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Consolidation analysis of lumpy fills using a homogenization method

Jian-Guo Wang, C.E Leung & Y.K.Chow

Department of Civil Engineering, National University of Singapore, Singapore

ABSTRACT: A homogenization method is developed for the Terzaghi-Rendulic consolidation theory
to study the heterogeneous consolidation behavior of lumpy fill made of dredged clay lumps. A global
problem and a local problem are defined. The global problem is of the same form as that of Terzaghi’s
consolidation theory, but the equivalent consolidation coefficients involve the heterogeneity of dredged
materials. The predicted consolidation settlement is compared with those obtained from a centrifuge

model study on lumpy fill.

1 INTRODUCTION

Recent coastal development works in Singapore
lead to high demand of dumping grounds for soils
dredged from the seabed. On the other hand, land
reclamation works require large quantities of fill
material. A research study is being carried out
at the National University of Singapore to evalu-
ate the feasibility of using dredged soils as recla-
mation fill. Along the West Coast of Singapore,
the seabed soils generally consist of residual soils
and weathered rocks of sedimentary origin with in-
situ standard penetration resistance of at least 20
blows/30 cm. During dredging operation, soils are
typically removed from the seabed using a grab re-
sulting in lumps with sizes ranging from 0.5 m to
1.5 m. The exterior of these lumps would be sig-
nificantly softened while their inner cores remain
relatively stiff for a long period. When these lumps
are placed as reclamation fill, the profile of the fill
can be expected to be highly variable due to the
presence of inter-lump voids.

The consolidation characteristics of reclamation
fill made up of such clay lumps are rather com-
plex because when the clay lumps consolidate,
the inter-lump voids also close up simultaneously.
Hence conventional consolidation theories are not
applicable to analyze the consolidation behavior
of lumpy fill. In this paper, a homogenization
method for the Terzaghi-Rendulic consolidation
theory is put forward to study the heterogeneous
consolidation problem of lumpy fill.

2 GOVERNING EQUATIONS OF
THE CONSOLIDATION PROBLEM

Wang et al.(1997) developed the following con-
tinuity equation for a soil-water mixture by means
of micromechanics:

BE:O Oe,
5o T ot =0 (1)
where the Darcy’s law for specific discharge, ﬁ?,
is given by

— aue
HY = —K,.— 2
1 J axj ( )
where €, is volumetric strain, z; is the ith compo-
nent of x-coordinates, t the real time, u® is pore

water pressure, and Kj;; the permeability of the

lumpy fill.
Thus, the equation of continuity is
0 Ou’ Oc,
5 (Ka;> = B )

Now the key is how to introduce the constitutive
law of soil skeleton into the continuity equation.
For elastoplastic materials, the general constitu-
tive relation can be expressed as

deij = Cijudoy, (4)
or

de, _ do dSk; du’

g = Cuiigy + Ciam—gm = Caig =y (5)

1075



where ¢;; is strain components, Cj;x the compli-
- ance coeflicients, & is the mean total stress, S;; is

the derviatoric stress, and subscripts ¢, j, k,[ re-
fer to the indices which take 1, 2, 3 for three-
dimension coordinates. Terzaghi’s consolidation
theory assumes that the mean total stress & keeps
constant during consolidation and the dilatancy of
soil skeleton is ignorable, that is, the effect of di-
lantancy on excess pressure

dSk
anl dt =0 |
At this time, the continuity equation becomes
Ouf 0 ou®
= ME. S, 6
ot Oz; ( Y a::,-) o (6)

where M;; is consolidation coefficient and S, is the
domain for the soil-water mixture.

The boundary condition is given by

e Given excess pore pressure

uE =,&E

on St (7)
where u° is the pore water pressure on the
pore water pressure boundary St.

e Flux

a) Flux boundary

—neK-yyu* ' =¢§ on S, (8)

Where K¢ is a tensor of permeability, its com-
ponents are K{;. m is the outer unit vector
normal to the boundary surface. ¥/ is the gra-
dient operator, ¢¢ is the specific discharge on
discharge boundary Sy,.

b) Mixed boundary
—neKeyu® =g +vu*—a) on S,(9)

where v is a parameter, and @ is the pore water
pressure outside the mixed boundary S,.
The initial condition is

£ €

u® = ug when t =to (10)

3 LAPLACE TRANSFORMATION SPACE

The Laplace transformation and numerical in-
verse Laplace transformation are employed to ob-
tain the general solutions. The methodology is
shown in Fig.1.The forms in Laplace space are as
follows (p is Laplace parameter). The consolida-
tion coefficients Mf] are assumed of time indepen-
dence.

e e O [, 00
(i~ ) = o (M5 (11

where the A denotes the variables in Laplace space.
The Boundary condition is given by

e Given excess pore pressure
- ot
W =u on St (12)

e Flux

a) Flux boundary

on Sy, (13)

—nokevf:&s

b) Mixed boundary

—neK it =q +~(iif — i) on S,(14)

The problem above is only associated with spa-
tial co-ordinates with fast oscillatory coefficients.
For such a complicated structure, direct calcula-
tion will take a long time and makes the solution
complicated. It is necessary to find an effective
medium that has the same macro-response and
that can involve microstructural effect. Homog-
enization theory(Sanchez-Palencia 1980; Wang
1996) is a good alternative.

Ori_ginal Problem B.C.&I1C.

Laplace Transformation

l <€

Transformed Problem
in Laplace Space

b

Local Problem | ——3] Macro-Problem

| |

Fluctuation of excess Macro pore pressure

re pressure
lace inversio €

Macro pore pressure
and Deformation Original Space

Laplace Space

Fig. 1 Flowchart of analytical method
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4 ASYMPTOTIC SPATIAL EXPANSION

The fundamental function, excess pore pressure u°,
is assumed to be expanded as the series of scaling
parameter €.

@ (z, y;p) = @°(x, y; p)+eii! (z, y; p)+- - -(15)

and each term satisfies Y-periodicity, that is
4% (x,y;p) = 4*(z,y + Y;p) (16)

and y=§ (¢=0,1,2,--+) (17)

Eq. (16) means that 4*(x, y;p) takes values that
are almost the same in neighbouring, but very dif-
ferent in long distance. Such a function is called
"locally periodic’. The differential chain is

d 0 10
- 18
dﬂ?i ==>c9x,-+66y,- ( )
and
- ou 1 0u°
€ ~E € = . 19
M= v d M (5‘:@, +:-:6ij> (19)
The two-rank differential should be
v e (M i)
0 ou 1 0 ~ _Out
— Me el Me
o (35,) + a3 (5,

170 (- 86\ 8 (., 00
2o (903,) + o (753

Therefore, Eq. (11) is expanded as

d(e)f=0 (B=-2 ) (21)

because Eq. (21) holds for any €. This infers that

-1)071521"

a) £ 2-term

0 c 0\ _
B0 (MzJ 53/,) 0 (22)

That means

@’ (z,y;p) = 4°(x; p) (23)

Eq. (23), being the leading term, is of spe-
cial meanings. Its existence means that the
homogenization method is applicable.

b) e~l-term

o (o~ 000\ 8 (., 00
[ax, (M'fa—y,-) * o (M,.,..a_m_;)]

L0 (e 0%
e (M,, ay,) —0 (24)

4! is determined by Eq. (24) if 4° is given.
This is called as a local problem:

8 [, (03" 0
0y [M (aya * 53’:’)] =0 (25)

Under the periodicity condition 4!(x, y;p) =
i'(z,y +Y;p).

c) e%term

0 , 012
9y (MU 9y; )
0 . Ol 0 . Ol
[z (055,) + o (25|

8 . Ol .0 o
Bacz (M” Ba:) (pi” — o) =

A volume average operator is defined as

1
=— | od 2
<e> |Y|/y’y (27)

in a unit cell, and let

. N
=W'(y 5

(28)

where W7 (y) is the characteristic function, being
the function of local variable y. Then, the global
problem is obtained as

0 (M" 6{‘0) — (p® = ) = 0 (29)

r
8$i Ba:,.

where

M;, |Y| / (5,r+ ]r)dy (30)

M?! is the equivalent or effective consolidation co-
efficient, and §; = 1 when j = r, and 6; = 0
when 7 # r. Eq. (29) is of the same form as the
conventional Terzaghi-Rendulic consolidation the-
ory. The only difference is that the present consol-
idation theory involves the microstructural effect.
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Macro-consolidation coeflicients Mi’;- may be het-
erogeneous. Again, for the local problem, Eq.
(25), is expressed in characteristic function W™

o owr\  OM:
ME r —
Oy ( Y 0y, ) N Oy 0

(31)

with W"(y;p) = W"(y + Y p).

5 DISCUSSION
5.1 Weak form for a local problem
Assume that weighting function V is of Y-

periodicity. The weak form of the local problem
denoted by Eq. (31) is

9 oW oME
: — i1/ oy (32
/y By, (M” By; )de S y(32)

By using Y -periodicity, one has

T / o c'?yz

From Lax-Milgram Lemma, W7 is uniquely deter-
mined if its mean value is assumed to be zero.
Therefore, the weak form of a local problem is

(33)

/ . OWT 8V
i 0y, 8y,

(Find WreV,, <WkF>=0
| / WOV / (34)
1_7 ayJ ayz - 'Lrayz

The mechanical property of effective consolida-
tion coefficient M is symmetric and positive def-
inite.

5.2 Excess pore pressure

Fluctuation of excess pore pressure is given by

ou’

i = W'(y) e

+ C(x)

because C(x) is a function of x co-ordinate. It
should be classified as @°(x). Thus, it is reasonable
to assume that C(x) = 0. At this time, the total
excess pore pressure is

4~ 4% + 0!

< d

(b) Flow in two directions

Fig. 2 Two-layer unit cell

6 APPLICATIONS
6.1 Layer soil consolidation

There is one macro-variable £z and one micro-
variable y. The period Y is a segment of length [,

for example (0,1) as the unit cell shown in Fig. 2.
Thus

ou° N 8_’&0 owr N ow 35

Ox; Oz dy; Oy (35)
T'he local problem becomes

o . OW. OMe

—(M*® =0 36

(V) + (36)
Its solution is

W = / y+C (37)

W(0) = W(l) determines the coefficient b. The

homogenized consolidation coefficient M h s

(38)

Y]
Eq. (38) is suitable for a multi-layer medium.

The medium is assumed to be two-dimensionally
periodic: That is, M{; = M{;(y1) and only Mp; # 0
and Mg, # 0. This is an axisymmetric problem.

ou’ ou® ou’
- — 0
011 70 0ry Ox3 7
The fluctuation is expanded as
ou’ ou®
=Wl—+W?— 39
v oz, " o (39)
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From Eq. (31), the local problem is expressed as

~c OWT owr
-a—y_l( 11 ayl ) ay (M22 ay )
d OME
L= 40
oy Oy2 ( )

When r = 1, its solution is

/yl 1

Wi (y) = -y +C (41)
l o 1
When r = 2, the solution is that W?=Constant be-
oMz,

cause M35, is just function of y,,

= (.. There-
Oya

fore, the homogenized consolidation coefficient in
the first direction is of the same form as the previ-
ous case. In the second direction, the homogenized

consolidation coefficient M} is

1 b .
= Z/o M3,dy (42)

For multi-layer materials

(43)

>l
1

6.2 General case

Numerical inverse Laplace transformation is used
here. Schapery (1962) proposed an analytical
method such that

£~ [pF0)] lpmss 7(0) = (20)7F(5) (44)

where f(t) is the original function, and f(p) is the
function in Laplace space. This method will pro-
duce very large error when ¢ — 0 because of the
singularity at ¢ = 0. For our computation, the sin-
gularity at ¢t = 0 is avoided by use of p X e instead
of only e.

The above proposed method is applied to back
analyze the centrifuge model tests on dredged
lumpy materials (Leung et al., 1996). This is a
one-dimensional consolidation problem in macro-
scale. But the microstructure of lumpy fill is com-
plicated. A simplified homogenized method is used
to determine the homogenized consolidation coef-
ficient M?(= C,). The lumpy fill pores are divided
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into inter-lump voids and in-lump pores. The con-
solidation coefficient M, reaches its lowest value
(Cy)min at the complete closing of inter-lump void,
while it reaches its peak value (C,)maer at the be-
ginning of the loading. The C, — e curve is plotted
in Fig. 3 which leads to the following implica-
tions. (a) At the initial stage, consolidation pro-
cess is very fast. This makes deformation almost
instant. Dissipation of excess pore water pressure
is difficult to be measured. The deformation is
steep at the beginning of loading. On the other
hand, the stress-strain curve for lumpy fills shows
that the initial deformation at low loading is huge
and plastic (Leung et al. 1996). The lumpy balls
change its shape completely or collapse. If this de-
formation is mixed with the conventional consoli-
dation one, Terzaghi consolidation theory even the
large deformation one (Gibson 1967) is not suit-
able. (b) For a long term, the consolidation follows
the usual Terzaghi’s consolidation theory. Usually,
deformation is small and consolidation coefficient
is stable. Terzaghi consolidation theory is appli-
cable. (c) For the whole stage, if the initial stage
is treated separately, the conventional Terzaghi’s
theory is applicable. Thus, for the whole process
to be taken one stage, the deformation consolida-
tion degree and dissipation consolidation degree is
not identical.

(d) The lump softening with water is an impor-
tant factor to affect the deformation and ~onsolida-
tion. The direct function of this softening is reduc-
ing the strength of a clay lumpy. The lumpy may
collapse and transfer its excess pore water pressure
into inter-lump voids. Therefore, the consolidation
process for lumpy fills is not a complete dissipation
process of excess pore water pressure. Because of
its multi-scale property, the dissipation and gener-
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Fig. 3 Prediction of the consolidation coefficient



Centrifuge test data (Leung et al. 1996)
- Terzaghi theory

Present work

Prototype Ground Settlement (m)

0 2 4 6 8
Prototype Time (year)

Fig.4 Comparison of prototype ground settlement

ation of excess pore water pressure in lumpy fills
may exist at the same time, although the excess
pore water in a lumpy ball dissipates. This co-
existence depends on external loading, strength of
a lumpy ball and other mechanical properties of
clay.

In the centrifuge tests, the prototype height of
the filling is 15 m and its final measured settle-
ment is 2.6m, but its initial settlement is about
1.20m, as shown in Fig. 4. The prediction val-
ues from the present work are in fair agreement
with the experimental data except for the initial
settlement. At the beginning of loading, the mi-
crostructures of lumpy fill deform a lot. The inter-
voids reduce significantly, thus the permeability
reduces quickly and the consolidation coefficient
changes drastically. This change makes the excess
pore water pressure dissipate quickly. After that
initial period, the microstructures becomes more
and more stable. The consolidation is getting to
the normal consolidation process. This is why the
present work does still give poorer prediction at
initial consolidation stage.

7 CONCLUSION

The heterogeneity of lumpy fills is analyzed by a
homogenization method through a Terzaghi con-
solidation problem. The global and local prob-
lems are obtained. The global problem is of the
same form as the conventional Terzaghi theory ex-
cept for the values of consolidation coefficient. The
heterogeneity of microstructures of lumpy fills is
taken into consideration through the homogenized
consolidation coefficient. The homogenized con-
solidation coefficient is analytically obtained for

a two layer material. For a general lumpy fill-
ing, the homogenized coefficient is the function of
inter-void ratio. The computation for a centrifuge
test reveals some interesting mechanisms: (a) Co-
existence is found for dissipation and generation
of excess inter-void water pressure. This depends
on loading and microstructures. The deformation
is almost instant at the beginning of loading. The
plastic deformation is the major source. This co-
existence makes the consolidation degree for set-
tlement and dissipation different. (b) Pore water
pressure is heterogeneous in microstructure. The
excess water pore pressure tends to become homo-
geneous with the breakage of lumpy balls. (c) For
the long term, the behavior is dependent on exter--
nal loading, mechanical property of clay balls. The
conventional consolidation theory can be applied if
the consolidation coefficient is revised according to
the proposed method in this paper.
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