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Abstract

A Biot’s consolidation problem in foundation engineering is numerically investigated using improved point interpolation method
(PIM). A weak form of Biot’s theory is first developed to consider the unbalanced forces at previous time-step and thus guarantees the
global equilibrium at current step. Two independent variables in the weak form, displacement and excess pore water pressure, are
approximated using the same shape functions through PIM technique. The PIM technique constructs its interpolation functions
through a cluster of scattered points in problem domain and its shape function is of delta properties, thus implementation of essential
boundary conditions is as easy as in conventional finite element method. Crank—Nicholson’s integration scheme is used to discretize
time domain. Finally, examples are studied and compared with finite element methods to demonstrate its capability. © 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Finite element method (FEM) has now made numerical simulation a daily activity in engineering sci-
ence. However, difficulties are encountered when mesh distortion is dealt with FEM. Mesh distortion may
be induced by large deformation, crack growth and movement of free surface. This is due to the essential
properties of element-based shape function. One solution for such a problem is to remesh the problem
domain and to use adaptive algorithm in computation. This remeshing process is time consuming and
sometimes causes mesh-size dependent results (for example the crack tip problem of creep). One effective
numerical method is meshless method that does not require any element for shape function.

Some element-free or meshless methods were proposed and have achieved remarkable progress in recent
years. For example, diffuse element method (DEM) [1] used a cluster of scattered nodes instead of elements
to construct shape functions through moving least-square method (MLS). Reproducing kernel particle
method (RKPM) [2] was proposed through a correction function and a window function. Hp-cloud method
[3] was proposed to simulate particle interaction through the partition of unit method. A finite point
method (FPM) was proposed to solve fluid mechanics problem by Onate et al. [4] through only nodal
integral. Belytschko and his colleagues [5-7] proposed a meshless method called element-free Galerkin
(EFG) method. This method uses MLS to construct its shape function and Galerkin procedure to establish
its system equation. EFG method has been applied to a large variety of problems such as solid problems,
deformable multiphase porous media [§].
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The original MLS is proposed for surface fitting over scattered data points by Lancaster and Salkauskas
[9]. It does not require its approximation pass through data points or its shape function lacks of delta
function properties. Thus, following major technical disadvantages always accompany with the meshless
methods based on MLS approximation: (1) Difficulties in the implementation of essential boundary con-
ditions; (2) complexity of algorithms to construct shape functions. For the first problem, many methods are
proposed to treat essential boundary condition such as Lagrangian method [5], penalty method [10], col-
location method [11] and other method [12]. For the second problem, useful suggestions are proposed such
as analytical integration [2], recursive method [13] and parallel computing [14]. All of these efforts can
improve computation efficiency. A new interpolation scheme called point interpolation method (PIM) was
proposed to solve above two problems [15,16] from the view of point interpolation. The PIM method has its
shape function with delta properties and only once inverse matrix is required for its function and deriva-
tives. Thus it is of high computation efficiency.

This paper discusses the numerical solution of Biot’s consolidation theory in foundation engineering
using the PIM method. First, a general form of Biot’s consolidation theory is stated. This form of Biot’s
consolidation problems can accommodate any constitutive law of materials. Then, the weak form is ob-
tained by imposition of global equilibrium at each time-step and thus an unequilibrium potential principle
is developed. Spatial variables, displacement and pore pressure, are discretized in the same PIM interpo-
lation schemes. Crank—Nicholson method is used for the discretization of time domain. Finally, one- and
two-dimensional examples are calculated and compared with closed-form solution or FEM results.

2. Biot’s consolidation theory and its weak form
For saturated soil, soil skeleton and water consist of soil-water mixture. These two systems interact at
micro-level. Biot’s consolidation theory [17] provides a macro-level description for the interactions. It is

composed of following six concepts:
e Equilibrium equation of soil-water mixture

~L4bh=0 inV (1)

or its incremental form in time interval [¢,7 + Af|

AG: Od’,
0 0”+Ab,-:—(—”+b§> in 7. @
axj ax/
e Relationship of displacement and strain for soil skeleton
1 (0Aw; OAu;
Ag;j == ' 2 in V.
& =3 ( x, + o ) in vV (3)
e Constitutive law of soil skeleton in differential form
dO';j = D?};cl dSk] V. (4)
e Darcy’s seepage law for pore water flow
K ou .
“=5 &, o ()

e Terzaghi’s effective stress principle
e Incompressibility of solid—water mixture or continuity equation

68\/ _ aC]z
ot o ax,- ’
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where g;; 0;; and u are total stress tensor, effective stress tensor and excess pore water pressure at any time ¢
and b; is the unit body force. Ay; is the displacement increment and Ag;;, Ag;; total stress and strain in-
crements in time interval [z, ¢ 4+ Az]. The discharge of excess pore water is ¢; in ith direction. y,, is the density
of water. In SI system, its value can be taken as 10 kN/m’. Df}, is the elastoplastic matrix of soil skeleton
which is determined by constitutive laws. K;; is permeability tensor of soil skeleton which usually has non-
zero components K, in x-direction and K|, in y-direction, respectively. ¢, is the volume strain of soil skeleton

which is expressed as

Ou;
= 8
¢ 6x,- ( )

Boundary conditions for this problem include two parts: boundary for solid and boundary for fluid
For soil skeleton boundary

u; = u;
{agjnj ZOT,- on S; x [0,00), )

where n = {n; ny n3} is the outwards normal direction and »; is its directional cosine.
For fluid boundary

U= uy
on S, x [0,00). 10
{ qi = qi0 [0, 00) (10)

Initial condition

l/l,‘:O _
{u:O on V x0. (11)

Two components of body forces are acting on the soil skeleton:

1. Effective unit weight b} (= b; — 7).

2. Seepage force induced by hydraulic gradient (—(du/0x;)).

If a time interval [¢, f + Af] is considered, increments of soil skeleton during this time interval should satisfy
the weak form of equilibrium equation (2) of soil skeleton

/v (5(Ae)} A’} dv / {5(%:")}1;1}’*“@— / {oam)} " {Ab} dv
+ /S {50} fmyur s - /S {o)} {a7)ds
_ —/v{é(As)}T{a”}dv—i—/sa {5(a)}T{T}’du—/{5(Aa>}T{bf}du. (12)

v

The term at the right-hand side includes the unbalanced force at previous time-step. This force can be
automatically corrected and thus Eq. (12) can prevent error accumulation at each step and keep global
balance at any time. Thus the same accuracy is achieved at each time step. This auto-corrector is specially
useful in incremental computation schemes for dissipation or nonlinear problems.

Time integration is applied to continuity equation (8) and then the weak form for spatial variables (x, y)

is expressed as
Y D T e T | dou'(, ou
_/v{éu} { o }dv_x/t /sq {ou} {Ku}ds dt+%/t /L o, KiG_xi dv| dt,

where ou expresses the variational of displacement and excess pore water pressure.
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3. PIM interpolation and its shape functions

PIM interpolates a cluster of scattered data points to construct its shape functions for displacement
increments and excess pore water pressure. If a set of arbitrarily distributed points P(x;) (i =1,2,...,n)
and their function values u; (displacement and pore water pressure) are given surrounding point x, the PIM
method constructs a continuous surface u(x) using polynomial basis functions as

) =3 pat) = ¥ a (14)

where p;(x) is monomials in co-ordinates xT = [x, y] for two-dimensional problems. 7 is the number of nodes
in the neighborhood of x (this neighborhood is called influence domain of x), a; is the coefficient of p;(x)
and

a'=[a, a - a,] (15)

The coefficients ¢; are determined by letting the function u(x) in Eq. (14) pass through all n-scattered points.
Interpolation at the ith point is expressed as

w=P'(x)a, i=12,...,n (16)

It is noted that u; is the nodal value of u at x = x;, while MLS just gives a displacement index. Rewriting of
Eq. (16) gets an equation set on unknowns a

u = Poa, (17)
where

e=[w ow ow o oul . (18)

Po=[p(x1) p(x2) - pln)].

If the inverse of matrix Py exists, a unique solution on a is obtained as

a="P, v (19)
and the interpolation function is expressed as

u(x) = g, (20)
where the shape function ¢(x) is defined as

o) =P 0P =[d(x) d(x) -+ ¢,)]. (21
Shape function ¢,(x) depends only on the distribution of scattered nodes. It has the following properties:
1. ¢;(x) has the same basis as p(x) in local influence domain.
2. ¢;(x) is a polynomial and its order is the same as basis functions p(x).
3. ¢,(x) is of delta function properties expressed as follows

1, x=x,
s ={o I Gn @)

4. ¢,(x) is of unity partition properties as

zn:¢i(x) =1 (23)

It should be noted that there does not require 0 < ¢;(x) <1 .
The key for the PIM method with polynomial basis function is how to guarantee the existence of shape
functions or P! . The no-existence or instability is from rank deficiency of basis functions. Some numerical
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techniques are helpful to alleviate this problem. For example, following rules are useful when a basis
function is constructed: (1) Bivariate method (see [18]) is applicable if the measure of scattered nodes is
suitable. (2) Basis is as complete as possible if nodes number is the same. (3) Any cluster of scattered nodes
should have at least one set of linearly independent basis.

In order to avoid the singularity of matrix Py, Liu and Gu [15] proposed a moving node method to
slightly change the coordinates of nodes. Changing basis function is an effective method [16]. This change
can be carried out through a local coordinate transformation. That is, global coordinates (x,y) are firstly
translated to the Gauss point (xy, ) where function is to be interpolated, then rotation with an angle 0 is
applied if necessary. This coordinates transformation is expressed as

{=(x—xp)cos 8+ (y— ) sin 0,

24
n=—(x—2x0)sin 0+ (y — y)cos 0 24)
or its inverse is expressed as
=xy+ 0 — 5 sin 0),
x=x0+ ({ cos 1 sin 0) (25)

y =+ ({sin 0+ 1 cos 0),

where ({,n) are the local or new coordinates. p;({) is determined from this local coordinates and thus
the P,' is the inverse under local coordinates instead of global coordinates. Derivatives at Gauss
point are simple if the basis functions are monomials. In local coordinates, the derivatives are expressed
as:

0

9% =(0,1,0,...,0)P, ",

o)

— =(0,0,1,0,...,0)P,".

M 00

The derivatives in global coordinates are obtained through coordinate rotations:

o9 9
x| [cos® —sin0 oL {(0.0)
9 ( [sin() cos 0 } S ’ (27)
Oy o |90

After this transformation, basis functions in global coordinates have the same order for x and y.

4. Discretization of weak form

Displacement increment (Au, Av) and excess pore water pressure u at any time ¢ is discretized by the
interpolation given by Eq. (20). That is, at any point interpolations are expressed as

Au é, 0 0 - ¢ 0 0
AbS=10 ¢ 0 -~ 0 ¢ 0 [u, (28)
u 0 0 ¢, - 0 0 ¢,

where the nodal vector u is
u=[Au; Avy wy Aup, Av; w, ... Au, Av, u,]. (29)

Time domain is integrated by the following equation for any function f(x):

t+At

Fx)dx = AOF (1) + (1 = 0)f (¢ + A?)]. (30)
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Here 0 < 0 < 1. After discretization of Eqs. (12) and (13), the following system equation is obtained:
Ku =f, (31)
where

Nl auss

K,-,:/KO dv—ZKowk

(32)
fi= qﬁ,-fdl"—&—/qﬁbdv—i—/]mdv
Ss
System stiffness matrix is the summation over all Gaussian points (Nguss refers to the Gauss number and wy
is the weight at the kth Gauss point). The stiffness at each Gauss point is composed of three parts: de-
formation of soil skeleton, pore water flow and their interaction. A typical expression of stiffness matrix for
general constitutive laws is as

Pidy + Psdy + Psds + Pody,  Pidy + Pody + Pod3 + Psdl _qu%

[Kg} = | Psdy + Pody + Pods + Psdy,  Pody + Psd, + Psds + Pydy  — jaai; . (33)
o, @d',
_(f)i@ ¢ K;)3
Four forces contribute load vectors: external load (7;) , effective body force (5}), seepage force from pore
water and unbalanced force at previous time-step. The forces fy;, which are related to previous time-step,

can be obtained through the following conversion:

6</>, %,
o+ o T

fOx

< 0 d

oy b = “”‘a + Ty . (34)
0¢; ¢, 9¢; 0,

Jou OAf K. a(i >, (‘i u + K, (:p >, C(fi u'

Material matrix D (its component is D; /k,) in Eq. (4) is generally expressed as follows:

P P B
D=|P P P for plane problem. (35)
P, Ps P

For linear elasticity with Young’s modulus, E, and Poisson ratio, v, the matrix is

E 1 v 0
D= T2 | 1 0 for plane stress. (36)
V0 0 (1—-v))2

Other coefficients are denoted as

00,00, 00,00,
x o 7 oy
09,00, 29,2,
ox oy Y oy oy

d =

- , (37)
0 At
Ky =—(1- O)V (Kydy + Kydy).
Flowchart for numerical algorithm is briefly given as follows:
1. Determine all Gauss points (position and weight) over background mesh.
2. Remove the background mesh.
3. Loop over Gauss points to assemble stiffness and load vector
(a) Determine domain of influence for specified Gauss point and select neighboring nodes based on a
defined criterion.
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(b) Compute shape function and its derivatives for each Gauss point.

(c) Evaluate stiffness and loading at each Gauss point.

(d) Assemble contribution to form nodal system equation.
4. Solve system equation to obtain displacement increment and excess pore water pressure at each node.

5. Evaluate strain and effective stress at each Gauss point.

6. Preparation for next time-step.

5. Numerical examples

5.1. One-dimensional consolidation problem

5913

As an example, a two-dimensional program studies one-dimensional consolidation problem. The two-
dimensional program is designed for plane strain problems. The PIM model (regular node distribution) is
shown in Fig. 1. Only upper surface is permeable and the rest impervious. Two sides and bottom are all
fixed for displacements. Therefore, this is a single-side drainage problem. Thickness of soil layer is assumed
to be H = 16 m. Soil parameters are regarded as linear elasticity with £ = 40000 kPa and v = 0.3. When a
surcharge Ao = 10 kPa is suddenly applied on the surface of soil layer, excess pore water pressure will be
generated by the program through a short-time increment. The excess pore water pressure thereafter dis-

sipates with time.

This problem has a closed-form solution (see [19]) for excess pore water pressure:

7'5

n=1

4 ] . ((2n—= Dy
u——Aazzn 1sm( 31 )exp{

Surcharge = 10 kPa

2
2 T
—@2n-1) ZTV}.

Sand layer

Soft Marine Clay

16m

/7T 7 7 7

Impervious layer

(@

/7 7 777

Sample point Coordinates Remarks

3 (24, 3) Three points in one
10 (24, 10) vertical line

14 (24, 14)

(c)

(38)

Fig. 1. One-dimensional Terzaghi’s consolidation problem: (a) one-dimensional consolidation problem; (b) nodal distribution for PIM
method; (c) positions for the three sample points.



5914 J.G. Wang et al. | Comput. Methods Appl. Mech. Engrg. 190 (2001) 5907-5922

Degree of consolidation U, is

8 & 1 2 7'52 }
Uu=1-— ———expy —2n—1)—T, ¢, 39
=em Y e |- e (3
where the parameters are defined as
Cy k (L+v)(1—2v)
TV = 7 ) v = b v = =1 N 4
Hzt ¢ Yoy " E(1—v) (40)
Surface settlement S, at any time ¢ is given by
S, = Um,AcH. (41)

0 = 0.5 is taken in numerical computation, which corresponds to Crank—Nicholson method. Time-step is
automatically selected to keep stability and oscillation-free.
W W

— <A< —, 42
6C, T 2GC, (42)
where /i is the characteristic size of node distance. For example, for the one-dimensional model, the / is the
distance between two neighboring nodes.

Case 1 (Constant permeability along depth). The permeability is k= 1.728 x 107> m/day (or
2 x 107® m/s) in all directions. This is a standard Terzaghi problem and closed-form solution was already
given. Surface settlement is given in Fig. 2 and history of excess pore water pressure is given in Fig. 3 for
three sample points. Fig. 4 gives the spatial distribution of excess pore water pressure at different time. They
are all in good agreement with closed-form solution.

Case 2 (Variable permeability along depth). Marine clay is soft clay and its permeability will vary with
depth. A linear variable permeability with depth will be studied here. The permeability at the top surface is
assumed to be 100 times the permeability at the bottom (k = 1.728 x 10~* m/day). The permeability in
between is assumed to be linear. For comparison, averaged permeability at top and bottom is used to get
closed-form solution, which is used only for reference. Magnitude comparison is made through FEM with
four nodal isoparameteric element. Fig. 5 shows the history of excess pore water pressure. Closed-form
solution and FEM result are also plotted for comparison. The PIM and FEM results agree very well while

x10°
-----

251
. O Closed-form solution
E 2 — PIM method
<
3
=
o
= 1.5
[
@
3
o
g
S5 1
%)

0.5

0 1 1 1 1 1 1
0 10 20 30 40 50 60

Elapsed time (days)

Fig. 2. Surface settlement with time.
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120 .- R I R R

. O Point 14 (Closed-form)
o : .| e Point 10 (Closed-form)
' ' + Point 3 (Closed-form)
—— PIM method

Excess pore pressure (kPa)

Elapsed time (days)

Fig. 3. Dissipation of excess pore water pressure at different points.

Height above base (m)

0 1 2 3 4 5 6 7 8 9 10
Excess pore pressure (kpa)

Fig. 4. Distribution of excess pore water pressure at different time.

the closed-form result is slower than PIM. Therefore, average permeability can be only used when per-
meability varies a little even for one-dimensional consolidation problem. Fig. 6 is an iso-temporal curve for
PIM method. All these figures are consistent with Schiffman’s results [20].

5.2. Two-dimensional consolidation problem under strip foundation

A two-dimensional consolidation problem is studied here. This is a plane strain consolidation problem
under a strip loading. The load is also assumed to be 10 kPa to simulate road load. Foundation soil is
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L8 e S VR R O Point 14 (Closed-form)
. . . e Point 10 (Closed-form)

6 - %+ | % Point 3(Closed-form)
' ' ' O FEM method

Excess pore pressure (kPa)
[,

0.1 0.2 0.3 0.4 0.5 0 0.7 0.8 0.9
Elapsed time (days)

Fig. 5. Distribution of excess pore water pressure for distributive permeability (here closed-form solution based on average perme-
ability).

Height above base (m)

BN N

0 1 2 3 4 5 6 7 8 9 10
Excess pore pressure (kpa)

Fig. 6. Iso-temporal distribution of excess pore water pressure (top permeability is 100 times of bottom).

assumed to be linear elasticity, too. A schematic model is shown in Fig. 7. Top surface is fully drainage and
the rest boundaries are all impervious. For displacement boundaries, vertical boundaries fix horizontal
freedom and the horizontal boundaries fix vertical freedom. There is no closed-form solution, thus FEM is
applied for comparison. Fig. 8 shows the settlement distribution at different consolidation time (7 = 0, 3,
20 days). The foundation will have an immediate settlement after load. Its settlement will increase with the
dissipation of excess pore water pressure. The dissipation history of excess pore water pressure at two
different points is shown in Fig. 9. When time elapses about 20 days, dissipation of excess pore water
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Surcharge = 10 kPa

6m

AR

Sand layer
Soft Marine Clay 16m

TS

NN N NN

y
v 7 7 /£ /S 75 75 77 757

48m

Fig. 7. Two-dimensional consolidation problem under strip load.

e S P, A AaAAAiabddsadsaasaas
a

4AA‘AAA‘-AAAA‘.‘A“L:“AL““‘A.“.AAAAQAAAA.A‘AJ
B et T e U I
‘Al‘A-ALAA‘A‘AA““‘:‘ALAAA‘:.‘.‘AAAQALAAAL.AAAL
AAA.‘LAAAL‘A‘.‘AA.l‘:‘AnAI:A‘.A‘.AAAiAAAAAAAAAA
AAAL‘AAAADAA“‘A.“.“A":“.“““AAlA‘&‘A*AAA
,..A‘A‘.A.A‘A‘,.‘.‘A‘A::::AA“A“‘_‘AAA.A.‘.¢..“
ALAAAAA‘AAA‘-A‘A“.“‘.‘.AA‘.““A‘AA“A“““‘
L T A T T N i e R ol el L
R T e R R e e e e e kAR g
4 A4 LS LA AAA AL AL L AAALLAALLAAAAAAAAAARAAAAAdsasaas
F T T
T S S S R L
4 a4 dadAaaAAddAcarhAldadanadadidahArbdidAdrassadaad
A A A AASAARAAALLLALLLLALAAALAAAALALARMAbALrAAAbALnsdal

P
)
-~

AIAAAAAJ&GCAA“A‘.A‘A‘..“ A.‘A“AA‘QAAQAAAA.g‘
AALLE LSS EAAEML L anidy | Tha s aaRt Dhaa A KA AR S LA D LA
.AA&A.LAAAA‘AA“‘A‘.A‘A‘“A“““‘AA‘LLAA.iALAA
R L Tl L T S s
A-AAAAALAA‘AL““A“:AL‘A‘:.““L.LAAAAAA‘AL.“
R e T T T T T e
“““‘A“-‘14*AA;A“.“A‘.‘.aAA‘i“-‘A“““*‘
e T S A S S
AAALdaddsssds AL AL AL Ll dadbdddSAaddhssdaadbabadaa
Ahadbaadarsdsdsdasrsicasiissdtraiddssdrstrdantaaiads
AALAAALAAAALLALMALLLLLLAAACAAAAAAAAANGAdLLALAALLALLASa
AAAAadhaddrAAdAdddaddldadlAARAAAlAARSdlhiabldilAdlas
A A adhadassasddddasassdaldanssansdsdsshbddibsnsdhadaan
A AL AAAAAALAAAddeArhAAdMdlAAANSAddALdAdarbdAlbAalbdda

T L Y Y oue I r PP PP TP U T PP P U ST PR
AAA‘...AAA““.A‘A‘A‘. -‘A“.AAAA“.‘AA.AAAALA
1AAAAAAL‘ALAL“.A.AAA.‘:::..l.‘.A;A‘AAAAAAAA“AA“
AAAA‘AAAAhA.“.“‘AL“*‘“‘A“‘AA‘L.AAAA‘AlA‘AAn
AAAAAAAA‘““‘A“‘A‘A‘.‘.‘A‘A“‘A‘AA.AAAAAA‘A“
“AAHAA.AAAAAA“‘.“‘lAAaA“‘.‘A‘AQAAAAAAAAAALA
.AA..;A;;‘.‘A.“AAA:...;..-:“‘A‘_A‘_“‘.‘.‘;L.
T P
ALAAALAhadddaaLa AAsaAddradidadaanay
L N e
AL AdALLL LSS AL AN A Al AL sl e A AAAAASASAbAradiddsay
U R S G P S U O S
A A A A ALASL AL S AL AL AhSAdASdAAdAdArALAAAAAAd Akl
A AAAAAASAdSAdADAS L AALALALARASLeAAALr s L bAALAAAL Al
B A AR AAASAdaLsdAddAdAAALAAdAAAAAALLAAAAARAAALadAra
()

Fig. 8. Settlement distribution at different times: (a) 7 = 0 days; (b) 7 = 3 days; (¢) 7 = 20 days.

pressure is almost complete and settlement, u,, reaches its stable state as shown in Fig. 10. For more details,
two sections, a horizontal and a vertical ones, are taken to observe the distributions of excess pore water
pressure and effective stress (a7) . The horizontal section is 2 m below from ground level. Along this section,
the excess pore water pressure is shown in Fig. 11(a) and the effective stress (a7) is in Fig. 11(b). The excess
pore water pressure reaches its peak right below the strip load. It approaches to zero gradually with
consolidation. The effective stress increases little immediately after loading. With consolidation, the excess
pore water pressure is transferred to soil skeleton. This makes the effective stress to increase gradually. It



5918 J.G. Wang et al. | Comput. Methods Appl. Mech. Engrg. 190 (2001) 5907-5922

7 T T T T
»
-3
SH . e e e e o
O FEM at point 1
e FEM at point 2
all. o oo —— PIM method | |

—

Excess pore water pressure (kPa)

Elapsed time (days)

Fig. 9. Excess pore water pressure history at different points.
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Fig. 10. Settlement history at different points.

reaches its peak at last. The vertical section locates at middle line. Fig. 11(c) shows the dissipation of excess
pore water pressure and Fig. 11(d) shows its effective stress (a’y) . All these show good agreement with FEM
results.

Finally, the effect of irregularity of nodal distribution is studied for this two-dimensional problem. A
typical irregular distribution of nodes is given in Fig. 12. The regular distribution of nodes is already given
in Fig. 1(b). The nodal density is almost the same. Fig. 13 shows that they have little difference. This
difference is biggest at the beginning. Therefore, the irregularity of nodal distribution will affect the ac-
curacy of the PIM method but this effect is within small range.
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Excess pore water pressure (kPa)

(=]

(kPa)
(3]

y

»H

Effective stress o
w

0 5 10 15 20 25 30 35 40 45 50
(b) Horizontal distance (m)

Fig. 11. Stress and excess pore water pressure at different sections: (a) dissipation of excess pore water on surface 2 m below ground;
(b) effective stress distribution on surface 2 m below ground; (c) excess pore water along vertical middle line; (d) effective stress ¢/, along
vertical middle line.

6. Conclusions

The improved point interpolation meshless method (PIM) is applied to study the numerical solution of
Biot’s consolidation problem in foundation engineering. We first study the expression of the Biot’s theory
for general constitutive laws of soil skeleton. A weak form for auto-error corrector is developed based on
this expression. Spatial variables of displacement increment and excess pore water pressure are all
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Fig. 11. (Continued).

discretized by the same order of PIM shape function. Time domain is discretized by the Crank—Nicholson
method. Some examples demonstrate its feasibility and effectiveness. From these studies, the following
conclusions can be drawn:

First, the weak form can automatically correct the error during each time-step and thus keep the same
accuracy of global balance. This correction prevents the propagation of numerical error with time-step. On
this meaning, the weak form is useful not only for the numerical solution of Biot’s consolidation problems
but also for nonlinear problems.

Second, improved PIM is an effective method to discretize spatial variables (displacement and excess
pore water pressure). Unlike other meshless methods, improved PIM method has simple function and
derivatives. Its shape function is of explicit expression and its derivatives are easy to get after P Uis
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Fig. 13. Effect of irregularity of nodal distribution on excess pore water pressure.

obtained. They are all polynomials. Essential boundary conditions are easily implemented due to the delta
function properties of shape function, thus it is of higher computational efficiency.

Third, the same order of shape function for both displacement and excess pore water pressure is feasible
to avoid spatial oscillation if time-step is within some range. This range is associated with the minimum
distance of nodes and soil parameters like deformation modulus and permeability. The detail on auto-time
stepping of PIM method will be given later.
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