 ue

0

� 	
: ð11Þ

And the interpolation is expressed as

u xð Þ ¼ BT xð ÞPT xð Þ
� �

G�1 ue

0

� 	
¼ u xð Þue ð12Þ

where the matrix of shape functions u xð Þ is defined as

u xð Þ ¼ /1 xð Þ;/2 xð Þ; . . . ;/i xð Þ; . . . ;/n xð Þ½ � ð13Þ
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in which

/k xð Þ ¼
Xn
i¼1

Bi xð ÞGi;k þ
Xm
j¼1

Pj xð ÞGnþj;k ð14Þ

where Gi;k is the i; kð Þ element of matrix G�1. The derivatives of shape functions are

o/k

ox
¼
Xn
i¼1

oBi

ox
Gi;k þ

Xm
j¼1

oPj
ox

Gnþj;k;

o/k

oy
¼
Xn
i¼1

oBi

oy
Gi;k þ

Xm
j¼1

oPj
oy

Gnþj;k:

ð15Þ

The original form of multiquadric is extended to following form [1] (called MQ, too):

Biðx; yÞ ¼ r2i
�

þ R2
�q
; RP 0: ð16Þ

Its partial derivatives are easily obtained as follows:

oBi

ox
¼ 2q r2i

�
þ R2

�q�1
xð � xiÞ;

oBi

oy
¼ 2q r2i

�
þ R2

�q�1
yð � yiÞ

ð17Þ

where q and R are shape parameters. When q ¼ 0:5, Eq. (16) becomes the original MQ [3]. When q ¼ �0:5,
it reduces to the RMQ [3].

Gaussian form (called EXP) has been widely studied by mathematicians [19–21]:

Biðx; yÞ ¼ exp

 
� c

ri
rmax

� �2
!

ð18Þ

where c cP 0ð Þ is a shape parameter. rmax is the maximum distance of neighborhood nodes in the influence
domain. Its partial derivatives are again obtained as follows:

oBi

ox
¼ � 2c

r2max

Bi x; yð Þ xð � xiÞ;

oBi

oy
¼ � 2c

r2max

Bi x; yð Þ yð � yiÞ:
ð19Þ

2.2. Galerkin weak form of 2-D solid mechanics problem

A 2-D problem of solid mechanics can be described by equilibrium equation in domain X bounded by C
(C ¼ Ct þ Cu):

r 	 r þ F ¼ 0 in X ð20Þ

where r is the stress tensor and F the body force vector. Boundary conditions are given as follows:

r 	 n ¼ �tt on the natural boundary Ct;

u ¼ �uu on the essential bounary Cu
ð21Þ
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where the superposed bar denotes prescribed boundary values and n is the unit outward normal to the
domain. Its weak form is expressed asZ

X
dðrsu

TÞ 	 rdX �
Z

X
duT 	 FdX �

Z
Ct

duT 	 tdC ¼ 0: ð22Þ

Discretization of Eq. (22) with Eq. (12) yields

Ku ¼ f ð23Þ

where

Kij ¼
Z

X
BT
i DBj dX; fi ¼

Z
Ct

/i
�ttdC þ

Z
X
/iFdX: ð24Þ

For plane (stress) problem

Bi ¼
/i;x 0

0 /i;y

/i;y /i;x

2
64

3
75;

D ¼ E
1� m2

1 m 0

m 1 0

0 0 ð1� mÞ=2

2
64

3
75:

ð25Þ

The numerical procedure is listed as follows:

1. Loop over background cells to determine all Gauss points to find out its location and weight. Remove
the background cells.

2. Loop over Gauss points for integration of Eq. (24)
a. Determine the domain of influence for specified Gauss point and select neighboring nodes based on

a defined criterion;
b. Compute shape function and its derivatives for each Gauss point;
c. Evaluate stiffness and load at each Gauss point;
d. Assemble the contribution of each Gauss point to form system equation;

3. Introduce essential and load boundaries.
4. Solve the system equation to obtain nodal displacements.
5. Evaluate strain and stress at each Gauss point.

3. Error function for evaluation

3.1. Shape function and condition number

As discussed in Section 1, errors of the radial PIM are from two sources: interpolation of rbfs and the
Galerkin weak form. This section will only discuss the relationship of interpolation accuracy and the
condition number. First of all, let us see how the shape parameters affect shape functions. This discussion
here does not include polynomial term in the basis functions (m ¼ 0).

Fig. 1 gives the shape functions (1-D case) of for MQ and EXP basis functions with different shape
parameters, respectively. For EXP basis, when the c is larger, because exponential function decays more
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quickly, the smaller influence domain of shape functions is. When the c is less than 1.0, shape functions
oscillates from their two wings. This may be due to the interfering of influence domains. The MQ basis has
a shape function without oscillation for any shape parameter. When the shape parameters q and R are
bigger, shape functions have wider wings. As a summary, the MQ basis has a shape function without

Fig. 1. Effect of shape parameters on shape functions.
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oscillation while the EXP has a shape function which is oscillatory or not heavily depended on its shape
parameter.

Above properties of interpolation are associated with the condition number of matrix. The condition
number of matrix is an important factor to affect the numerical results of the radial point interpolation.
Here we will study the relationship between condition number and interpolation accuracy (use f ¼
sinðxÞ cosðyÞ as an example). Five sets of node patterns are randomly generated within the domain of
½0; 1� 
 ½0; 1� to determine the shape functions. Then this domain is subdivided into regular grids with an
increment of 0.1 to form an evaluation grid. At each grid node true function and interpolation through
above radial point interpolation are evaluated. The norm of errors at all grid nodes (called function error) is
obtained through their comparison.

Fig. 2 gives the effect of shape parameters on condition number and accuracy for EXP basis. The
condition number almost linearly decreases with the shape parameter c. Different node distribution patterns
have a little effect, too. Generally, condition number ranges within 102–104 order for different node dis-
tributions and same shape parameter. When the shape parameter is smaller than 10�3 (or smallest value),
the condition number approaches to infinite (here ‘‘infinite’’ refers to the limit of computer precision). The
accuracy is lower when the shape parameter is larger than some critical value, although the condition
number is lower in this zone. The accuracy varies little when the shape parameter is smaller than the critical
value. As we know, large condition number means that the matrix is ill-conditioned and its inversion will
cause bigger error. Therefore, the shape parameter should be not too small. There should be an optimal
value between the smallest value and the critical value.

The MQ basis has a little different property for condition number and interpolation accuracy as shown in
Fig. 3. First, the matrix is singular when q equals to integer such as 1; 2; . . . Matrices B0 and G have almost
the same types of condition numbers. Second, condition number changes little with shape parameter q
except around 1 and is much lower except singular cases. Third, the shape parameter R has vital effect on
the condition number. When R changes from 0.1 to 2.0, the condition number increases around 105 order.
Fourth, interpolation accuracy is almost the same for q < 1 and each R. The accuracy increases sharply
when the q is around 1.0. From the view of accuracy, the bigger R is better.

As a conclusion, whether the rbfs are the MQ or EXP, the condition number of matrix and accuracy of
interpolation heavily depend on shape parameters. Node distribution has a little effect. There exist optimal
shape parameters for MQ and EXP basis functions, probably the optimal shape parameters should be
q � 1:0 and R ¼ 1:5–2:0 for MQ basis and c < 0:5 for EXP basis.

3.2. Error index for radial PIM

For a boundary-value problem, the error can be spilt into two components: the one due to the Galerkin
weak form and the other due to approximation of real functions within an influence domain. Of course, the
weak form and interpolation are also important to the convergence rate of the radial PIM. Unfortunately,
we are unaware of any complete convergence analysis except some numerical results [1,4,10,11,15,17].
Therefore, the evaluation index for radial PIM should be different from those used only for approximation
over scattered data. A relative error of displacements is defined as follows:

d ¼
Pn

i¼1 uExacti � uPIMi

�� ��Pn
i¼1 uExactij j 
 100 ð%Þ: ð26Þ

Alternatively, an error of energy can comprehensively understand the convergence rate:

ee ¼
1

2LD

Z
X
ðePIM

�
� eExactÞT : ðrPIM � rExactÞdX

	1=2

ð27Þ
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where uPIMi and uExacti are displacements computed by the radial PIM and closed-form solution, respectively.
ePIM and rPIM are strain and stress tensors obtained from the radial PIM. The superscript ‘Exact’ refers to
the components obtained by closed-form solutions.

Fig. 2. Effect of shape parameters on condition number and accuracy for EXP basis.
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Fig. 3. Effect of shape parameters on condition number and accuracy for MQ basis.
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4. Numerical experiments of 2-D solid mechanics problems

4.1. Cantilever beam

4.1.1. Closed-form solution
A cantilever beam problem as shown in Fig. 4 is studied. The beam has a unit thickness and hence a plane

stress problem is assumed. The closed-form solution is available for parabolic traction of force P [22]:

ux ¼
Py
6EI

ð6L
�

� 3xÞxþ ð2þ mÞ y2
�

� D2

4

��
;

uy ¼ � P
6EI

3my2ðL
�

� xÞ þ ð4þ 5mÞD
2x
4

þ ð3L� xÞx2
� ð28Þ

where the moment of inertia I of the beam is given I ¼ D3=12.
The corresponding stresses are

rx ¼
P ðL� xÞy

I
; sxy ¼ � P

2I
D2

4

�
� y2

�
; ry ¼ 0 ð29Þ

The beam parameters are taken as E ¼ 3:0
 107 kPa, m ¼ 0:3, D ¼ 12 m, L ¼ 48 m and P ¼ 1000 kN in the
computation.

4.1.2. Effect of shape parameters for regular node distribution
A regular node distribution (637 nodes) as shown in Fig. 4(b) is used to study the effect of shape pa-

rameters. The radius of influence domain is fixed as

dmax ¼ CI 
 h ð30Þ

Fig. 4. Cantilever beam problem and its meshless models.
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Here the coefficient is fixed as CI ¼ 2:0 in the present computation, and h is the maximum distance among
neighboring nodes of the influence domain (for this case h ¼ rmax ¼ 1:0). Square influence domain cir-
cumvents 9–16 nodes for each Gaussian point. Polynomial term is not included for the time beings (m ¼ 0).

Fig. 5 gives the variation of relative errors of deflection with shape parameters. The EXP basis is not
sensitive when c ¼ 0:002–0:03. However, the MQ basis performs a little sensitively to the shape parameters
of q and R. The same phenomenon is observed for the error of energy as shown in Fig. 6. The optimal shape
parameter q is around 1. In order to observe the local variation near the optimum, Figs. 7 and 8 give the
local view in the zone of q ¼ ½0:9; 1:06� on the relative error of deflection and error of energy. From these
figures, we can understand following properties of MQ basis: First, when q ¼ 0:5, which is the original
multiquadric basis [3], the relative error is not acceptable for the present shape parameter R. The accuracy
is the most sensitive to the shape parameter R. Although a best accuracy can be achieved through shape
parameter R, this is the case many researchers have been studying [7–16], the best accuracy is still far away
from the optimum. Second, the minimum relative error of deflection and error of energy are achieved when

Fig. 5. Shape parameter effect on relative error of maximum deflection.
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q ¼ 0:98–1:03 regardless of shape parameter R. This implies that the optimal shape parameter q is almost
independent of shape parameter R. The q ¼ 1:03 can be regarded as an optimum of this problem. Third, the
shape parameter R has little effect on the accuracy when q ¼ 1:03. At the q ¼ 1:03, the effect of the shape
parameter R is shown in Fig. 9 for the error of energy. The optimal R is around 1.42. Fourth, the above
optimal shape parameters also cover the range of q < 0. Fig. 10 is the relative error of deflection and error
of energy for the negative q. The errors do not approach to an optimum within these zones. That is, there is
no optimum in the negative q. Therefore, q ¼ �0:5 is not an optimal shape parameter.

4.1.3. Effect of irregular node distributions
As an example, the node distribution shown in Fig. 4(c) is analyzed here. The model has approximately

637 nodes. The comparison of the energy error with regular node distribution is shown in Fig. 11. For EXP
basis, node distributions affect the highest accuracy, however, the optimal range of shape parameter c is

Fig. 6. Optimal shape parameters for MQ basis.

Fig. 7. Local view of relative error of deflection around shape parameter q ¼ 1:0.
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almost unchangeable. Both node distributions achieve acceptable accuracy within the same range of shape
parameter. For MQ basis, the effect of shape parameter for irregular node distribution is similar to that of
regular node distribution. That is, the energy error reaches its minimum when q ¼ ½0:98; 1:03�, and q ¼ 1:03
and R ¼ 1:42 reaches good accuracy. When q ¼ 0:5 the accuracy heavily depends on the shape parameter R
and the accuracy is much lower than the optimum. Therefore, q ¼ 0:5 is not a suitable shape parameter for
the radial PIM.

4.1.4. Effect of node density
This section checks whether above optimal shape parameters are suitable for different node densities or

not. Fig. 12(a) plots the normalized shape parameter c (for EXP basis) against the error of energy. Each
density has a range of shape parameters in which the error of energy almost keeps lowest. This range of
shape parameters may slightly vary with node distribution patterns. This figure shows that the range of the

Fig. 8. Local view of error of energy around shape parameter q ¼ 1:0.

Fig. 9. Optimal R for fixed shape parameter ðq ¼ 1:03Þ.
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shape parameter c is 0:002–0:03 for 637 and 175 node cases. The 795-node case has a little narrower range.
However, the optimal shape parameters for MQ basis do not change as shown in Fig. 12(b). In the
computation, the shape parameter R is fixed to 1.42. The optimal shape parameter is in q ¼ ½0:98; 1:03�
regardless of node density. In this range, the error of energy reaches the lowest and is almost the same for
three node densities.

4.2. Perforated strip plate

This section will study a perforated strip plate problem. A plate with a central circular hole is subjected to
a unidirectional tensile load of 1.0 in the x direction. Only quarter of the plate is simulated due to sym-
metry. The node distribution (209 nodes) is shown in Fig. 13. This is a typical plane stress problem.
Material properties are E ¼ 3:0
 103 kPa and m ¼ 0:3. Symmetry conditions are imposed on the left and
bottom edges. Hole surface is traction free. The closed-form solution of stresses [22] is as follows:

Fig. 10. Error analysis for the negative shape parameter q for MQ basis.
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rxðx; yÞ ¼ 1� a2

r2
�
3
2
cos 2h þ cos 4h

�
þ 3a4

2r4
cos 4h;

ryðx; yÞ ¼ � a2

r2
�
1
2
cos 2h � cos 4h

�
� 3a4

2r4
cos 4h;

rxyðx; yÞ ¼ � a2

r2
�
1
2
sin 2h þ sin 4h

�
þ 3a4

2r4
sin 4h

ð31Þ

where ðr; hÞ are polar coordinates. h is measured counter-clockwise from the positive x-axis. a is the radius
of the hole. For convenience, uniform traction is imposed on the right (x ¼ 50) edge. For such a problem,
the MQ basis is used to find the optimal shape parameters. Fig. 14 gives the error of energy with shape
parameters and Fig. 15 gives the local view. The shape parameters of q ¼ 1:03 and R ¼ 1:42 are still suitable
for this problem. The optimal shape parameter is almost the same as cantilever beam. It is noted that good

Fig. 11. Effect of node distributions on the error of energy.
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shape parameters may not be unique. Fig. 14 indicates that the optimal shape parameter may have multiple
choices, but the q ¼ 0:5 is not an optimum. The EXP basis has similar results as c ¼ 0:003–0:03.

4.3. Effect of polynomial terms

Above numerical analysis assumed that there was no polynomial term (m ¼ 0) in the interpolation. This
section will study the effect of polynomial terms. Only linear terms (m ¼ 3) will be studied here. Table 1
compares the results of different problems under different node density. For the cantilever beam problem,
the error of energy can reach 6:0
 10�5 with a linear polynomial while the energy error without the
polynomial term can only reach 1:39
 10�4. Linear polynomial terms can increase the accuracy of one
order. Similar results are obtained for the perforated plate problem. For the interpolation with linear
polynomial terms, energy error is not sensitive to the shape parameter q any more for the two examples.
The accuracy reaches to almost the best.

Fig. 12. Error of energy for different node densities.
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5. Conclusions

This paper studied the optimal shape parameters of MQ and Gaussian (EXP) basis for the 2-D radial
PIM. The accuracy of data fitting depends only on interpolation, while the accuracy of the radial PIM
depends on two components: (1) interpolation. (2) Galerkin weak form. Error of energy and relative error
of deflection are defined as an error index in this paper. Two examples (2-D solid mechanics problems) were
studied using such an index. The study can draw following conclusions:

(1) Radial basis interpolation is important to the global accuracy of the radial PIM. It is found that the
condition number of the matrix B0 or G heavily affects the accuracy of interpolation. Shape parameters
have vital effects on the condition number. For EXP basis, the condition number varies almost linearly with

Fig. 13. Node distribution in perforated strip plate problem (subjected to tensile load in the x direction).

Fig. 14. Optimal shape parameters for perforated strip problem (MQ basis).
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shape parameter c. The bigger the shape parameter, the smaller the condition number is. Node distribution
can increase or decrease the condition number by 102–104 order. On the other hand, the smaller the shape
parameter c, the higher the accuracy of interpolation is. A range of good shape parameters should balance
the accuracy and the condition number. For MQ basis, the condition number is almost stable when q < 1.
The higher the R, the bigger condition number is. When R varies from 0.1 to 2.0, the condition number
increases around 105 order. When q is taken as integers, the matrix is almost singular. Furthermore, when q
is around 1.0, the accuracy reaches the highest regardless of shape parameter R. When q ¼ 0:5, the accuracy
of MQ basis is the most sensitive to the shape parameter R.

(2) Numerical examples have revealed that good shape parameter c for EXP basis is 0:003–0:03. This
range is valid for different node distributions and problems. Irregular node distribution will affect the
highest accuracy but has little effect on the range of good shape parameter. Optimal shape parameters for
MQ basis are q ¼ 1:03 and R ¼ 1:42 for cantilever beam and perforated strip plate. These two parameters
are independent of node density, node distribution and problems. The original multiquadric where q ¼ 0:5
and RMQ where q ¼ �0:5 are not optimal shape parameters of the radial PIM. The accuracy at the

Table 1

Comparison of energy error (MQ basis)

q ðR ¼ 1:42Þ Cantilever beam Perforated plate (209 nodes)

175 nodes 795 nodes m ¼ 0 m ¼ 3

m ¼ 0 m ¼ 3 m ¼ 0 m ¼ 3

1.15 2.60E�3 6.05E�5 5.18E�4 4.49E�5 1.75E�5 7.39E�6

1.10 1.40E�3 6.12E�5 2.65E�4 4.46E�5 1.21E�5 7.31E�6

1.05 4.53E�4 6.18E�5 1.03E�4 4.43E�5 9.07E�6 7.23E�6

1.03 2.02E�4 6.21E�5 6.81E�5 4.42E�5 8.42E�6 7.21E�6

0.98 1.39E�4 6.29E�5 5.69E�5 4.39E�5 7.89E�6 7.14E�6

0.95 4.81E�4 6.33E�5 1.00E�4 4.38E�5 8.18E�6 7.11E�6

0.9 1.40E�3 6.40E�5 2.47E�4 4.35E�5 9.37E�6 7.06E�6

0.8 3.30E�3 6.55E�5 7.10E�4 4.30E�5 1.31E�5 6.96E�6

0.5 5.20E�3 6.88E�5 1.80E�3 4.20E�5 1.86E�5 6.77E�6

Fig. 15. Local view at q ¼ 1:0 neighborhood for perforated strip plate problem.
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q ¼ �0:5 is sensitive to the shape parameter R and cannot reach the optimum regardless of R. This is the
most significant result in this paper.

(3) The polynomial terms in Eq. (1) have vital effect on the accuracy of the radial PIM. Only linear
polynomial basis is included in the computation, the energy accuracy can reduce one order. Furthermore,
the results are almost the same over a range of shape parameters.
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